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ERRORS IN VARTABLES IN LINEAR SYSTEMS

by Edward E. Leamer1

This paper extends the simple errors-in-variable bound to the
setting of systems of equations. Both diagonal and nondiagonal
measurement error covariance matrices are considered. 1In the
nondiagonal case, the analogue of the simple errors-in-variable
interval of estimates is an ellipsoid with diagonal equal to the
line segment connecting the direct least squares with a two-stage
least squares estimate. For the diagonal case, the set of
estimates under some conditions must 1ie within the convex hull of

k

2 points.

1. INTRODUCTION

If a single explanatory variable in a linear regression model is subject
to a form of stochastic measurement error, the model is not identified, but a
set of estimates that asymptotically contains the true value is the interval
between the ordinary regression and the reverse regression, the latter
computed by minimizing the sum-of-squares in the direction of the mismeasured
explanatory variable. One generalization of this two-dimensional result of
Gini (1921) has been conjectured by Frisch (1934) and a partial proof can be

found in Koopmans (1937). The Frisch-Koopmans result can be stated in the

following way: 1If all the k+1 regressions formed by minimizing the sum of
squared errors in the k+1 different orthogonal directions are in the same
orthant, then the convex hull of these k+1 regressions form a consistent set
that asymptotically contains the true parameter. Clearer proofs may bhe found
in Patefield (1981), XKalman (1982) and Klepper and Leamer (1984), the latter

two references dealing with the converse as well. However, few data sets that



economists analyze will satisfy the condition that all k+1 reg}essions are
in the same orthant, and in that event Klepper and Leamer (1984) demonstrate
that the minimal consistent set is unbounded. In the absence of other inform-
ation most data sets are thereby rendered useless for inference about
structural coefficients, though parameters defining the distribution of
observables of course remain identifiable.

Several kinds of additional information that can narrow the bounds have
been considered in the recent literature. Klepper and Leamer (1984) explore
the usefulness of hounds on the "true” R2 and on the measurement error
variances. Bekker, Kapteyn and Wansbheek (1985) consider limits on the
measurement error covariance matrix, and Klepper and Stapleton (1985) consider
restrictions on the regression coefficients.

In this paper, 1 revert to the earlier tradition of using only the
information contained in the first two moments of the data. The additional
information that is used to narrow the bounds is a set of observations of
other dependent variables that are influenced by the same set of mismeasured
explanatory varilables. 1In general, the errors—in-variables bounds applicable
to systems of equations are narrower than the bounds for single equations, and
the multiple-equations bhounds may be limited even when the single-equation
bounds are unlimited., 1TIn particular, the bounds will necessarily be limited
if the numﬁer of equations is no less than the number of variables measured
with error. Then it is mathematically convenient not to make the assumption
that errors in different variables are uncorrelated, and the consequent set of
estimates for a vector of coefficients for one equation 1is an ellipsoid which,
loosely speaking, lies between the ordinary least squares estimate and a two-
stage least squares estimate in which the dependent variables are used as

predictor variables to form predicted explanatory variables in the first stage



of estimation.

The familiar bivariate errors-in-variable interval hetween the direct and
reverse regression can be described this way since the reverse regression can
be found by two stage least squares with a "predicted x" formed by regres-
sing the explanatory variable x on the dependent variahle y. This upper
bound (the reverse regression) can also be found by dividing the direct
regression by the squared correlation hetween the dependent variable and the
mismeasured explanatory variable. T1f there is more than one dependent
variable but still one explanatory variable, then the two-stage least squares
estimate can be found by dividing the direct regression by the multiple
correlation coefficient formed when the mismeasured v;riable is regressed on
all the dependent variables. This interval is necessarily shorter than the
interval applicable in the bivariate case, just as an R2 must increase when
a variable is added to an equation.

1f, as in the classic work of Xoopmans (1937) and Frisch (1934), the
errors in variables are assumed to bhe distributed independently, a convenient
complete characterization of the analogue of the hivariate errors-in-variables
interval is not yet available for the multivariate model considered here,
Permissible estimates of the diagonal measurement error covariance matrix can
be shown to be smaller (in a matrix sense) than the partial covariance matrix
of the explanatory variables given the dependent variables, but this set of
measurement error covariance matrices maps into a rather complicated set of
regression estimates. The exception to this statement 1s the single equation
bound discussed in Klepper and Leamer (1984) which is applicable only when the
k+l regressions are in the same orthant, although, when they are not, a pre-
cise characterization of the set of regression estimates is rendered unneces-

sary because the set is unbounded in all relevant directions. Although the



set of regression estimates resists a complete convenient characterization, it
is possible to identify a set of 2k estimates which under certain
circumstances contains the minimal consistent set. This is discussed in
Section 4.

In Section 2 of this paper, the errors-in-variables problem is shown to
require the removal from the observed covariabhility of the explanatory
variables that part which is due to measurement errors. A measurement error
matrix that is compatible with the first two moments of the data must be less
than the ohserved partial covariance matrix of the explanatory variables given
the dependent variables. In Section 3, this set of measurement error
covariance matrices 1s shown to map into an ellipsoid of estimates for a

regression vector. In Section 4, the measurement error covariance matrix 1s

assumed to be diagonal. Finally, an example is presented in Section 5.

2. LINEAR REGRESSION SYSTEMS WITH MEASUREMENT ERRORS

The multivariate linear regression system with all variahles measured

with error 1is written as
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where y, 1s a (pxl) observable vector
a 1s a pxl vector of unobservable "intercepts”
B is a kxp matrix of unobservable "slopes”
X, 1s a kxl vector of "true" explanatory variables
u, is a pxl vector of unobservable "disturbances”
is a kx1 vector of observahle measurements of ¥

t

e, 1is a kxl vector of unohservable measurement errors



X is a kx1 vector of unobservable means of the "signal" Xt

et is a kxl1 vector of unobservable signal departures from the mean.

Two crucial assumptions in this analysis are that the random vector

(uc,et,et) is serially uncorrelated and has the block diagonal covariance

matrix
Q 0 0
¢ = Var(u,e,e) = | 0O D O
0 0 z

where Q, D, and I are symmetric positive semi-definite matrices. These
assumptions will not always be appropriate and require careful scrutiny in
serious applications. Obviously, the assumption of serial independence is
inappropriate for time series data. 1In addition, the assumption that the
covariance matrix is hlock diagonal is often doubtful. 1In this normalized
form of the errors-in-variable model, the "equation error” can be thought to
be composed of two parts: u = ey + ey where e‘v is the measuremgnt error in
the "dependent” variable y, and ¢ is the combined effect of unmeasured
"explanatory” variables. The other two random vectors in the model are e,
the measurement error of the ohserved explanatory variables and €, the
difference between the true ohserved explanatory variable and its mean. The
usual assumption underlying the selection of a dependent variable in a regres-
sion analysis 1is that the observed and unobserved "explanatory"” variables are
distributed independently: cov(ey,e) = 0, It has furthermore been the
tradition in the errors-in-variable literature to assume that measurement
errors and true variables are distributed independently: 0O = cov(e,e) =
cov(e,ey) = cov(ey,e). Although covarilances of this type are traditionally
assumed to be zero, it is not difficult to conjure up reasons why they might
be either negative or positive. A completely convincing analysis therefore

would probably have to allow for these covariances to be different from zero.



For block diagonality of ¢, we need also the assumption of iﬂdependence
between the measurement errors of vy, ev, and the measurement errors of x,
€. This too is an assumption that needs careful scrutiny in actual applica-
tions. TIncidentally, there is an apparent inconsistency between the
assumption of independence in the measurement errors in x and y and the
assumption that the covariance matrix of the errors in x 1s nondiagonal.

But there are settings in which this asymmetrical treatment of the measurement
errors seems justified, an example of which is offered in Section 3.

Moreover, the “"symmetric” treatment with diagonal D 1leads to the complicated
sets of estimates discussed in Section 3, and for ease of computation the
wider bounds associated with a free D may be preferred, particularly when
these wider bounds are narrow "enough”,

Given these assumptions, the observables y and x have moments

a + x'B

X

’ ¢

y B'IB + Q R'Z
Var = . (2)

X IB I+D
Method-of-moments estimators for the unknown parameters may be found by
setting these hypothetical moments equal to their observable counterparts.
The equations formed by setting the theoretical means (1) equal to the
observed means can be solved uniquely for estimates of a and i, given an
estimate of B. This leaves estimates of B wunrestricted. Restrictions on
the estimate of B must therefore come entirely from the second moments.

Setting the observed covariances Sij equal to the theoretical moments, we

obtain the estimating equations

s.. S B'IB + @ B'L
yy yx
-~ = AA ~ b} (3)
S__-D B z



where g is an estimate of B, 1In this expression, the estimated
measurement-error covariance matrix, 6, has been moved to the left of the
equals sign to produce a matrix on the right that takes the familiar form of
the covariance matrix of the multivariate regression model. On the left is
the matrix of "true” covariances which are the observed covariances purged of
the measurement error covariances 6. It seems clear from the analysis of

multivariate regression that these equations have solutions with Q@ and I

positive semi-definite provided the matrix on the left is positive semi-

definite. (This is verified in the Appendix.) 1In particular, B 1is a

solution to the normal equations

(Sxx—D)B = sxy (4)

with suitably selected D.
The requirement that the left-hand matrix in (3) be positive semi-
definite of course is not enough to determine D precisely but it does

restrict its domain., If S is positive definite, Syy > 0, the matrix (3)

Yy
is positive semi~definite if and only if S - D - S S-1 S >0 (see
XX Xy yy yx
Appendix). This together with D > 0 can be written as:
Syxey > D 20 (5)
where Sxx.y is the partial covariance matrix of x given vy, Sxx.y = SXx -
_1 .
S S S .
Xy vy yx

~

In summary, the set of estimates B compatible with the first two

moments of the data is the set of solutions to the normal equations (4) with
the error covariance matrix D selected from the set (5). This set of esti-
mates is bounded unless a singular S - D 1is compatible with S >N,
XX XX oY

since B = (Sxx—D)-lsxy is a continuous function of D over a compact

domain. This set of estimates is a consistent set, and, if the random vectors



are all normally distributed, it is a minimal consistent set since higher

order moments contain no further information.

3. NON-DIAGONAL ERROR COVARIANCE MATRIX
The set of estimates ﬁ which are solutions to (4) with 6 satisfying
(5) is most easily described if the measurement error covariance matrix 6 is
not restricted to be diagonal. Then, in order for the set of estimates to be
bounded, it is necessary for the number of explanatory variables measured with
error to be no greater than the number of dependent variables. More

precisely, the matrix S S—IS must be positive definite, and, if it is,

Xy yy ¥X
the set of estimates compatible with the first two moments of the data is an
ellipsoid which is easily computed and easily described.
The first result establishes conditions under which the set is finite.

The second result indicates the ellipsoid of possible estimates.,

~ -1 .
Theorem 1: Sxx.y » D and Sxysyvsyx > Q inply Sxx - D> 0, Conversely, if
S S-IS is singular, there exists a matrix D > 0, such that Sxx - D 1is
Xy yy ¥yX )

singular and S >N,

XX,V
Proof: S - B » 0 1implies S - 6 > S s'ls and S S_ls > 0 thus
rrootr XXV XX xx yy yx’ Xy Yy yx

~ _1 A
implies Sxx -D>0, Conversely, 1if Sxysyysyx is singular let D = Sxx -

-1 - iy -1

S 8°S . Th S - = d S, . - =
gxygyygyx en XX oY D 0 »0 an <X D gxysyysyx’ which is
singular.
Theorem 2: If S,,> 0, S S—IS >0 and S >D >0, the vector of
_— Yy Xy yy yx XX.Y

estimates for one equation
- ~ -1
B = (Sxx—D) r,

lies in the ellipsoid



(B-£)' H(B-£) < c (6)

where r 1is the vector of covariances between the y for the selected

equation and the k =x-variahles, and

-1 -1 -1
£=S r/2+(S S S ) r/2

XX Xy yy yx
H=AS§ " + A

XX oY

A=5S s 1s

xy yy yx
c = r'A—lr/A - r'S—1 r/h.

XX

~ A

Conversely, for any £ 1in this ellipsoid, there exists a D such that

(Sxx—D)B = r and Sxx y >D >0,

Proof: This is a straightforward corollary of Theorem 2 in Leamer (1982,

p. 727) which deals with matrix weighted averageslwith bounded weights., Here

we may obtain the matrix weighted form by writing B8 = (S S—IS + an)“1 r
R . Xy yy yx
..1_ -
where V = Sxx.y - D and satisfies Sxx.y >V > 0, or equivalently,
V(s )L
XXo ¥y

The extreme estimates of a linear combination Y'B over the ellipsoid

(B) are implied by Lemma 3 in Leamer (1982):

|08 - ve| < (prrtyert/?
-1 -1 -1 -1 -1 -1 -1 -1
where H = (A+Asxx.yA) = A - A TA(AA A+Sxx.y) AA
= a1t

The special choice of ¢ = r 1implies the inequalities

1 - -1
r'Sxx r<r'B<r'A'r

or equivalently
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A

1 4 < 'A 1
r'b <r'B <r BZSLS (7

-1 " -1 -1
where b = § is the 1 t- =
xx T e least-squares vector and BZSLS xysyysyx) r 1is

the two-stage least-squares vector formed with the dependent variables as

(s

explanatory variahles in the first stage. This two-stage least squares

interpretation follows from the fact that the "predicted” X matrix is
X=Y8 =¥sls , and (xX0OY 'y = s s tyiysls 17ls s7lyry -
Yy yx Xy vy yy ¥X Xy yy
(s -IS )—1 S where Y and X are matrices of data with means removed.
Xy yy ¥yXx Xy
In words, the line segment connecting b to BZSLS is a diagonal of the

~

ellipsoid of estimates (6), where a diagonal is defined as the line segment
connecting the tangency points of a pair of parallel supporting hyperplanes.

The simple errors-in-variable bound with p =k =1 1is a corollary in
which the ellipsoid (6) becomes an interval between the “direct regression”

S—ls and the “"reverse regression” (S s71s )_ls =s s !, This reverse
Xx Xy Xy Yy vX Xy Yy yx

regression can be written as

- - 2
S S 1 S ls / (S /S S )
yy vx XX Xy yx Txxyy

- 2
=8 1s / R”
XX XY

where Rz is the squared correlation between the two variables. Another

simple corollary results when k=1 and p > 1. Then the ellipsoid (6) is
again an interval, this time extending from the direct regression to the

2SLS regression which can bhe written as

(s s'Ls )‘ls =sts /(s s'l's /s )
Xy Vy yX Xy XX XYy XY YV yX XX
- 515 / R2
XX Xy

where R2 is the squared multiple correlation coefficient between the one
explanatory variable and the set of dependent variables. The extra dependent

variables in this case can easily be seen to narrow the errors-in-variables
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bound since the upper limit is found by dividing the usual least-squares
estimate by the squared multiple correlation, not the simple correlation.

For expository purposes, Theorem 2 has made reference to the inverse of

Sxys;;syx for defining the location and size of the ellipsoid of estimates
(6). 1In fact, the quadratic inequality (6) makes no use of this inverse, nor
does the proof of the inequality., Thus even if there are more "x-variahles”
than "y-variables™, the set of estimates is constrained, not to an ellipsoid,
but to a cylinder with an elliptical hase., This implies that there are some

linear combinations of parameters that are bounded, even though most are

unbounded., For emphasis, T will state this as a theorem.

Theorem 3. Given D satisfying Sxx v >D >0, and B satisfying the

"normal equations” (SXX—D)B =r, then 60 = SyxB lies in the ellipsoid

.
8-g)'s 6- < §'S §/4 (8)
(e-p)'s_  (8-g) vyt

-1

where g =(S_+ S S 'S ) §/2, and 6 1is the coordinate vector with one
yy yx XXXy

element equal to one and others equal to zero such that Sxys = r, Converse-

ly, for any 6 1in this ellipsoid, there exists a D and B such that

A ~

(Sxx_D)B =r, 0= SyxB and Sxx.y >D > 0,

The verification of this result requires only that we rewrite (6) in the
form of (8). This requires some effort that is better relegated to the

Appendix.

The supporting hyperplanes of this ellipsoid (8)

g - ' ' 1/2
lvre - wg| < Curs v oS &2 (9)

identify a set of linear inequalities which necessarily bound the set of

~

estimates, If ¢' = (1,0,0,...,0) = §', then ¢'6 = r'g, and then the bound

analogous to (7) is
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r'b = 6'S S
¥YX XX

S 5<r'B<&'S 6
Xy B Yy (10)

It may be noted that if the number of x's equals the number of y's, then

A

r'BZQLS = 6'Syy6, and consequently inequalities (7) and (10) conform. They

conform in general if you interpret BZSLS to be a solution to the egquations
S -1, &

S ¢ = ¢ ¢ { - =

xygnyyXBZSLS gyxé’ since this implies gxysyy(gyxBZSLS Sny) 0, which,

since Sxys;i has rank equal to p, the number of y's, 1implies

~

§ =0, Thus ¢§' = §'S_ 6.

SeyPasLs = Syy SyxBasLs vy

4, DIAGONAL MEASUREMENT ERRNR COVARIANCE MATRIX
When the set of solutions to the moment equations (3) 1is too large to be
useful, 1t 1is necessary either to discard the given data set as useless, or to
ugse additional information that might narrow the set of estimates. The

additional information that has been traditionally employed is that the off-

~

diagonal elements of the measurement error covariance matrix are zero. If D

is restricted to be a diagonal matrix, D = diag{dl,dz,...,dk}, then the

normal equations can be solved for D as a function of one of the columns of

A ~

B. A column of B 1is the vector of estimates for one equation, g = BS,
where &6 1s a vector with a single element equal to one and zeroes elsewhere.
The normal equations that define the least-squares vector for this equation

are S b =1r, where r = Sxyd. Then postmultiplving (4) by & we obtain
Sxx(B-b) = DB. This set of equations identifies a mapping from values of B
into values of D which is one-to-one provided B1 0, §1=1,eee,ke If

81 = 0, any value of d1 is compatible with these equations, though B must

satisfy the normal equation (S )! (B-b) = 0, where (S _)! 1is the 1th row
xx'1 xx 1

Ntherwise, the elements of D are di = (Sxx)i (B—b)/Bi. Within an

orthant, Bi #0 (1 =1,¢ee,k), the condition Sxx.y >D >» 0, can then be

of sxx'

written as:
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(Sxx)i (B-b)/Bi >0 (1 =1,...,k), (11)

Sex.y ~ 4128 {(8, )1 (8-b)/8,} > 0. (12)

On the houndary of the orthants, with Bj = 0 for one or more values of i,

the conditions analogous to (11) are dj = (Sxx)% (B-b) =0, 1 =14,

dg = (5 _); (B-b)/B >0, 1 #i.

The set of estimates B satisfying these conditions 1is highly complex
and there is no clear algorithm for finding the exact extremes of linear

combinations 'B., However, it is sometimes possible to encompass this set
with a larger set that is much more tractable. Omne possibility is the set

formed from the k linear inequalities (11) and the k linear inequalities

implied by the restriction that di must be less than the partial variance of

th explanatory variable conditional on all the other variables (both

the 1

dependent and explanatory):

- rar -1..-1 R P
ay = (875 VT8I > (5, ) (B-b)/B) = 4, (13)

where & 1s the coordinate vector selecting the ith variable.
This inequality is implied by the partitioned determinant rule as

follows., Let A stand for the partial covariance matrix Sxx y and let

D,y = diag(dz,d3,...,dk). Then the partitioned determinant rule implies A11 -

_ n vl - n y—l
d Alz(A22 Dz) A21 > 0, which can be written as All AIZ(AZZ DZ) A21 >

1
dl' It is straightforward to show that A11 - A12(A22)-1A21 > A, -

—p.y-1 - -1
These 2k 1nequalities (11) and (13) define a region that can be

difficult to characterize in general since the directions of the inequalities

A

change as the sign of 8 changes. The set may in fact be unbounded. The

i
set will be bounded if X'X - D > 0 for all D satisfying (13), the worst

case being D = D* = diag {d*,d*,...,d* +» Then the following applies.,

172 k}
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-

Theorem 4: If X'X - D* > 0, D 1is diagonal, and D* > D, then B8 =

(Sxx'D)_l r 1lies in the convex hull of 2¥ points, each point defined by k

linear equalities selected from the k pairs of inequalities (11) and (13).
Equivalently, these 2k polnts can be found by setting the diagonal elements

of the matrix D to one of the extreme values, 0 or d{.

Proof: D* > D > 0 1is equivalent to D* > D* - D > 0 which in turm is
equivalent to D* ! ¢ (D*-D)~!. The last condition can be written as D*"! +
B = (D*—D)_1 where B 1is an arbitrary non-negative diagénal matrix B > 0.
Then we can write B8 = (X'X-D)"Ir = ([X'X-D*] + [D*-D])~lr = (X'X - D* +
(0*~14+8)"1y"lr,  This can be written using Lemma 1 in Leamer (1982) as é =
x')7 e + (X0 pro* (x0T [(x'0)-p*] + BT TI(x'x)"lr.  The second term
in this expression is a matrix weighted average with one weight matrix being
an arbitrary diagonal matrix. The theorem then follows from a result of
Leamer and Chamberlain (1976) which expresses the matrix weighted average as a
Zk 2k extreme weight

weighted average of the points implied by the

matrices,
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5.0 AN EXAMPIE: A LINEAR SYSTEM OF NET EXPORT BEQUATIONS

The miltivariate system of net export equations that is analyzed
in Ieamer(1985) will serve as an example. This system of linear
equations applies at a point in time when cammodity prices can be taken
as fixed. The system explains the levels of net exports of a vector of
camodities in terms of the availability of various resources such as
capital and labor. One function of the data analysis is to identify the
sources of camparative advantage in each of the cammodities, a goal
which may be hindered by the presence of errors in measurement in the
resource variables. The bounds that have been formulated in this paper
may help to clarify the consequences of measurement errors.

An important question concerning the applicability of these
errors-in-variables bourds is whether the covariance matrix can credibly
be assumed to be block diagonal. The assumption of independence between
the measurement errors in the deperdent variables and the measurement
errors of the explanatory variables will usually be open to question,
but in this case the measurement processes for the net export data and
for the resource data are so different that it is hard to imagine
reasons why the two kinds of measurement errors would be substantially
correlated.

Another doubtful assumption that underlies the bounds is the
assumption of homoscedasticity. This seems doubtful for two reasons.
First, the errors in measurement can be expected to be relatively large
when the true variable is relatively large (e.g. the U.S. capital stock
is surely measured with an error that exceeds even the true capital
stock of several small countries). Second, during the review of the
data, we may discover one or more extreme outliers that suggest gross
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encrsofmeasuremeht. The treatment of gross errors requires a model
that allows ex post heteroscedasticity. The errors-in-variable model
that is used here allows for chronic measurement errors by adding a
normal randam variable with a fixed variance to each cbservation. A
model that could generate gross errors selects the measurement error
variance from a distribution of variances. This kind of model implies
that, before the data are cbserved, the process is homoscedastic.
However, after the data are cbserved, the process is estimated to be
heteroscedastic, since extreme data points are signals that the
corresponding error variances are relatively large.

The linear system that is analyzed in Leamer(1984) explains the
net export of ten cammodity aggregates in terms of the availability of
eleven resources. The results in this paper cannot be used for this full
system, first because the mumber of explanatory variables exceeds the
mmber of dependent variables, and second because the upper diagonal
matrix D* defined by (13) leaves X'X - D* singular. For illustrative
purposes, several smaller systems are discussed instead of this full
syétan. Alternatively, the net export variables could have been
disaggregated. This raises the real research question concerning the
appropriate level of aggregation of the variables. By concentrating on
the problem of finding point estimates, this paper has made it appear
that there is a clear benefit from increasing the mmber of equations.
But a proper treatment of the uncertainty associated with a higher
dimensional parameter space is likely to lead to a more ambiguous
conclusion. Expressed in terms of the shape of the likelihood function,
the problem is that an increase in the mumber of equations though
reducing the size of the region over which the likelihood function
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attains its maximum also makes the likelihood function around the
maximm more and more flat. Expressed in terms of properties of
estimators, the border of the elliptical region which asymptotically
contains the true parameter is estimated with greater inaccuracy as the
number of equations is increased.

The variables are defined in Table 1. The data set, which is
published in Ieamer(1984), consists of observations of these variables
for fifty eight countries in 1975. The first set of results in Tables 2
- 6 use models with only three explanatory variables: capital, labor and
land. A system with only two dependent variables (MACH and CHEM) is
reported in Table 3. The ordinary least squares estimates (OLS) are
reported, as are the t-values and the extreme estimates allowing for
independent measurement errors. These estimates have to be interpreted
one at a time, each being the solution to a different maximization
problem. In this case the set of estimates would be unbounded if the
measurement error covariance matrix were allowed to be free. A diagonal
measurement error covariance matrix does imply useful bounds, in
particular selecting unique signs for the coefficients of capital(+) and
land(~), but nonunique signs for the coefficients on labor. This finding
is consistent with the view that labor embodies in same countries a
substantial amount of human capital and in other countries much less,
making it difficult to discern the effect of labor on camparative
advantage.

A number analogous to a t-statistic that measures the distance of
the errors-in-variable interval from the origin is A

eov = (max + min) / (max - min).
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This statistic exceeds one in absolute value if the interval of possible
estimates does not include the origin. An analogous relationship exists
between a one-standard deviation confidence interval and the
corresponding t-value. Generally there is a fairly good correspondence
between the t-values and the eov insensitivity indicators. The other
numbers reported in Table 2 are nse, the maximal noise variances (13)
relative to the cbserved variances of the variable. Equivalently, these
ratios are 1-R%, where R° is the squared multiple correlation between
one explanatory variable and all the cother variables (both dependent and
explanatory). These data indicate that no more than 14.5 per cent of
the variance in capital could be attributed to measurement error, but
land could be contaminateiwith as much as 44 percent error, and labor 73
percent error.

Tables 3 and 4 contain results if the full set of ten dependent
variables is used, Table 3 dealing with the nondiagonal case(Theorem 2)
and Table 4 with the diagonal case(Theorem 4). Note the substantial
reduction in the errors-in-variables bourds afforded by the extra
information contained in the other eight deperdent variables. In Table
3 only the coefficient of labor on the machinery equation remains
indeterminant in sign.

The bounds in Table 4 might be expected to be narrower than the
bounds in Table 3 since they make use of a restricted class of
covariance matrices, but the set defined by Theorem 4 is not a minimal
set of estimates, consequently the bounds can and in several cases are
wider than the bounds applicable if the covariance matrix is free. In

fact, only the minima for the land coefficients are improved.
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Bounds for the camplete 10x3 system are reported in Tables 5 and
6. The discussion of the last two equations could more or less be
repeated for the whole system: the data admit very sturdy conclusions
about the effect of capital on comparative advantage, less sturdy
inferences about land, and samewhat fragile inferences about labor.

A larger system with nine explanatory variables is reported in
Tables 7, 8 and 9, which contrast the t-values with the errors-in-
variables sensitivity indicators. Very few of the inferences abocut the
signs of the coefficients can be said to be resistant to concerns about
measurement errors. The two most resistant variables are CAPITAL and
OIL, with four and five resistant coefficients, respectively. In
addition, CQAL has three resistant coefficients, and IAND3 has one. The
signs of these resistant effects seem quite predictable, with some
exceptions for the OIL variable.

The t-values in Table 9 generally tell quite a different story.
These large t-values suggest that in the absence of measurement errors
the data would allow very sharp inferences about the signs of the
coefficients. The errors~in-variables possibilities of course weaken
these inferences, but one might have hoped not to the point indicated in
Table 8.

Notice also that both large t-values and small noise ratios are
indicators, though imperfect ones, of the resistance to errors-in-
variables issues. The largest t-values in order are (-16.8, -16.5, 15.9,
13.2, 7.8, -7.4, 7.1) with corresponding insensitivity indicators (-1.8,
-2.5, 2.0, 1.0, 1.8, -.9, 1.4). Thus a t of -7.4 does not assure that

the coefficient is resistant. Similarly, COAL which has a maximal noise
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ratio of only .006, has only four insensitivity indicators less than one
in absolute value.

In conclusion, though it is odbvious at the start that concerns
about errors-in-variables will weaken the inferences that may be
cbtained from a data set, the extent of the deterioration is not so
cbvious. Klepper and Leamer(1984) leave the impression that the
situation may be very dire indeed. The basic conclusion fram this paper
is that things are not so bad, if, as is likely, there is a system of
equations to be estimated. Nonetheless, data analyses that do not
consider the deteriorating effect of errors-in+variables way greatly
overstate the precision of the inferences.
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Footnotes

1Supported by NSF Grant SES 3207532 and SES 8519933, Useful comments

from referees and from Gary Chamberlain are gratefully acknowledged.
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APPENDIX

The first two results in this Appendix make use of some standard theorems

concerning positive semi-definite matrices. Provided the operations are well

defined:
(A1) H>0 = G'HG > 0
(A2) H>0, G>0=>H+G >0,

First it is shown that the matrix of equations (3) has a solution with

Q>0 and I >0, 1if and only 1f the matrix on the left is positive semi-

definite., The system admits a solution: [ = Sxx - D, B satisfying IB =

a

S and @ = Syy - SyxB. Then the following result establishes the property

Xy’

of the solution:

Result 1:
B | . . Q 0
S = I[B,I] + >0
I 0 0

<=>I 530, Q >0,

Proof: (Al) and (A2) imply that (I >0, Q@ » 0) => (S » 0). (Al) with
G'= (0,1) implies (S >0 =>I >0) and with G' = (I,-B') implies

(S >0 =>4 > 0).
The second result 1is:

Result 2

§>0,S8 >0=>58 >0
vy XX.y

Sxx.y >0, Syy >0 =>5530.



Proof: The first part is established using Al and premultiplying S by

xys;i,I) and postmultiplying by G. The second part again using Al

and writing S = G'HG where

G' = (-S

Yy yx
G =
0 I
S 0
yy
H = -1
0 S =S §s°s
xx xy yy yx

The last result reports the tedious algebra establishing the equivalence of

(6) and (8).

Result 3: Inequalities (6) and (8) are equivalent.

Use: A=35 § 'g . B=35 sis , r=25_ &,
Xy yy yx yx“xx" xy Xy
-1 -1 -1 -1 -1
(S'S S S S +8°)=3§
yy yx xx.y xy"yy = yy Yy ex
- - -1
as™t 41y = (ars st = g
XX,V XX ¥ XX.¥ XX XXo¥Y
-1 -1 -1 -1 -1
(AS~ +I)r =S (S 'S S~ S S +8°)S &
XX oy Xy “yy yx"xx.y xy'yy yy''yy
= sl s &
Xy yy.x'yy
n=s (sts s1 g g1 s 1ys
XY Yy yX XX y Xy yy = yy yx
-s st s
Xy yy.x" yx
£=(s L+ A'l)r/z
). 9.4
HE = (HS F + ASTL 4 r/2
XX XXy
1 o 1

[]
0



where g = (8 S-IS + S )é§/2
yx“xx"xy = yy

g = (Syy.x + 2B)68/2

-1 -1
' = &1
g Syy‘xg § (Syy.x + 213_)8”,."{(:’5”'x + 2B)&8/4

xsa/a.

= §'s §/4 + 46'BS/4 + 46'BS L
YYox

£=(s1+a s o2
XX Xy

gre = 6's_ (slva”hycast arad(s +alys /4
X Uxx XXoy XX Xy
= §'s s s rsts st g gl Lis sls ara

Xy XXXy yy yx XK.y xy yy yy yXTXXTXY

+28's (st a+Ds Ys /4.
yX CUXX.Y XXXy

+ 8's (st + by §/4
yX XX,y Xy

.

= 6'8s " B&/4
YYex

+28's ST g 8/4
YX XX.Y XY

+8's s Y s 8/4 + 8's A Ls §/4
yx xX.y°xy yx—  “xy

Using S—1 = S—l + s'ls S—1 S S—l, this can be written as
XX.y XX XX XY YyYeX ¥X XX

FYHE = 6'BS - B6/4 + > §'BS + = §'8BS L B&/4
FYeX 4 4 YYeX

+ 6's ATLs 8/4
yx - “xy
_1 .

§'s 8/4
YYeX yY.x

[]
o]
92 ]
[}

|

- §'B8/4 + r'A  r/4
Thus, after substitution, the inequality

~ » - -1
B'HE - 2B'HE + £'HE < £'A r/4 - r's_r/4



can be written as

- _1 - - _1 _1
' 0 - 28 + g's < & .
syy.x 28 syy.xg g yy.xg § syy xslh



PETRO
MAT
FOR
TROP
ANL
CER
LAS
CAP
MACH
CHEM

CAPITAL

LABOR 1

LABOR 2

LABOR 3

LAND 1

LAND 2

LAND 3

LAND 4

COAL

MINERALS

0IL

TABLE 1: Definitions of Variables

Net Export NData ($ thousands)

Petroleum and Petroleum Products
Raw Materials

Forest Products

Tropical Agricultural Products
Animal Products

Cereals and Fibers
Labor-Intensive Manufactures
Capital-Intensive Manufactures
Machinery

Chemicals

Resources

Millions of U.S. dollars of accumulated and discounted gross
domestic investment flows since 1948, assuming an average life of
15 years.

Thousands of workers classified as professional or technical.
Thousands of literate nonprofessional workers.
Thousands of illiterate workers

Thousands of hectares of land area in tropical rainy climate zone
(comprises 30% of total area).

Thousands of hectares of land area in dry climate zone (comprises
30% of total area).

Thousands of hectares of land area in humid mesothermal climate

zone (for example, California; comprises 15% of total area).

Thousands of hectares of land area in humid microthermal climate
(for example, Michigan; comprises 17% of total area).

Thousands of dollars of production of primary solid fuels (coal,
lignite, and brown coal).

Thousands of dollars of production of minerals: bauxite, copper,
flourspar, ironore, lead, manganese, nickel, potash, pyrite, salt,
tin, zinc. (Copper and iron ore make up about 50% of the value of

ninerals.,)

Thousands of .S. dollars of oil and gas production.



TABLE 2 Estimates of a 3 x 2 Model
(Diagonal Measurement Error Covariance Matrix)

CAPITAL LABOR IAND
OIS min max OIS min max OIS min max
MACH 22.5 6.6 35.3 9.3 =461 595, -13. =24. -3.9
CHEM 3.9 1l.4 5.9 -3.9 =78. 87.2 -l.8 -3.5 =-.4
t eov nse t eov nse t eov nse
MACH 14.2 1.46 .145 .75 .127 .731 -6 =1.4 .441
CHEM 10.4 1.62 .145 -1l.3 .055 .731 -3.6 =-1.3 .441

Note: eov = (max+min)/(max-min)
nse = maximal error variance divided by measured variance

TABLE 3 Estimates of a 3 x 10 Model
(Nondiagonal Measurement Error Covariance Matrix)

CAPITAL IABOR IAND
min max eov min max eov min max eov
MACH 19.6 23.7 10.6 -7.0 135 .901 -21, =-12. =-3.9
CHEM 3.87 4.41 15.3 =19, -.47 =-l.1 -2.3 =-1.2 =-3.1

TABLE 4 Estimates of a 3 x 10 Model
(Diagonal Measurement Error Covariance Matrix)

CAPITAL IABOR IAND
MACH 18.7 27.9 5.07 .022 -188 151. -.11 .63 -l6. -9.1 =-3.8 .16
CHEM 3.56 4.89 6.35 .022 -40. 8.7 -.65 ,63 -2.0 -1.1 =-3.4 .16
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