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A central assumption underlying almost all of the recent theoretical work
on auctions has been that any two buyers with the same private estimate of the
value of object for sale should have the same beliefs about the estimates of
the other buyers. Given this strong symmetry assumption it is natural that
the literature has focused almost exclusively on equilibria in which strateg-
ies are also symmetric. However, it is not unreasonable to suppose that a
particular buyer might establish a reputation as an aggressive bidder if it is
in his interest to do so. Riley [1980] provides an example of the “"war of
attrition" in which this is indeed the case.l Each of two buyers have
identical beliefs about the other's valuation of the object for sale. Each
must submit a sealed bid bi’ i =1,2. The high bidder is the winner. The
special feature of the war of attrition is that both buyers must pay the lower
of the two bids. 1In addition to a unique symmetric equilibrium, Riley shows
that there exists a continuum of asymmetric equilibria in which one buyer bids
“aggressively” and the other "passively.” Furthermore, the expected gain of
the aggressive buyer is larger in each of the asymmetric equilibria than in
the symmetric equilibrium.

In this paper we consider the possibility of asymmetric equilibria in the
sealed high bid auction.

In Section I we consider the high bid auction under the assumption that
private signals are independent. Then in Section II consider the more diffi-
cult case in which signals are positively correlated. The general conclusion

is that, under rather mild assumptions, there exists a unique equilibrium.

lror a fascinating discussion of the art of "brinksmanship” using a
generalization of the simple war of attrition see B. J. Nalebuff [1982].
Similar problems arise in certain formulations of R&D races. See also

Nalebuff and Riley [1985].



I. The High Bid Auction With Independent and Symmetric Beliefs

Differences among buyers are parameterized by s. Without loss of
generality we normalize so that the utility of a buyer of type s who does
not make a successful bid is zero. If a bid of b 1is successful the buyer's
gain in utility is U(-b;s). We impose the following assumptions on U and

on the distribution of the different types of buyer.

Assumption A: Characterization of Preferences

A buyer with parameter value s who pays b for the object has an
increase in utility of U(-b;s) satisfying

Al: U(-b;s) 1is twice continuously differentiable

A2: U1 >0
A3: Ull <0

Assumption B: Characterization of Beliefs

Each buyer's beliefs about the "signal” s of any other buyer are
described by the c.d.f. F(.) with F(8) = 0, F(s) = 1, and F(.) is
strictly increasing and continuously differentiable on (§,§).

Elsewhere (Maskin and Riley [1984]) we have argued that these assumptions
are sufficiently general to incorporate a wide range of interesting cases.

In the sealed high bid auction each buyer can submit a bid b not less
than the announced floor price b°. The buyer submitting the highest bid pays
his bid and 1is awarded the object. In the case of ties the winner is selected
at random. The central result of this section is that the only noncooperative
equilibrium set of bidding strategies for the n buyers is the unique

symmetric equilibrium. More precisely we establish



Theorem 1: Uniqueness of Equilibrium in the High Bid Auction

In a high bid auction with n > 2 buyers suppose the seller announces a
minimum price b°® such that some buyer type s° > 8 1is indifferent between
buying and not buying at this price, that is

U(-bo;so) = 0 8’ ¢ (g,g)

U
Then if Assumptions A and B are satisfied and -%; Cﬁl) < 0, there exists

a unique equilibrium.

To prove Theorem 1 we proceed with a sequence of preliminary Lemmas, each
of which is stated under the assumption that the hypotheses of Theorem 1 are
satisfied. First, however, some remarks are in order on the hypothesis that
UI/U 1s a decreasing function of s.

Since

3 (Hl) ) UlZU - UlU2
s U U2
this condition necessarily holds as long as U12 is nonpositive. Moreover,
suppose we introduce a small probability p that the object will be withdrawn
and define &(s8) to be the insurance that a buyer of type s would be will-

ing to pay to eliminate the resulting risk. Since we have normalized by

setting U(0,8) = 0, 6&(s) must satisfy
(1 - p)u(~b;s8) = U(-b - &(8);8)
Taking a Taylor expansion of the right hand side and collecting terms we obtain

~ U(-b:s8)
8(s) \pﬁ—ltl’;,s—)

Thus our hypothesis is the innocuous requirement that an individual who values

the object more 1s willing to pay more to insure against the risk of the

object's withdrawal.



To prove our theorem we begin by deriving a sequence of necessary
conditions for equilibrium (Lemma 1-7). We then show that there can be no
asymmetric equilibrium satisfying these conditions and that any symmetric
equilibrium must satisfy some strong regularity restrictions. The latter

imply uniqueness.

~

Lemma 1: Suppose b 1is optimal for buyer 1 with parameter s. Suppose
furthermore that the probability of buyers 3,¢e0,n bidding in [b - €, b]
is zero. Then for all § € (0,e) the probability of buyers 1 and 2 bidding

in [b - 6,b) 1s strictly positive.

Proof: Let Gy(b) be the probability that buyer 1 wins with a bid of b.
If for some & the probability of buyers 2,¢e.,n bidding in [b - §,b) 1is

zero Gl(b) = Gl(b-é), b € [b - §,bl. Then the expected utility of buyer 1 is
Gl(b—G)U(-b,s), b € [b-6,b)

Since this is strictly decreasing in b, buyer 1 is better off bidding

b - 6 than b, contradicting the definition of b. Then the Lemma holds for

buyer 2.

Now suppose that for some & the probability of buyer 1 bidding in
[g - G,Q) is zero then Gz(b) = GZ(G-G) for b ¢ [g - S,G). Applying the
same argument as before, buyer 2 is strictly better off bidding g - § than
in the interval [g - G,Q)- But then the probability of buyer 2 bidding in

[b - 6/2,b) 1is zero, a contradiction. Q.E.D.

Lemma 2: If gi(si), i=1,...,n 1is an equilibrium bidding strategy
(possibly a mixed strategy) then Si(.) is strictly increasing when it

exceeds b°,



Proof: We show that if Bi(.) is a deterministic selection from gi(.)
(i.e., for all s, Bi(s) is in the support of Si(s)), then Si must be
strictly increasing for Ei(s) > b°.

Suppose that for some 1 Si(') is decreasing over an interval. Then
there exists x! and x% with x! < x2 such that Ei(xl) > si(xz). Hence
G > Gz, where Ej, i=1,2 1is the probability that buyer 1 wins if he

bids b (xj); otherwise 1f he has parameter x! he is better off bidding

1
Bi(xz). By definition of equilibrium
(1) SPu-B(x2);x2) > Flu-bexly;xd)
and
(2) GPu-bx?y;xh) < Bluc-bahy;xly
Combining (1) and (2), we obtain
(3) By ) uBxhix?))

U(—B(xz);xl)) U(-B(xl);xl))
Also, for any bl, b2

u(-b2.x%)  u(-pl,x?)

(4) 0 <
1-b% ,x0)  u(-bl,x)
=>
2 2 1.2
0 < log —————U('bz 22 - 10g U box)
U(-b“,x7) U(-b",x7)
2 2 U
- 7 3 Ly 4 ab
x U
1 1
b x

Uy

Then, since %; (ﬁ—) < 0, (4) holds if and only if b2

> bl. Hence (3)

holds only 1f DB(x2) > S(xl) contradicting our hypothesis. Thus Si( ) and

hence bi( ) 1is nondecreasing.



Now suppose that Bi(s) = b on the interval [xl,x2] where g > b°. If

A~

there exists j # { and a sequence {st} such that b,(s%) converges to b

3

from below, then

(5) 1im sup G, (b

t -+

(s%)) < cj(ﬁ)

i3

where Qj(b) is buyer j's probability of winning from bidding b. For t

sufficiently large Ej(st) > b° and Gj(bj(st)) > 0. Therefore,

(6) G, (5, (s")u(-5,(s%);8H > 0,

33 3
t

since buyer j, with parameter s can get positive utility by bidding b,
From (5) and (6) we conclude that for t 1large enough

t t
(s );S )s

G, (b)U(-bss) > 6,(-b,(s%)u(-5

3 3 b

a contradiction of the assumption that 33 is a selection from an equilibrium
strategy. Hence, the hypothesized sequences {st} does not exist. But this
means that there exists € > 0 such that for all j #1 and s € [3,3],
by(s) £ [b-c,b]. Thus 1f buyer 1 bids by & [b-¢,), G, (b,) = G,(b) and so
Gi(bi)U(-bi,xl) > Gi(g)U(-g,xl), a contradiction. Hence, Bi must be

strictly increasing for 31(6) > 1ho. 0.E.D.

Since Lemma 2 holds for all selections from Bi’
) () =571
yi . = i .

is an increasing function that is well defined at all b for which there

exists s with b € supp gi(s). Then for all b > b® define
(8) ¢i(b) = sup{yi(b) I b < b, yi(b) defined}

Because yy is increasing ¢1 1s nondecreasing and continuous for all

b > b%. Note furthermore that the probability of winning can be written as

(9) 6, (b) = T F(¢ (b)), b >
j#i



Since ¢j(b) is continuous for all j so is Gj(b).

Lemma 3: 1If ¢i(b) is strictly increasing to the right at b = B, then
yi(b) 1is defined at B.

Proof: 1If ¢i(b) is strictly increasing from the left the Lemma follows

immediately. Then suppose that ¢i(b) = g8 1if and only if b € [a,B]. That

is, for some G € [a,B], yi(G) = g, Since ¢i(b) is strictly increasing to
the right at B, there exists a decreasing sequence {bl,...,bt,...}
approaching 8 and a corresponding nonincreasing sequence {yi(bl),...,
yi(bt),...} approaching ;. Since bt 1is optimal for parameter yi(bt) we

have

t t t " " t
(10) Gi(b ) U(-» ;yi(b ) - Gi(b) U(—b;yi(b )) >0, for all t.
Since G;(.) and U are continuous, we have in the limit,

(11) 6,(8) U(-8;8) = G (B) U(-bsa) > 0.

From (11) it follows that buyer i, with parameter s, 1is at least as well

off choosing B as b. Since b 1s optimal he must be equally well off

choosing B. Q.E.D.

Lemma 4: If ¢i(b) is strictly increasing to the right at b then G;(b)

is right differentiable at b. Furthermore the right derivative satisfies
' ~ —A. ~ - ~ —A. ~ -
(12) G} (b) U(=b;6,(b)) = G,(b) U (~b;,(b)) = 0.

Proof: By Lemma 2 ¢i(b) is continuous. Then, since it 1s strictly increas-
ing to the right at G there exists a decreasing sequence {bl,bz,...}
approaching ﬁ such that yi(bt) is defined for all t and approaches

; = yi(g) monotonically from above.

Since b' 1s optimal for st = yi(bt) we require



6, (B) UC-b33, (5) < &, () u(-bE;5, (bE)).
Subtracting Gi(bt) U(-g;yi(bt)) from both sides, we obtain
[6,(6) - 6, (6] UC=biy, (b)) <6, () [B(-b%3y,(b5)) - =By, (b%)]

Dividing through by (b%-b) U(-b,y,(b%)) we then obtain
t - t t t " t
Gi(b ) Gi(b) -Gi(b ) U(-b ,yi(b )) - U(-b,yi(b b))

~ > -~ ~
bt - b U(—b;yi(bt)) bt - b

(13)

By Lemma 3 yi(b) is defined at b and is equal to 8. Since b 1is optimal

~

for s we require
~ ~ A t t ~
Gi(b) U(-b;s) > Gi(b ) U(-b ;s) for all ¢t.

Subtracting Gi(bt) U(-b;s) from both sides and then dividing by

(bt-b) U(-b;s) we then obtain

G, (b%) - G, (b) e, (b%) £ . -
(14) i c Ai < - i e lU(—b ,:) -AU(_bs S)
bt - b U(-b;s) l bt - b

In the limit as b" + b the right hand sides of (13) and (14) coincide.
Then Gi(b) is right differentiable at b. Moreover the right derivative

satisfies (12). Q.E.D.

Lemma 5: ¢,(b) 1s right differentiable for all b > b°® and all f{.

Proof: Suppose ¢1(b),...,¢k(b) are strictly increasing at ﬁ and that

¢k+1(b),...,¢n(b) are constant at G. By Lemma 1 k > 2. By Lemma 3 G4(b)
is differentiable at g, 1=1,ee0,k. Also, from the definition of b°% in
the statement of Theorem 1 ¢i(b°) > 8. Then F(¢i(G)) > 0 and we may take

the logarithm of both sides of (9) to obtain



k
(15) log Gi = j£1 log F(?j(b)) + ¢y
J#1
where
n
c, = I log F(4,(b))
juk+1 3

Subtracting c; from both sides we can express (15) in matrix form as

follows:
log G, - ¢, log F(¢,(b))
: =B .
log°g, - ¢ log F(¢, (b))
where bpp =0, bpq =1, p # q.
By inspection
~(k-2) 1
1 —(k—2) se e 1
-1 1 .
= 1 I kPl
l 1 XX ‘(k"Z)

Then since k > 2 1log F(¢i(b)) and hence ¢1(b) is differentiable.

Q.E.D.

Lemma 6: For any pair of buyers r, v, if ¢r(b) > ¢v(b) at b and

¢_(b) 1is strictly increasing then
log (F(¢r(b))/F(¢v(b)))

is strictly increasing at b.

Proof: By Lemma 2 ¢1(b) is a nondecreasing continuous function for all 1.
1f ¢v(b) is constant at b the Lemma obviously holds. If ¢v(b) is
strictly increasing at b we know from Lemma 4 that G.(b) and G (b) are

right differentiable at b and satisfy (12). Since Gr(g) and Gv(b) are
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strictly positive we may rewrite (12) as

U, (=b; ¢, (b))

(16) 4 10g G, (b) =

db i

Substituting (16) with 1 = r from (16) with 1 = v we then obtain

02550, U (=B34, (5))
UC-b34_(b))  U(=b;4 (B))

(17) 5 108 (G, ()/G_(B)) = -

U ~ ~

But, -g; C—l) < 0 and by hypothesis ¢r(b) > ¢v(b). Then the right hand side
U

of (17) 1s positive. Moreover, from (9) the left hand side is

8- Log(F(4_(8))/F(4 (0))) Q.E.D.

Lemma 7: Suppose that ¢n(b) = yn(b) and that ¢n(b) > ¢i(b), i # n. Then

¢n(b) is strictly increasing to the right at b,

Proof: If ¢i(b) is constant to the right at b for all 1< r the result
follows immediately from Lemma 1. Then suppose that for 1 = 1,...,k ¢i(b)
1s strictly increasing to the right of g and for 1 > k ¢i(b) is constant
to the right of G.

From the proof of Lemma 5, if all the right derivatives are zero,
Gi(G) =0, 1=1,...,ke But by Lemma 3 Gi(G) > 0. Then the right derivative
of ¢i(b) is strictly positive for some 1 < k. Without loss of generality
suppose this to be true for 1 = 1., Then, from Lemma 4 the following condition

must hold at b = b (where all derivatives are right derivatives).

n - - n - N
= [T R(e(B)] U)(-b,,(B)) + = [ T F(4,(b))] U(=b;,(B)) = 0
i=2 1=2

Multiplying this by F(¢1(Q))/F(¢n(6)) and adding
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n-1 - - - - ~
(18) [T F(, (b)) F'(4;(b)) $](b) U(=b;9, (b))
1=2

we have
- P A -
G,(B) U;(=b;¢,(B)) + G (b) U(-b;¢,(b)) > O
Note that the inequality is strict since, by hypothesis, ¢1(b) has a

strictly positive right derivative at b, so that (18) is strictly

positive, We have therefore established that
6, (x) U(-x; ¢, (b))

is right differentiable at x = b and that the right derivative 1is strictly

positive, Define

. G (b)U(-b;s)
E(b,b,S) =

cn(ﬂ)u(-ﬁ;s)

By inspection & 1is equal to 1 at b = b, Moreover, for s = ¢1(b) we
have established that £ 1s strictly increasing in b at b = b. Then, for

some B> b, &(B,b,s) > 1, s = ¢1(b). Furthermore, from (4), for any

s> 4,(b),
U("B,S) ~ > U(_]}LS)
Hence

U(__ELS) > U(—B’¢1(b))

U(-b,8)  U(=b,é (b))

Then E(8,b,s) > s(e,£,¢1(£)) >1, $> ¢1(G). But, by hypothesis

¢n(g) > ¢1(G). Then, from the definition of &,
G,(B) U(=B;¢ (b)) - G _(b) U(-b;¢ (b)) > 0.

But this contradicts the definition of ¢n(b). 0.E.D.
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We are now in a position to prove Theorem 1. Define

a = inf{b | Log(FC4,(6))/R(o,(5))) < ¢

¥1,i and all b > b}

We shall show that for any € > 0 a= b°. Without loss of generality we may

assume that the maximum bids by each buyer satisfy

%
bl >b§ >... >btl

Suppose that a » b; if and only if 1 < k. Certainly it cannot be the case

that bi > b; for if no other buyer bids more than b§ buyer 1 is strictly
better off bidding % (b% + b) rather than Ht. Then k> 2.
From Lemma 2 ¢i(b) is continuous and nondecreasing. By Lemma 6, if

¢i(b) is strictly increasing at b = a for all { =1,...,k, then
103(F(¢1(b))/F(¢j(b)))

is strictly increasing whenever ¢i(b) > ¢j(b), i,j < k. But this contra-
dicts the definition of a. Then for at least some 1 < k, ¢i(b) is
constant to the right at b = a., Suppose this to be true for 1 € I where
1c 1®={1,2,...,k}. By Lemma 7

max_ ¢,(a) > ¢, (o)

el 1erl

If min ¢1(b) is constant at o we have a contradiction since it then

i
follows that

F(max ¢i(b))/F(min ¢i(b))

is increasing at b = a., But if min ¢i(b) is strictly increasing at o we
again have a contradiction by our earlier argument. Then a = b°. We have

therefore etablished that for all € > 0 and all 1i,j

108(F(¢i(b))/F(¢j(b))) <e, b>bo
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We have therefore proved that, under the hypotheses of the theorem, there
exists no asymmetric equilibrium.

From Lemma 1, if there exists a symmetric equilibrium, ¢o(b), it is
strictly increasing over the entire range of bids. Then, from Lemma 4,
Go(b) E Fn~1(¢o(b)) is differentiable. Then ¢°(b) is also differentiable

and, from (12), the derivative satisfies
n-2 ' ' - = n-1 -
(n=1) F" "($ )F' (4 )41 (D) U(-b,0) = F (4 )U (~b,¢ )

Rearranging we obtain

F(4,) U (=556 )
(19) b (D) = (@-DF(4) 0(-b,9_)

The ordinary differential equation (19) along with the boundary condition

(20) 4,(b,) =

uniquely defines a strictly increasing differentiable function ¢o(b).

Suppose all buyer except the first adopt the bidding strategy
-1
b(v) = ¢, (8)

Then, if buyer 1, with parameter sl = ¢°(b1) bids b # bl his expected

utility is
n-1
u(b;bl) = F (¢o(b))U(—ba¢o(bl))

Differentiating by b and rearranging we obtain

(n-1)F'(¢ (b))¢'(b) Uy (=b, (b ))
du n-2 o o
b (b;bl) = F (¢o(b1)) [ F(¢o(b)) (

Substituting for ¢;(b) from (19) we obtain

o U, (b6 (b)) U (-b,¢ (b))
3 (biby) = F (4 (b)) [U( 5,4, O U(-b,¢o(b1))]

By hypothesis UI/U is decreasing in s and by construction ¢°(b) is an
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increasing function. Hence

du > £
55 (b;bl) 2 0 as bg b1

Thus buyer 1's optimal response is to bid b1 = ¢;1 (sl). Hence ¢;1(s) is

the unique symmetric equilibrium. Q.E.D.

II. Existence and Uniqueness With Affilfated Signals

We now relax a key simplifying assumption of the above analysis, namely
that buyers' signals are independently distributed. At the same time we allow
the value one buyer places on an object to depend on other buyers' signals.
Paralleling Assumptions A and B of Section I we impose the following restric-

tions on the preferences and beliefs of the different buyers.

Assumption C: Characterization of Preferences

If buyer i, i1 =1,...,n pays b for the object his increase in

utility is U(—b;si,s_i), where
S.q4 = (sl""’si-l’si+1"“’Sn)
satisfying
Cl: U(—b,si,s_i) is twlice continuously differentiable and symmetric in S_q-

€C2: U(-b,sy,s_y4) 1s nondecreasing and strictly increasing in its first two

arguments.
C3: sy > 8 => U(—b,si,sj,s_i_j) > U(-b,sj,si,s_i_j)
Ch: Uo(w,s) E-%; U(w,8) 1s a nonincreasing function.

C5: 8y > 84 => Uo('b’si’sj’s—i—j) < Uo("b’si’sj’s—i-j)
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Assumption D: Characterization of Beliefs

Buyers' signals are affiliated.?

Assumption Cl maintains the symmetry of the model. That is, if buyer 1
and j have the same private signal they will have the same beliefs about the
signals of the other buyers. Assumption C3 requires that if the vector of
private signals is held constant but the rank of buyer 1's signal rigses, the
utility of the object to buyer i does not decline. Assumption C4 and C5 place
related restrictions on marginal utility. C4 requires that if any signal
becomes more favorable, marginal utility should not increase. C5 requires that
1f the vector of private signals is held constant but the rank of buyer 1i's
signal rises, the marginal utility of the object to buyer 1 does not increase.

Taken together these assumptions should be interpreted as imposing the
restrictions that (i) a buyer's own signal is not less influential than that
of another buyer in determining value and (ii) buyers are risk averse.
Assumptions C and D not only include the model of Section I as a special case
but also that of Milgrom and Weber [1982]}. 1In considering risk aversion, MW

assumed preferences of the form
U(-b,s) = U(V(Sl,ooo,sn)_b) ’ u' > 0 u" < 00

Clearly this satisfies Assumption C if v(s) satisfies C3 and C5.
While Assumptions C and D are sufficient for a proof of the existence of
an equilibrium, we shall make the following further assumption in the proof of

uniqueness.

Assunption E: The conditional density g(si|s_i)/G(si|s_i) is strictly

decreasing in 8y

2Actua11y all we need is the weaker assumption that signals are
"linked". See Riley [1986].



16

Assumption E is a fairly mild restriction which requires that the density not
rise too rapidly with 5.3
We now provide conditions sufficient to ensure the existence of a

symnetric equilibrium.

Theorem 2: Existence of a Symmetric Equilibriun4
If Assumptions Cl~C4 and D hold there exists a symmetric equilibrium bid

function
bi= b(si), 1= 1,...,!\

for any minimum bid b° between the pre—auction reservation prices of buyers

with the lowest and highest possible signals.

Proof: let y = Max{sz,...,sn}. Then if agent 1 bids b and all the other

signals are no greater than y, his expected utility is

(21) ﬁ(-b,sl,y) = s?’.g.’sn {U(-b,sl,...,sn) l sl,y}

By Assumption C2 U and hence U is a nondecreasing function. Moreover U
is strictly increasing in 1its first two arguments (UO,U1 > 0). By Assumption
C4 ﬁo(-b,sl,y) is a nonincreasing function.

Since the minimum price is between the reservation price of buyers with

the correct and highest possible signals, there exists s° such that

o
(22) [® T(-b°,8°,v) gly s%dy = 0.
0

3Assumption E is satisfied, for example, if the joint distribution of
signals 1is normal or if F(xlt) = xa(t)B(t).

4The proof of this result is based, in part, on the proof for the risk
neutral case by Milgrom and Weber.
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Define b(s) to satisfy

U(-b(s),s,s) g(sls) - b'(s) [® Uo(—b(s),s,y) g(YlS)dY =0

(23) 0

with endpoint condition b(so) = b°,

Arguing almost exactly as in Riley (1986), it can be shown that
Assumption C is sufficient to ensure the existence of such a function. To
complete the proof we must show that b(s) 1s indeed a best reply when all

other buyers adopt it as their bidding strategy.

Since s° satisfies (22) and U is nondecreasing

ﬁ(—b(so),so,so) > 0.
Then b'(s®) > 0.
Next define
(24) u(x,s;) = ({x U(-b(x) »815Y) g(y'sl)dy-
Then
du = ' X =
(25) 5, (%,8)) = T(=b(x) ;8,0 g(x|s;) = b (x) [* T_(~b(x),8,,y) g(y|s)dy
0
From (23)
du (x,8,) =0 at x =g
x 1°

From Milgrom and Weber [1982] if the n private signals are affiliated then

s, amd y = Max{sz,...,sn} are affiliated. Since T 1is strictly increasing

in s; and nondecreasing in y it follows that

9
—5:—1 (x,8,) > 0.

Therefore u(s,s) 1is a strictly increasing function. Also, from (22)

u(s%,5%) = 0. Then u(sl,sl) >0 for all s, > s®. TFrom (24)
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ﬁ(-b(sl),sl,sl) > u(sl,sl) and so
ﬁ(-b(sl)sl,sl) >0, s> g°.
Then, from (23)
b'(s) >0, s> s

Thus (23) defines a strictly increasing function. But if all other buyers bid
according to b(s), and buyer 1 bids b, = b(x) his expected utility is
given by (24). Thus b(sl) is his best reply 1if u(x,sl) takes on its
maximum at x = S;. We have already seen that

Ju
o (x,sl) =) at x = 8+

Then, from (25)

%:—(x,sl) % (x,sl) 'glxl (x’x) - _
Rxs) ~ wGxlsp T gGxfm T UR(0,8,0 - BER00 x,0)

(26)

- glylsy) _

We can rewrite the integrand as

2(yx) l-Io(_b(x)’sl’y)g(ylsl) _ S(X|31)

Bxls) g hn xayety[o ax|o

ﬁo(-b(X),X.y)

But, since y and s; are affiliated,
y<x and x< s = gly|sr(x|x) < gly|x)glx]s;).

Rearranging we obtain

g(ylsl) g(x|s1)
y<x and x < 8y => g(ylx) < g(x[k) .

Since ﬁo is a nonincreasing function it follows that the integrand in (26)

is nonpositive for x < 8. Then, since T 1s a nondecreasing function,

du
x < s =>-5; (x,sl) > 0.
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By a symmetrical arrangement we also have
> > (x50 <0
X sp => 5 (X,8; )

Thus b(sl) is indeed buyer 1's best reply. Q.E.D.

Having established existence we now show that the equilibrium bi&
function characterized in Theorem 2 is the unique equilibrium. While a
complete proof is provided only for the 2 buyer case we conjecture that our
method of proof could be gene?alized further to cover the n buyer case.

As in Section 1 we begin by showing that under our primary assumptions,

an equilibrium bid function must be nondecreasing.

Lemma 8: Under Assumptions Cl1-C2 and D, suppose b 1is optimal for buyer 1
with parameter s. Suppose furthermore that the probability of buyers
3,ee.,n bidding in [b-g,b] 1s zero. Then for all & € (0,€) the

probability of buyers 1 and 2 bidding in [b-8,b] 4is strictly positive.

The proof is omitted since the argument is almost exactly the same as for

Lemma 1.

Lemma 9: 1If Assumptions Cl-C4 and D hold then buyer 1's equilibrium bidding

strategy Bi(si) (possibly a mixed strategy) is nondecreasing in 84

Proof: While we consider only the two buyer case, the generalization to n
buyers is only expositionally more complicated. Let s be the signal of
buyer 1 and t be the signal of buyer 2. Suppose s' < 8" and that buyer
1 bids b' with positive probability when his signal 18 s8' and b" < b'

with positive probability when his signal is s8". Define

p(blt) = Prob {buyer 1l wins with a bid of b when buyer 2's signal is t}.

Then buyer 1's expected utility if he bids b 1is
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u(b,s) = fl p(b,t) U(-b,s,t) g(t's)dt.
0

It follows that

7 u(b'y8) = u(h",s) . (1 jepe |6) [0C¢-b',8,8) - U(b",5,1)] é%cﬂ‘g)i at
0

g(0fs)
+ [Lue-b",s,0) [p(b |t) - p(b"|t)] §§§+§% dt.
0

Since u(b,s') takes on its maximum at b = b’

(28) u(b',s') - u(b”,s') > 0.
Also, since s and t are affiliated,
s> 8 = g(ols)g(tls) > g(OIs)g(t's).

Rearranging we obtain

A

s> 8=

> Bt é) > &ltls)
£(0]s) g(0}s)

But 1U(-b,s,t) 1is strictly increasing in s and, since b' > b", p(b'lt) >
p(b“'t). Then the second integral on the right hand side of expression (27)

is nondecreasing in s,

Moreover, the first integral on the right hand side of (27) can be

rewritten as

1 ' b! t|s)
g p(b' |t {u - Uo(b,s,t)db~§%6+§7 dt.

By Assumption C5 U, is strictly decreasing in s, therefore this expression

is strictly increasing in s, It follows from (27) that

u(b',8") = u(b”,s") , u(b',s') = u(b",s") ,
g(0[s™ 8(0[s") ’

by condition (28). But this contradicts the agssumption that b" 1s optimal

for buyer 1 when his signal is s". 0.E.D.
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For the two buyer case Lemmas 8 and 9 imply that the equilibrium bidding
strategies are strictly increasing continuous functions from [s®,1] =+
[bo,B]. Therefore the equilibrium inverse bid functions

y4() = b1 1=1,2

are also strictly increasing. We now show that the equilibrium inverse bid

functions are also differentiable.

Jemma 10: Under Assumptions Cl1-C2 and D the equilibrium bid inverse bid

functions y,(.) = b-l(.) i =1,2 are defined implicitly by the following .

system of differential equations

8(y, |v))
yz(b)”("b’yl’yz)'E(;;T;IY - gZ{Uo(—b,.vl,sZ)ls2 <y,l

(29)
g(yllyz)

1 (DUCb,5,9)) G5y = B AU, Cbey, 080 | sy <y}
1172 1

~

Proof: Let {sl,sz,...} be an increasing sequence approaching s. Then if

b¥ = b(sh), {bl,bz,...} is an increasing sequence approaching bh. Since

b’ 1s optimal for s' we require

A

y.,(b") (b)
f 2

0

Yy ~
U(-br,sr,t)g(t|sr)dt > 2 U(—b,sr,t)g(t,sr)dt
0

r
L (o5

y -
Subtracting [ U(-b,sr,t)g(tlsr)dt from both sides we obtain
0

-~

y2(br) r S r r Yz(b) N 5 r
/ (u(-b*,s%,t) - n(-b,s ,t)]g(t|s yat > [ ;. Ul-b,s ,t)g(tls )dt
0 yz(b )

Dividing both sides by (b-b") and taking limits we obtain

,(®) . ) o o yz(l;)—yz(br)
Jy Uo('b,s,t)g(tIS)dt b U('b,S,Yz(b))g(yz(b) ,S) 1im [ ~ r ]
0 br¢g b-b
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~

Similarly, since b 1s optimal for 8 we require

y () .. A y, (b5 ) A
/ 2 U(-b,s,t)g(t|s)dt > | 2 U(-br,s,t)g(t|s)dt
0

0

vy, (65 .

Subtracting f'z U(-b,s,t)g(t‘s)dt from both sides we obtain
0
(0 .. . y,(07) - .
f r U(—b,s,t)g(t's)dt > [ [u(-b,s,t) - U(-b ,s,t)]g(t's)dt
¥, (b7) 0

Again dividing by b - b* and taking limits we obtain

NP . 7,(0=y, (6T g (b) .. .
U(-b,8,5,(5))gly,(B) [8) 1im (2 1> [27 u (-b,s,0)8(t|a)dt
2 2 - b-bT 0 0

bT4b
Combining inequalities yields the first of the two differential equations

defined by (29). Arguing symmetrically yields the second of the two

differential equations. Q.E.D.

As a final preliminary to the uniqueness proof we also derive the

following result.

Lemma 11: Suppose that s and t are affiliated and that g(xly)/G(x|Y) is
strictly decreasing in x. Suppose also that Q(x,y) 1is a strictly
increasing continuously differentiable function such that Ql(x,y) ).Qz(x,y).

Then there exists &6 > 0 such that 1f 0 < t - g < §

E {a(s,x) | x <t} < E {a(t,s) ' x < s},

Proof: Define

(x]|s)

g(tls dx.

«(s,t) = E {a(s,y) | y <t} = ft Q(s,x)
y 0
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Differentiating by ¢t

= g(t]s) glt]s) [t g(x|s)
“y(8:8) = (8,0 Geels) ~ 6le]s) g (s, B ax,

Therefore

N

|

G(sls G(s|s

- 8 G(x|s) (s]s)
{g QZ(S’X) G(s|s) dx} %T§+EY'

ws,t) = E{Q(t,x) , x < g} = fs Q(t,x)
0

wz(s,s) = {[® [a(s,s) - 9(s,x)] (x18) dx} &(sls
0

Similarly define

(x]t)

G(s|t) dx

Differentiating by ¢t
= - (8 g(x]t) K
mz(s,t) g nl(t,x) G(é*ET dx + 5y ;{Q(t,x) | x < y}|y=t.

Since §Q 1s increasing and s and t are affiliated the second term is

nonnegative. Also, by assumption, Ql(t,x) > Qz(t,x). Therefore
;b(s,t) > fs Qz(t,x)-g%g-:) dx
0

and so
25(8,8) - NZ(S,S) > gs QZ(S,S) [GE: :; -'ggz :;] dx > 0 by hypothesis.

Appealing to Taylor's Expansion it follows immediately that for all &> 0

and sufficiently small

0<t-s8< 68=>uw(s,t) - wfs,t) > 0. Q.E.D.
We can now prove

Theorem 3: Uniqueness

If Assumptions C, D and E hold the symmetric equilibrium is the only

equilibrium in the 2 buyer auction.
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Proof: We must show that there is a unique solution to the pair of
differential equations defined by (29). Dividing the second equation by the

first and rearranging we obtain

2(y; |v,)] _
y3(® &, 70| [o¢-bay,,yp) E{Uo(-b,yl,s) | s <y,

Yi(b) - g(Yzlyl) U(-b,yl,yz) [F{Uo(—b,yz,s) [ s < yl}

(v, [vp) S

-

Suppose y, > y;. Since s and t are affiliated g(s,t)/G(sIt) is
nondecreasing in t. Then the first bracketed expression is greater than or
equal to

g(yliyl) g(y2|y2)
6(y, 1) " 60y, [y,)°

Furthermore, given Assumption C3 it follows immediately that the second
bracketed expression exceeds unity. Finally, by C4 and C5 Uo(-b,x,y) is
nondecreasing in x and vy and Uol < Uoz' It follows from Lemma 11 that,
for 6 sufficiently small and 0 < Y9 = ¥; < §, the third bracketed
expression is greater than or equal to unity. Therefore,

v, (b) g(vllyl) g(yzlyz)

(30) T > .
(0 7 6y, |y, © 6y, |y,
Define
y g(x|x)

For y ¢ [0,1], H(y) 1is strictly increasing. Suppose that for some b, the

equilibrium inverse bid functions yl(b), yz(b) satisfy
0 < yy(b) - yl(b) < 8.
From what we have just shown

H(yy(b)) > H(y; (b))
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and
' (y,)yl(b) - H'(y,(y' (b)) 50, |79) (b) Ky [7y) (b)
1 1 - Hl 1 - ? - 1 ‘b > 0
Y'Y, 1'h G(yzlyz) Y2 6(y, vy 71
Then = [y, (5)) = RB(y, ()] > o.

It follows that 1f y,(b) > y,(b), then y (b) > y (b) for all b > b.
But, by Lemma 8, both buyers must have the same maximum bid b. Thus there

can be no such b and so yl(b) = yz(b). Q.E.D.

ITI. Concluding Remarks

In this paper we have established existence and uniqueness of equilibrium
in sealed high bid auctions under quite weak assumptions. While the final
uniqueness theorem was only derived for the two buyer case we believe that an
extension of our method of proof will yield a uniqueness theorem for the n
buyer auction as well.

However, the analysis remains special in one important respect. That is,
we follow most of the literature in assuming an underlying symmetry among
buyers. To be precise, if buyers i and j happen to receive the same
signal they will have identical beliefs about the signals of the other buyers.
While this assumption is a natural first approximation there are many
enviromments in which one or more buyers are known to be different. For
example, in art auctions all other buyers have to give special consideration

to the possibility of a bid from the Getty Museum.

While the existence theorem can be readily generalized to allow for
asymmetry in buyers' beliefs, our proof of existence hinges critically on the
symmetry assumption. Whether or not uniqueness hinges on this assumption

therefore remains an open question,
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