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Abstract

This remark proves that Quiggin's anticipated utility function may solve
the Allais paradox and the common ratio effect. For some generalizations of

these it is needed to assume that the decision-weight function is concave.



1l Introduction

Quiggin (1982) presented anticipated utility as a generalization of
expected utility theory. Let A be a random variable on [a,B], and let

Fpo(x) = Pr(A < x). Quiggin suggested that the value of A {is

I8 u(x)ae(F, (x)) (1)
a

where u(0) = 0, £(0) = 0, and £(1) = 1.
The support of A may be finite. Let Xy < vee € X5 Pls sees Py » 0,
Zpi = 1. The vector (xy,pP]3s++3X,,P,) denotes a lottery yielding x; dol-

lars with probability py, 1 = 1,...,n. By (1), the value of this lottery is

n : i-1
u(x )f(p,) + T [f( X p) - £fCX plulx)) (2)
o T T e 1

Quiggin's assumptions imply that f(%) = %1 No further restrictions on

f are imposed by his assumpﬁions, but for the sake of simplicity, Quiggin
assumed that either

(A*) f 1is concave on [0,%& and convex on %31]

or

(B*) f 1is convex on [0,%& and concave on [%31].

This paper discusses these assumptions, and particularly the assumption
that f(%) = %u Empirical evidence, as well as results obtained by other theo-
ries, suggest that f is concave on [0,1}, but in this case, f(%) > %u
Let g(p) =1 - £(1-p). Obviously, g(0) =0, g(1) =1, g(%) = %- iff

f(%) --l, and g 1s convex iff f 1is concave. Rewrite (1) and (2) with g

instead of f and obtain -

[® udg(1-F, (0) (3)
a
n n ( )
u(x,) + I [u(x,) -u(x, )]g( Z »p,) 4
1t 1 1-17 80 2 P

As will become apparent later, g is sometimes more useful than f (see the



remark at the end of Section 2).

Section 2 shows that (4) is compatible with the Allais paradox when g
is convex. If, in addition, the elasticity of g 1is increasing, (4) is
compatible with the common ratio effect. Section 3 discusses some generaliza-
tions of these phenomena, and Section 4 compares Quiggin's theory with some

other recent theories.

2. Unravelling of "Paradoxes"”

In this section I show that some behavioral patterns, although
inconsistent with expected utility theory (EU), may agree with anticipated
utility theory (AU). In each case I will present the behavioral pattern,
explain why it contradicts EU, and show that it may be consistent with AU.
(MacCrimmon and Larsson (1979) discussed these patterns and their relationship
to EU hypothesis in detail.) Recall that in (1)-(4), u(0) = 0. A z B
means A 1is (weakly) preferred to B, A S B 1iff Az B but not B >- A, and

A~B iff AtB and B:A.

2.1 The Paradox of Allais

Problem 1: Choose between

A, = (0,0.9; 5000000,0.1) and B; = (0,0.89; 1000000,0.11)
Problem 2: Choose between

Ay = (0,0.01; 1000000,0.89; 5000000,0.1) and B, = (1000000,1).
Let 1M denote 1000000. According to EU, Al k B1 iff 0.lu(5M) + 0.9u(0)

> 0.11u(1M) + 0.89u(0) 41iff O0.1lu(5M) + 0.89u(IM) + 0.0lu(0) > u(IM) iff

Az 2;32. However, most people prefer Ay to By, but By to Ay (see
Allais (1953)).

Using (4) yields A; » B; 1ff

a(5M)g(0.1) > u(1M)g(0.11) (5)



and By > A, iff
u(1M)g(0.99) + [u(5M) - u(1M)]g(0.1) < u(1M)g(l). (6)
(5) and (6) together imply
u(1M) {g(1) - g(0.99)] > u(5M)g(0.1) - u(1M)g(0.1) > u(IM)[g(0.11) - g(0.1)].
Thus, if g 1s convex and if
g(1) -g(gzg?i; g(0.1) E'E%% 5 g_%_g:_%l

then the choices A, p S B, and B, b Ap are compatible with 4).

The following data come from Kahneman and Tversky (1979):

Problem 3: Choose between

A3 = (0,0.67; 2500,0.33) and B3 = (0,0.66; 2400,0.34)
Problem 4: Choose between

A, = (0,0.01; 2400,0.66; 2500,0.33) and B, = (2400,1).

According to EU, A3 2: By 1ff A, > B,. However, most people prefer Ag
to B3, but B, to A,. Thse results are compatible with AU theory 1if ¢

is convex and if

g(1l) - 2(0.99) + g(0.33) > u(2500) > 5(0.34).
g(0.33) u(2400) g(0.33)

2.2 The Common Ratio Effect

Problem 5: Choose between
Ag = (1000000,1) and Bg = (0,0.2; 5000000,0.8)
Problem 6: Ch;ose between
Ag = (0,0.95; 1060000,0.05) and Bg = (0,0.96; 5000000,0.04).

According to EU, Ag 2: Bg 1ff u(1M) > 0.8u(5M) + 0.2u(0) 4iff 0.05u(1M) >

0.04u(5M) + 0.01u(0) 4ff 0.05u(1M) + 0.95u(0) > 0.04u(5M) + 0.96u(0) iff



Ag z Bg. Most people prefer Ag to Bg, but Bg to Ag.

By (4), AS * BS and B6 > A6 iff

u(IM)g(1l) > u(5M)g(0.8)

= g(1) u(5M) (0.05)
> Z60-8 0w > w08
u(5M)g(0.04) > u(1M)g(0.05)
A sufficient condition for g(1)/g(0.8) > g(0.05)/g(0.04) 1is that for
every a > 1, g(ap)/g(p) 1s increasing with »p. (In this example a =
5/4). This occurs 1iff

apg'(ap) 5 pg'(p)
g(ap) glp) *

ag'(ap)g(p) > g(op)g'(p) <=>

The elasticity of a function g 1is defined as xg'(x)/g(x).' Thus, 1if
the elasticity of g is increasing, then choosing Ag and By 1is compatible
with (4).

MacCrimmon and Larsson (1979) investigated a more general form of this
decision problem:

Problem 5*: Choose between
* *
A5 = (0,1-p; x,p) and B5 = (0,1-0.8p; 5x,0.8p)
* *
By (4), A5 B5 1ff u(x)g(p) > u(5x)g(0.8p) 1iff

*
MacCrimmon and Larsson found that the preference for A5 is increasing with
x and with p. One obtains these results if the elasticity of g 1is
increasing and the elasticity of u, decreasing.

Kahneman and Tversky (1979) observed similar patterns. For example:

Problem 7: Choose between
Ay = (3000,1) and By = (0,0.2; 4000,0.8)

Problem 8: Choose betwéen



Ag = (0,0.75; 3000,0.25) and Bg = (0,0.8; 4000,0.2).

Most people prefer A; to By, but Bg to Ag. Increasing elasticity of g

may explain this phenomenon.

Remark: Increasing elasticity of g does not imply decreasing elasticity of
f. Let g(p) =1 - /I-p and let £(p) = VYp. g(p) =1 - £(1-p), the

elasticity of g 1is increasing and the elasticity of f 1is constant.

3. The Convexity of ¢

This section discusses some properties of the preference relation ?J

resulting from the assumption that g 18 a convex function.

Definition: Fy 1is said to differ from F, by a simple compensated spread if
*
A~B and if there exists a point x* guch that for every x < x FB(x) >

FA(x) and for every x » x* FB(x) < FA(x) (Machina (1982, p. 281)).

Definition: A stochastically dominates B if for every x, FA(x) <

fB(X) .

Generalized Common Ratio Effect (GCRE): Let A, B, C, and D be lotteries
such that C and D stochastically dominate A and B respectively, and
FD - FC = E(FB - FA) for some £ > 0. If Fp differs from F, by a simple
compensated spread, then C 2: D, and if Fp differs from FC by a simple

compensated spread, then B » A (Machina (1982, p. 305)).

The common ratio effect (2.2 above) constitutes a special case of the
GCRE. Let A = (0,1-p; x,p) and B = (0,1-q; y,q) such that 0 < x < vy,
1>p>q and A ~ B. By definition, B differs from A by a simple
compensated spread. Let 1 < A K %— and let C = (0,1-Ap; x,Ap), D =

(0,1-2q; y,Aq). C and D stochastically dominate A and B respectively,



and Fp - F¢ = )\(FB - FA)' The GCRE requires that C 2 D, as MacCrimmon and
Larsson (1979) found.

If ‘{; can be represented by an EU function, then it satisfies the GCRE
assumption because B ~ A 1iff D e C. I now prove that the EU function is
the only AU function satisfying the GCRE. This functional form cannot resolve
the Allais paradox and the common ratio effect. Hence, if a decision maker
behaves in accordance with AU and the Allais paradox or the common ratio

effect, then he cannot satisfy the GCRE.

Theorem 1: If k: can be represented by (1)-(4), and satisfies the GCRE, then

it can be represented by an EU function. In other words, AU reduces to EU.1

Proof: Let 0<x<y, p>q be such that (0,1-p; x,p) ~(0,1-q; yv,q). By
the GCRE, it follows that for every p < p' < 1 and for every 0 < r < p',
(0,1-p'; x,p'~r; y,r) > (0,1 - [q(p'-r) + rpl/p; v,[q(p'-r) + rp]/p). X can

be represented by (4), hence

u(x)g(p) = u(y)g(q)

aGg(p") + [u(y) = u(x)]g(r) > uly)g(LP=L) * Ip

and it follows that

N <
gta uix yQP; Py - g(r)

Because g 1s increasing, it is almost everywhere differentiable. If g 1is

differentiable at p', then by the L'Hospital's Rule

g(p) < lim jsp') - g(r) -
2(q) ropt (AP -r; * TPy o(r)

lrhis was pointed out to me by Mark Machina.



= 1im —§'(r) =P
r+p' (P;Q)gv(Q(P -rI)’ + l’p) - g'(r) q

Since g 1s a continuous function, it follows that

(M

by = &) ¢ 5@
' P

T
Let 0<x<y, p>gq be such that (0,1-p; x,p) ~ (0,1-q; y,q). By
the GCRE, (x,1) » (0,p~q; x,1-p; y,q‘). By (4),
u(x)g(p) = u(y)g(q)
u(x) > u(x)g(l-p+q) + [u(y) - u(x)1g(q)
hence 1 > f(1-p+q) + g(p) - g(q). For q =0 we obtain
g(p) + g(1-p) < 1. (8)

Since g(l) =1, it follows from (7) and (8) that g(1/2) = 1/2. Let 1/2 <

p < 1. By (7),

1 - gg}QZ) 5 g;p) 5 gil) -1

hence g(p) = p.

Let 0 <p<1/2. By (8) g(p) +1 ~-p <1, thus g(p) < p. By (7)
g(p) a/2y _
ER > Byp-1
hence g(p) = p. Q.E.D.

Remark: This proof does not depend on the assumption that f(%) = %w

Although AUl cannot satisfy GCRE (unless g(p) = p), it satisfies some

modifications of this assuﬁption.

Generalized Allais Paradox (GAP): Let A, B, C, and D be lotteries such

that C and D stochastically dominate A and B respectively, and Fp -



Fe 2 FB - FA' Assume, moreover, that B differs from A by a simple
*
compensated spread, and let x* be such that for x < x FB(x) > FA(x) and
* * .
for x > x Fg(x) < FA(x). If for x > x Fp(x) = Fp(x) (and FD(x) =

Fp(x)), then C t D.

To obtain the Allais paradox, let A = (0,0.89; 1000000,0.11), B =
(0,0.9; 5000000,0.1), € = (1000000,1), D = (0,0.01; 1000000,0.89;
5000000,0.1), and x" = 1000000.

It is reasonable to assume that decision makers obey the GAP. Let A =
(0,1-p; x,p), B = (0,1-q; y,q), C = (0,1-p-r; x,p+tr) and D =
(0,1-q~-r; x,r; v,q) such that 0 <( x <y, p>q and A~ B. C may be
understood as A plus an r chance of receiving x, while D equals B
plus an r chance of receiving x. Note, however, that with the shift from
A to C the probability of 0 1is reduced relatively more than with the
shift from B to D. Since A ~ B and F, - FA = FD - FB’ C should be

preferred to D, as predicted by the GAP.

Theorem 2: Assume that h can be represented by (4). t satisfies the GAP

1ff g 1s convex.

Proof: Let A, B, C, and D be as in the definition of the GAP, and assume,
without loss of generality, that they are all bounded by a and 8. Assume

that k can be represented by (3) with a convex function g. A ~B implies

I8 ux)ag(1-7,(x)) = [P u(x)dg(1-F (x)) (9

a a

Similarly, C h D 1iff

I8 ux)ag(1-F (x)) > [® u(x)dg(1-Fp(x)) (10)
a a

Subtract (9) from (10), and obtain that € > D iff

-



* *
[© u@dlg-F () = g(1-F,N] > [X u(x)dg(1-Fy(x)) - g(1-Fy(x))] (11)
a a
According to the definition of the GAP, ¥, - FB = Fo - F, and on [a,x*],
FD > Fc. Inequality (11) thus holds by the convexity of g.

Assume now that ?:' satisfies the GAP. Let 0 < x <y and p > q such

that (0,1-p; x,p) ~ (0,1-q; y,q). Hence
u(x)g(p) = u(y)g(q). (12)

By the GAP, for every 0 < r <1 ~-p, (0,1-p-r; x,p+r)2: (0,1-q~r; x,r; v,9).
By (4), this preference holds iff u(x)g(p+r) > u(x)g(q+r) + [u(y) -
u(x)1g(q) 1ff (by (12)) g(p+r) - g(p) > g(q+r) - g(q). Hence g'(p) > £'(q)

and g 1s convex. Q.E.D.

4., Some Remarks on the Literature

Machina (1982) defined the local utility function U(x,F) and proved
that Ab B whenever A stochastically dominates B 1iff U(x,F) 1is
nondecreasing in x for every cumulative distribution function F. Also,

A {', B whenever B differs from A by a mean preserving increase in risk
iff U(x,F) 1is a concave function of x for every F.2 Machina assumed that
the representation function is Frechet differentiable (as a function of FA)‘
Chew, Karni, and Safra (1985) proved that (3) is not Frechet differentiable,
but they showed that Machina's results hold if the representation function is

Gateaux differentiable, and that (3) 1s Gateaux differentiable. One can prove

that if k- is represented by (3), then the local utility function U(-,F) 1is

given by

2The local uti{lity function is defined in Machina (1982), Section 3.1.
For the definition of mean preserving increase in risk see Rothschild and

Stiglitz (1970).



10

U(x,F) = [X u'(s)g'(1-F(s))ds.

Differentiating twice with respect to x implies
Uy (x,F) = u'(x)g'(1-F(x)) (13)
Uy (x,F) = u"(x)g' (1-F(x)) - u'(x)g"(1-F(x))F' (x) (14)

Because u and g are increasing functions, by (13), U is nondecreasing in
Xe ,’: indeed satisfies the first order stochastic dominance axiom (Machina
(1982)). If u 1is concave and g is convex, then by (14), U 1is a concave
function of =x. Accor@ing to Maching's theorem, 1f B differs from A by a
mean preserving increase in risk, then A > B,

Yaari (1984, 1985) discussed AU and risk aversion. In his approach the
utility function u 1s linear, and a decision maker is called risk averse if
g 18 convex. Similar results were obtained by Chew, Karni, and Safra (1985).

Segal (1985) suggests a solution to the Ellsberg paradox, based on the assump-

tion that g 1is convex.

5. Conclusions

Quiggin's axioms, especially his weak independence axiom, imply that
f(%) = %u However, other axiomatic bases (Yaari (1985), Segal (1984)) yield a
similar representation function without this restriction. Indeed, this
reetriction»on f 1s not an essential part of anticipated utility theory,
moreover, some experimental data, as well as results obtained by other

theories, suggest that f 1s concave.
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