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ABSTRACT

A large number of papers have estimated the parameters of Pareto
distributions for city sizes in different countries, but only one has
attempted to explain the differing magnitudes of these parameters with a set
of country-specific explanatory variables. It is reassuring that there has
now been some research which advances beyond simple "curve-fitting" to explore
systematically the "behavioral" determinants of city size. However, this
newer research uses two-stage OLS methods which yield invalid second-stage
standard errors (and consequently, questionable hypothesis tests).

In this paper, we propose an alternative, one-stage behavioral model
which has the potential to generate more-useful results by being better able
to uncover the uncontaminated systematic relationships between city size and
its determinants. In general, these new models are non-linear in parameters,
so that they require more-sophisticated econometric techniques. However,
nonlinear optimization methods are steadily becoming more accessible to
researchers; work need no longer be limited by OLS techniques.
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1. Introduction

A relatively simple concept in Urban Economics, the size distribution of
cities, has received a considerable amount of attention in the empirical
literature--sufficiently for it to have gained a place in Urban Economics
textbooks (i.e. Mills and Hamilton, pp. 58-62). Increasingly complex
methodological techniques have been employed in the pursuit of an intriguing
statistical regularity. The "original" models have now been applied to data
from new countries, and updated more-general models have also been tested.
But if one criticism can be leveled at this work, it might be the following:
the "traditional" empirical approach to this problem has limited the
generality of the modeling process. Determination and refinement of the exact
value of the shape parameter of a Pareto distribution of city sizes is a
worthwhile endeavor. However, not much "behavioral modeling" has been
undertaken. For instance, while we know what city sizes are (or have been) in
different countries at different times, it would be very useful to uncover the
factors which influence city sizes. With this knowledge, we could make useful
predictions about anticipated trends in city-sizes, based on our expectations
about the "explanatory" variables. Unfortunately, the two-stage estimation
process which has typically been employed is too restrictive in its first
stage and yields inaccurate standard errors in the second stage.

In this paper, we will first review the state-of-the-art of behavioral

modeling for the distribution of city sizes. We will then propose a



specification for a "behavioral model" and describe tractable, straightforward
nonlinear estimation techniques.

We hope that those researchers who have undertaken empirical work in this
area will be inspired to explore this alternative class of specifications. 1In
some cases, it would seem relatively inexpensive to augment these data and
then to reestimate using an explicit behavioral model like the one proposed

here.

2. Extant Models for City Size Distributions

Beginning with the seminal work by Zipf (1949) which uncovered the so-
called "rank-size" rule, a large number of investigators have explored the
theoretical and empirical validity of the Pareto distribution (of which the
"rank-size" rule is a special case) as a description of city sizes. (See
Beckmann, 1958, Berry, 1961, Richardson, 1973, and Alperovich, 1982, among
others.) Empirical efforts have focused on the Pareto absolute frequency (as
opposed to relative frequencies) and have utilized the absolute "survival
function". This statistical construct gives the absolute number of cities
greater than or equal to a certain size, G(x), as a function of that size, x.

Algebraically, the hypothesized relationship is:

G(x) = Agx™? (1)

or, log G(x) = log Ay -a log x

If a =1, then xG(x) = A , a constant equal to the population of the largest
city (since G(x) = 1 for the largest city and x 1is its size). Many
investigators have treated the rank-size hypothesis as simply Hy: a = 1. More
recently, Alperovich (1984) has suggested that the appropriate rank-size rule

hypothesis is the joint hypothesis Hy: (a = 1 and A = size of largest city).



All of these studies, however, are primarily descriptive. The objective is
the careful estimation of magnitudes of the individual parameters of the size
distribution and hypothesis tests regarding their true values.

To our knowledge, the sole attempt thus far to formulate a behavioral
model has been undertaken by Rosen and Resnick (1982). These investigators
fit separate Pareto size distributions for separate countries in the first
stage of their estimation. Subsequently, they attempt to explain cross-
country variations in each of the two estimated parameters, Ay and a, by
regressing each parameter on a vector of characteristics for each country.
They experiment with population, GNP, and total miles of railway as
determinants of the Pareto parameters.

Without diminishing the fundamental importance of the Rosen and Resnick
breakthrough into behavioral modeling, some shortcomings to their approach can
be identified. Most importantly, the second stage of their two-stage
estimation technique ignores the fact that the dependent variables are
estimated quantities. Most crucial to the interpretation of Rosen and
Resnick’'s results is the fact that the simple OLS standard error estimates
generated at the second stage are incorrect. Intuitively, since the dependent
variable is merely a point estimate of a random variable which itself has
variance, ignoring the presence of this additional variance will bias the
second stage standard error estimates. We cannot be certain a priori about
the direction of this bias, but as a consequence, explanatory variables which
appear to be statistically significantly different from zero at the second
stage may in fact not be so, or vice versa. To remedy this problem, it would

be preferable to estimate all parameters at once, in only one step.



3. Alternative Modeling Strategies

One presumption which hinders generalization of the literature on city
size distributions is the persistent adherence to the Pareto distribution.
While the theoretical developments borrowed from the industrial organization
literature on the size distribution of firms suggests the Pareto distribution,
which undoubtedly explains this choice by empirical investigators, there has
been little experimentation with alternative distributions. It is important to
note that the Pareto distribution was also at one time favored to describe the
size distribution of incomes. However, the recent econometrics literature,
specifically McDonald (1984), has considered an extremely general class of
four-parameter density functions: generalized beta distributions of the first
and second kind. He also cites recent work with a three-parameter special
case of both of these distributions, the generalized gamma distribution. 1In
particular, Esteban (1981) is reported to have shown that the generalized
gamma distribution has similar "tail behavior" or includes as special or
limiting cases, the lognormal, Weibull, simple gamma, exponential, normal and
Pareto distributions.

While the Pareto distribution has frequently performed well in
describing city size distributions, there is no edict requiring that only this
distribution should be used. Indeed, the Pareto distribution has the
decidedly inconvenient feature of being defined over the domain 1 < t < .
Furthermore, the mean of this distribution goes to infinity as its shape
parameter falls to one or below. (This is an important problem, because
fitted values of this parameter below unity have frequently appeared for city
size distributions. See Rosen and Resnick's results.) This idiosyncracy
makes the Pareto distribution somewhat inhospitable for use in a non-normal

regression model.



1f we are willing, however, to switch to the more highly parameterized
generalized gamma family of distributions, incorporation of alternative
distributional assumptions into a regression model becomes quite feasible.

The literature on "survival analysis" or "product life testing" (i.e. Lawless,
1982) contains extensive analyses of this distribution and its special cases
in both a simple univariate distribution-fitting context, as well as in log-
linear non-normal regression models. For regression situations where the
dependent variable can take on only non-negative values, and where there is no
censoring or truncation involved, Cameron and White (1985) provide an
extensive description of the incorporation of the generalized gamma
distribution into both linear and log-linear regression models, as well as an
empirical application which illustrates that applied economists should be
concerned not only about the functional form of their assumed relationship
between the dependent and explanatory variables, but also about the
distributional assumptions they adopt for the conditional distribution of the
dependent variable. Limiting one'’s attention to the usual normality or log-
normality assumptions may be inappropriate.

It is quite simple to summarize the process of generating a regression
model where the dependent variable--here, city size--has a non-normal
distribution. Rosen and Resnick limit the explanatory variables to country-
level characteristics, but it is entirely conceivable that attributes of the
city itself could be called upon to explain a larger- or smaller-than-
anticipated size. City sizes t might be assumed to follow a generalized gamma
(GG) distribution, but the mean of that distribution may well depend upon a
vector of "explanatory" variables, Xijr (where i=city and j=country), r =

1,...,k.



The reader is referred to the Cameron and White paper for a full
discussion of generalized gamma regression models, but the basic steps for the
linear version of the model are as follows:

a.) Start with the formula for the unconditional density function;

b.) Let the mean of the distribution equal x'S;

c.) Solve the equation in (b.) for the scale parameter of the density in

terms of x'8 and the other parameters of the distribution (the shape

parameters);

d.) Substitute the expression from (c.) into the original density

function (a.) wherever the previously constant scale parameter appears.

The result is a density function, the mean of which varies with the

Qalues of a set of explanatory variables.

In Rosen and Resnick'’s two-stage Pareto formulation, a larger value for
the "a" exponent implies a city size distribution with a higher proportion of
small cities and fewer large cities. This would correspond in the generalized
gamma model to a smaller value of the linear combination x'B. Here, however,
a range of explanatory variables is called upon directly to account for
variations in the scale parameter.

One shortcoming of city size data has been overlooked thus far, however.
Population data are typically reported only for cities larger than a certain
size. City sizes smaller than this level are unobserved. The full
distribution of city sizes must be inferred from the shape of the upper tail
of the distribution. Survival data analysts are familiar with the problem of
unobservable portions of the distributions they are attempting to fit, but
their problem is fundamentally different than the one which arises here. |
Survival time is observed exactly for products which fail (or for patients who

die) within the time span of the study. For those products which don’t fail



(or patients who don’t die), we know that their survival time is larger than
the observation period, but we also know specifically how many elements of our
sample fall into this category and their characteristics (specifically, the
values of their associated "explanatory variables"). This is an example of a
distribution which is "censored." For city size, however, the available data
rarely include even a footnote about how many cities are smaller than the
reporting threshold size. It may not even be objectively clear what
constitutes a "city", if smaller settlements were recorded. We know nothing
at all about these smaller cities. The observable distribution is therefore
"truncated."

GG regression models are complicated but not impossible to specify and
to estimate in the censored case. However, due to the fact that the GG
distribution function does not have a closed form, it would be considerably
more difficult and expensive to formulate and estimate a truncated GG
regression model. However, the two-parameter Weibull distribution, one of its
special cases, has not been explored and may well be appropriate (see Hastings
and Peacock, 1974). The attractiveness of this distribution stems from its

convenient closed-form cumulative distribution function.

4, A Truncated Weibull Regression Model to Explain City Sizes

A Weibull-distributed random variable t is defined over 0 < t < =,
Scale parameter b and shape parameter c are both constrained to be strictly

positive. The probability density function is:

f(t) = ¢ ge-1 exp |-(t/b)° (2

bC

The associated cumulative distribution function is:
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F(t) = 1 - expl-(t/b)€] (3)

For non-truncated data, the mean of the univariate Weibull distribution might

be assumed to be a linear-in-parameters function of a vector of explanatory

variables, Xijr’ r=1,...,k. (Subscripts will occasionally be suppressed.)
E(t) = b I'[(c+l)/c] = x'B (4)
=2 b =x'8 / I'(c¥) where c* = (c+l)/c

Thus, for the regression model, we will have

£(ty51%57) = ¢ 55 Texp [-(tg;/(x"B/T(c¥)))°] (5)

(x'B/T(c*))°
Ftijlxg5) =1 - exp [ -(ty5/(x'B/T(c*)))°]

For a distribution truncated from below at tj*, the probability of observing t

- tij’ given Xijo will be given by:

Ex(tyjlxngg) = ¢ ;%70 exp[-(tq;/(x'8/T(c$))°] (6

(x'B/T(c*))€ exp[-(ty*/(x'B/T(c*)))€]

Which simplifies readily to:

f*(tijlxij) = (o4 tjjc-l exp (tj*c - t'ijc ) (7)
(x'B/T(c*))° (x'B/T(c*))°

For each observation, then, one must have data on the size of the city, tij’
the minimum size of city reported for the country in question, tj*, as well as
a vector or country and perhaps city-specific explanatory variables, Xig-

The log-likelihood function for a sample of N cities will be:
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log L = n(log c + c logl(c*)) + ¢ ), log(tij/x'ﬁ) (8)

- Y log tyy + [(c*)® ) [(t*j/x'ﬂ)c - (tij/x'ﬁ)c]

where sums are over i from 1 to N, and j indexes particular countries.

Optimal values of the parameter vector B8 and the distribution shape
parameter c can be found by maximizing this log-likelihood function, given the
data. Nonlinear optimization computer programs such as GQOPT can search for
the optimum using numerically computed derivatives, or analytic derivatives
can be provided for more economical estimation. Analytic derivative formulas
for the gradient vector and the Hessian matrix corresponding to this log-
likelihood function are provided in the Appendix. When optimal values of the
unknown parameters have been achieved, the asymptotic variance-covariance
matrix for the parameters is given by the inverse of the Hessian matrix,
evaluated at the optimal parameters.

The fitted model can be interpreted in much the same way as are ordinary
least squares regression models. In OLS, we assume that the conditional
distribution of the dependent variable is normal, with its mean determined by
x’'f. In the absence of heteroskedasticity, the variance of this conditional
distribution is assumed to be constant. Here, we are merely assuming instead
that the conditional distribution for the dependent variable is Weibull. We
again let the expected value of the conditional distribution be x'S. We
assume that the shape parameter, c; is constant. The B parameters can, as
usual, be interpreted as the effect on mean city size of a unit change in the

level of each explanatory variable.

5. Implications

We have noted some limitations of existing empirical work analyzing city

size distributions. To overcome some of these, we have outlined a richer,
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more-general model which could conceivably be employed with existing data sets
(possibly after they have been augmented with more information) to yield
results which are potentially of more interest to policy-makers than many of
the models which have been employed so far. Particularly promising is the
possibility that the parametric "distribution-fitting" branch of the
literature can soon be extended via non-normal regression models (such as the
one proposed here) to accommodate the influence of a variety of explanatory
variables upon the mean of the distribution. Once these techniques are
developed, it will be possible to incorporate more of the implications of the
economic theory behind city size distributions developed by researchers such
as Beckmann (1958), Tinbergen (1967), Beckmann and McPhearson (1970), and
more-recently, Alperovich (1982a, 1982b) and Taylor (1986).

Researchers up until now have endeavored to specify models which have
some of the features of the "behavioral™ model proposed here. However, the
unqualified use of two-stage OLS estimation procedures yields unreliable
standard error estimates. Our models continue in the spirit of these
attempts, but "collapse" the models so that they may be estimated in one step
and will yield acceptable asymptotic standard errors. We have also been
careful to address the fundamental truncation of city size distributions in
our model. Failure to treat this data truncation explicitly could easily
result in biased parameter estimates.

We hope that the methodologies proposed here will be tested empirically.
The results should add significantly to our understanding of the determinants

of city sizes.
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APPENDIX I

GRADIENT AND HESSIAN ELEMENTS
FOR A TRUNCATED WEIBULL REGRESSION MODEL OF CITY SIZES

The elements of the gradient vector corresponding to the log-likelihood
function given in equation (8) in the body of this paper are given as follows.
First, we adopt some simplifying notation (all sums are from 1 to N):

t.*

Z=2z/x'pg, for z = 3% tij

Xijr:
I'(z) = 3 I'(z)/ 8z
T''(z) = 82 I'(z)/ 822
¥(z) = 3 log I'(z)/ 8z

¥'(z) = 8 ¥(z)/ 9z

The derivatives are then:

d log L
—_ (o] C
= - ¢ LXyyp - e T(e®) X Xyqp [ T4 - T35 1)
a By .
for r=1,...,k
d log L
= (n/c) [1 - ¥(c*)] + n log I'(c*) + ) log Tij
d c

- [ Tr(ex/e? ] T L THC - Ty ]

* *.C s - T..© <
+ T(c*) YIT i log T*J T1J log TlJ ]

The elements of the corresponding Hessian matrix are given by:

32 log L
= ¢ L Xyjr¥ygs
96,36, jriij

+ c (1 + C) I‘(c*) Z ( xierijs [ Tj*c - TijC]}

for r,s=1,...,k



32 log L c c
T = Ky F (T(e®) /e - T(e] L ( Xy [T - Tyym 1D
3Bydc
-c T(c*) ¥ { Xijr [ Tj*c 1ogTj* - Tijc log Tij] )
for r=1,...,k
82 log L
T = (n/e?) (1 - 2 W(e*) + ¥ (c*)/c)
ac2 ‘
£ [(T"(e%) + 2 T (e%)/e] T 1 Ty*® - 1y4 ]
- [2T' (e*)/e?] T | T;%¢ log Ty* - T45° log Ty; |
+ T(e¥) L [ Ty (logTj*)Z - 144° (logTij)Z ]
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