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Abstract

Kahneman and Tversky found that decision makers' reactions toward
probabilistic insurance imply risk loving over the range of negative
outcomes. This paper proves that the probabilistic insurance phenomenon is
consistent with risk aversion and a concave utility function, provided the
decision maker satisfies the reduction of compound lotteries axiom or the

independence axiom, but not both.



1. Introduction

One of the most puzzling findings of Kahneman and Tversky in their 1979
paper is the probabilistic insurance phenomenon, where "intuitive"” risk
aversion seems to contradict the Arrow-Pratt formal definition of risk
aversion. Consider the following problem [2, p. 269]:

Suppose you consider the possibility of insuring some
property against damages, e.g., fire or theft. After examining
the risks and the premium you find that you have no clear prefer-
ence between the option of purchasing insurance or leaving the
property uninsured.

It is then called to your attention that the insurance
company offered a new program called probabilistic insurance. 1In
this program you pay half of the regular premium. In the case of
damage, there is a 50 percent chance that you pay the other half
of the premium and the insurance company covers all the losses;

and there is a 50 percent chance that you get back your insurance
payment and suffer all the losses.

Kahneman and Tversky found that most subjects preferred not to buy the
probabilistic insurance. They proved that if a decision maker is an expected
utility maximizer, then this behavior is consistent with convex utility
functions, i.e., risk loving (see also Section 3 below). In Kahneman and
Tversky's words, [2, p. 270] "This is a rather puzzling consequence of the
risk aversion hypothesis of utility theory, because probabilistic insurance
appears intuitively riskier than regular insurance, which entirely eliminates
the element of risk.” Kahneman and Tversky suggested instead that the utility
function for losses is convex.

This paper proves that the probabilistic insurance phenomenon does not
imply risk loving and is consistent with concave utility functions provided
the decision maker satisfies the reduction of compound lotteries axiom or the
independence axiom, but not both. I demonstrate this by using the anticipated
utility function (Quiggin [5], Segal [6], Yaari [7]), which is described,

together with the reduction of compound .lotteries axiom and the independence



axiom, in Section 2.

2, Definitions

A lottery is a vector of the form X = (xl,pl;...;xn,pn) where
XpseeerX, €R, X € 4, < X5 PysesesP > 0, and Zpi = 1, This lottery
yields X4q dollars with probability Py> i=1,.00,ns Denote the set of all
these lotteries by Lje On Ly there exists a complete and transitive binary
preference relation %. X ~Y iff X ";Y and Y ~X, and X »Y iff
X :‘:Y but not Y hx.

V: L} + R represents the order > if for every X,Y ¢ L, X S Y iff

V(X) » V(Y). By expected utility theory,
(201) V(Xl ’pl;"';xn:pn) = 2piu(xi)o

Kahneman and Tversky suggested prospect theory as an alternative to

expected utility theory and claimed that
V(X 5P 5eeesxspy) = In(p, Julx, ).

This function is unacceptable from a normative standpoint. Unless w(p) = p,

it necessarily contradicts first order stochastic dominance! (see Machina [4]).
An alternative generalization of expected utility theory, called

anticipated utility, was suggested by Quiggins [5] (see also Yaari [7] and

Segal [6]). By this theory,

n-1 n n
(2.2) V(xy,Py5eee3x_,p ) = u(x )E(p ) + T u(x )[f( I p))-f( I p)] =
1R e o R PR J=i+1
n n
u(x,) + T [u(x,) - u(x, HIfC I p,)
Y e 1 =1 ey

lLet X = (xl,pl;...;xn,pn) and Y = (yl,pl;...;yn,t)n)- Vi xi > yi =>



where f£(0) = 0, f(1) =1, and u(0) = 0., When f(p) = p this function is
reduced to (2.1). Anticipated utility satisfies first order stochastic
dominance (for nondecreasing u and f) and aids in unravelling some well
known paradoxes in expected utility theory. Chew, Karni, and Safra [1]
recently proved that (2.2) satisfies Machina's [4] conditions for risk aver-
sion if u 1is concave and f convex. Yaari [7] too pfoved that whenever u
is linear, (2.2) represents risk aversion behavior if and only if f is
convex (see also Segal [6]). Indeed, let Xp = (0,p;1,1-p). If the decision
maker is risk averse, then his appreciation of an e-reduction in p is prob-
ably decreasing with p. The convexity of f implies diminishing marginal
value of p.

Let L, = {(Xl,Pl;-..;Xm,Pm): Zpi =1, PpseeesPy >0, Xjyeee X €
Ll}. Elements of LZ’ called two-stage lotteries, are denoted by A, B,
etc. A lottery A € L2 yields a ticket to lottery X; with probability Pi»
i=1,ses,m. More specifically, at time t; the decision maker faces the
lottery (1,p1;...;m,pm). Upon winning the number i, he participates at
time ty > t in the lottery X It is assumed that the decision maker's
discount rate for future income is 1. Thus, once he knows that he won a
certain amount of money, the actual time at which he receives this prize does
not make any different to him. Let ib be a complete and transitive
preference relation on L2. The decision maker 1is time neutral, thus L1
naturally becomes isomorphic to a subspace of Los where (xl,pl;...;xn,pn)
and ((xl,l),pl;...;(xn,l),pn) are equally attractive. The subscript 2 is
therefore omitted and the preference relation over one- and two-stage lotter—
ies is denoted by f? A similar discussion holds for mixed lotteries, where

the set of prizes is R U 1L.



This last discussion is relevant for lotteries of the form
((xl,l),pl;...;(xn,l),pn) only. So far nothing restricts the decision maker
in comparing other lotteries in L, with lotteries in L. The following two

axioms deal with such comparisons.

1. Reduction of Compound Lotteries Axiom (RCLA): If the decision maker is

indifferent to the resolution timing of the uncertainty, then he may assume
both stages to be conducted at time ty. Thus, a two—-stage lottery is reduced
to a simple one-stage lottery (see, for example, Kreps and Porteus [3]).

i i i i .
Formally, let X; = (x,,Pj3eee3x P ), 1 =1,.00,m

i i
(2.3) (XI,PI;---;Xm’Pm) ~

( 1 1, L1 1, ..m m, cx™ m oy
xl’plpl’ "'9xn :P]_Pn s"'&xlspmpl,O"a n ,pmpn
1 1 m m

2. Independence Axiom (TA): The relation > on L, induces several

relations on Ll' The independence axiom assumes that these relations

coincide and are equal to & on L. Formally,
(2.4) (X15Py3eeesYypy5eeesXpaPp) & (X)5P1500e5Z,Pg50003%ysPy) <=> ¥ X Zo

Let CE(X) be the certainty equivalence of X, given implicitly by

(CE(X),1) ~ X, 1If b satisfies TIA, then
(2.5) (X)5PyseeesXpsPy) ~ (CE(X;),py5 0003 CE(X ) ,p,)
(2.1) is the only continuous function satisfying both (2.3) and (2.5).

Anticipated utility is compatible with RCLA or IA.

3. Probabilistic Insurance

Denote the possible loss in the probabilistic insurance problem by x,
its probability by p, and the insurance premium by k. Let X =

(-x,p;0,1-p) (no insurance), Y = (-k,1) (full insurance), and A =



((—x;%;—k;%),p;—'g,l—p) (probabilistic insurance). By expected utility

theory, X ~Y » A iff

pu(-x) = u(-k) > 2 u(-x) + 2 u(-k) + [1-plu(- B =>

LBy [qp) 2GK/2) |
1 <5+ 5+ [1-p] ) >
u(-k/2) (1

It thus follows that u 1is not a concave function, and the rejection of the
probabilistic insurance is compatible with risk loving.

Expected utility theory employs both axioms, IA and RCLA. This section
proves that the rejection of the probabilistic insurance is compatible with
concave utility functions (hence, risk aversion behavior) provided the decis-
ion maker satisfies IA or RCLA, but not both. For this I assume that the
decision maker is an anticipated utility maximizer, that is, his value
function is given by (2.2). In this model, risk aversion implies concave u
and convex f (see Chew et al. f1}, Quiggin [5], and Segal [6]). For the

general case, let
A* = ((-x,1-q;-k,q),p;-qk,1-p).

1
Note that for q =0, A* = X; for q=1, A* =Y; and for q = 5,
A* = A, For the sake of simplicity I assume the existence of a > -« such

that for every X ¢ Ll’ x » a, In particular, -x,~-k > a.

3.1 Probabilistic Insurance and RCLA

1f t; satisfies RCLA, then by (2.3), A* ~ (-x,(1-q)p;-k,qp;—-qk,l-p).

By (2.2), X ~Y > A* iff



u(=x) [1-£(1-p)] = u(-k) >
u(-x) [1-£(1-p + qp)] + u(~-kK)[£(1-p + qp) - £(1-p)] + u(-qk)f(1-p) <=>
1< 1‘1'f§](-;_ztp9.L) ) + £f(1-p + qp) - £(1-p) + :J(%z £(1-p) <=>

u(-qk)
u(-k)

f(1-p+qp) - £(1-p)
1-f(1-p)

(3.2) <

Inequality (3.2) holds for every convex f and u(x) = x. There are
therefore strictly concave u and convex f satisfying (3.2).
In Figure 1, X =a VUB Uy, Y=aUS8Ue and, by RCLA, A* ~aU BV

¢ uw(B) = u(y) and u(8) = u(e) (u denotes Lebesgues' measure). By

-x -k -qk 0

Figure 1

adapting the risk aversion concept to anticipated utility theory, it follows
that the additional contribution of 8 to the value of a lottery is greater
than that of Y, and the additional contribution of € to the value of a
lottery is greater than that of 6., Since X ~ Y, the contribution of

VB UY equals that of § Ue. Y > A* suggests that the decision maker is
less risk averse in money than in the probabilities, at least for small
probabilities. Note, however, that one can be risk averse in money and still

prefer A* to Y, as is the case with expected utility maximizers,



3.2 Probabilistic Insurance and IA

If X satisfies IA, then by (2.4),
(3.3) A* ~ (CE(-x,1-q5-k,q),p;-qk,1-p).

Obviously, CE(-x,l-q;-k,q) = u-l(u(—x)[l—f(q)] + u(-k)f(q)). Hence, by (3.3)

and (2.2), X~Y } A* iff
u(-x) [1-£(1-p)] = u(-k) >
[u(-x)[1-£(q)] + u(-k)£f(q)][1-£(1-p)] + u(-qk)f(1l-p) <=>

1< 1-£(0) + £(@[1-£1-p)] + H2ED £1-p) <>
(3.4) £(q) < 4599,
Assume that wu(a) > -», Let g(q) = min {EL—SE% 0 <k < —a}. By

L'Hospital's rule,

u(~-qk) _
o 5 - o

It thus follows that g(0) =0, g(l) =1, and g 1is strictly increasing.
For every function u (concave or convex), there thus exists a convex
function f satisfying (3.4).
1 1 1

Let q = 5 The lottery (-x,iﬂ—k,iﬁ is represented by the area
aUBUY USUe (Figure 2a). By expected utility theory, the value of
EUn VO equals that of B U y U&8. If the decision maker is risk averse,
i.e., if u 1is concave, then those values are greater than that of €. It

thus follows that the expected utility certainty equivalence (EUCE) of

(—x;%;—k;%) is less than -k;x' By (2.1), it also follows that the value of
EUn equals that of 6 U A and that the value of B U Y equals that of

§U €.

Assume now that the decision maker is an anticipated utility maximizer.

If he is risk averse, i.e., if u 1is concave and f 1is convex, then the



o mmba

TR

value of & Un exceeds that of B U Ye It thus follows that for the same

utility function, the anticipated utility certainty equivalence (AUCE) of
Py
*2
By IA and (2.1), A* 1is equivalent to the lottery a'U B'U &'V €'

(-x,%:—k )} 1is less than EUCE.

(Figure 2b) and by IA and (2.2), A* is equivalent to o'U B'U §'. By

(2.1), the value of &' U €' equals that of £', while risk aversion implies

that the value of B' exceeds that of Y'. It thus follows that given

X ~Y, (i.e., given that the value of B' U Y' equals that of

§'U €' U &'), a risk-averse expected utility maximizer will prefer A* to
both X and Y. However, if €' is sufficiently large (i.e., the decision
maker is sufficiently risk averse in the probabilities), then an anticipated

utility maximizer will prefer X and Y to A*,
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