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Abstract

In this paper I discuss several possible extensions of the concept of
stochastic dominance for two-stage lotteries. I show that the independence
axiom, together with one such possible extension, which is strictly weaker
than the reduction of compound lotteries axiom, yield expected utility
theory. The main result of this paper i1s that the independence axiom, to-
~ gether with an irrelevance axiom and another possible extension of stochastic
dominance for two-stage lotteries may serve as an axiomatic basis for

anticipated utility theory.



1. Introduction

First order stochastic dominance is probably the most acceptable axiom
ruling decision makers' behavior under uncertainty. Roughly speaking, this
axiom states that if whatever happens, lottery X gives a higher prize than
Y, where X and Y are two real random variables, then X 1is preferred
to Y. It is well known that the extension of this axiom to more general
random variables is not straightforward, especially when there is no natural
complete order on the set of prizes. Levhari, Paroush, and Peleg (1975)
discussed random variables over R", while Hansen, Holt, and Peled (1978),
and Fishburn and Vickson (1978) discussed more general spaces.

One of the most impoftant spaces, though, neglected in this context, is
the space of the lotteries themselves. However, as simple, one-stage lotter-
ies are partially ordered by first order stochastic dominance, the concept of
stochastic dominance is meaningful for the space of two~-stage lotteries. This
paper investigates possible extensions of the stochastic dominance definition
for such lotteries.

As the concept of stochastic dominance for simple lotteries is
independent of the decision maker's actual preferences, the suggested exten-
sions of stochastic dominance for two-stage lotteries are objective in the
sense that they do not depend on the decision maker's preferences on simple
lotteries, nor do they depend on the way he evalutes two-stage lotteries.
Green (1984) suggested a different approach, in which he justifies the
independence axiom by using stochastic dominance arguments. According to his
understanding of the nature of this concept, it may happen that one decision
maker believes that the two-stage lottery A stochastically dominates B,
while other people believe that B dominates A. This may happen when the

possible outcomes in A and 3 cannot be compared through first order



stochastic dominance. The stochastic dominance concepts I develop in this
paper are different in the sense that they do not depend on the decision
maker's preferences and they compare only those compound lotteries whose
outcomes can be compared through first order stochastic dominance.

Expected utility analysis of two stage lotteries is usually based on the
independence axiom, namely, the assumption that for every three lotteries X,
Y, and Z, X 1is preferred to Y 1iff for every 0 < P < 1, the two stage
lottery yielding X with probability p and Z with probability 1l-p is
preferred to the same lottery with Y instead of X (Samuelson (1952)). To
this it is necessary to add the reduction of compound lotteries axiom, that a
two-stage lottery is equivalent to the simple lottery yielding the same prizes
with reduced probabilities. This axiom, although self-evident when no real
time is involved, is not at all natural in the context of lotteries over time
especially if the decision maker makes new decisions at each stage. (For such
models see Kreps and Porteus (1978) and Epstein (1985.)).

In recent years, several authors suggested to depart from expected
utility theory either by weakening the independence axiom, or by totally
omitting it. (See especially Machina (1982)). However, it is evident that
decision makers are more willing to accept the independence axiom than the
reduction of compound lotteries axiom (see, for exampie, Kahneman and Tversky
(1979)). Moreover, the independence axioms has a clear normative appeal,
while the reduction of compound lotteries axiom can hardly be justified in the
context of lotteries over time. (See Sections 2 and 8 below.)

In this paper I assume only one decision period. In Section 3 I show that
in the presence of either the independence axiom or the reduction of compound

lotteries axiom, first order stochastic dominance and stochastic dominance for

two stage lotteries are equivalent. Section 4 presents stronger versions of



stochastic dominance. 1In Section 5 I prove that we can replace the reduction
of compound lotteries axiom by a strong version of stochastic dominance, which
1s strictly weaker than the reduction axiom and which, together with continuity
and the independence axiom, imply expected utility theory.

One of the new alternatives to expected utility is anticipated utility
theory (or expected utility with rank-dependent probabilities). It was first
developed by Quiggin (1982), and later on, independently, by Yaari (1985a).
This theory suggests that decision makers are interested not only in the
winning probabilities of every given prize, but also in the probability of
receiving more than each possible outcome. Formally, it suggests that the
value of the lottery (Xj,pyjse«3;Xp,Py), Yielding x4 dollars with
probability py, 1 =1,...,n, Xy € ves K X is

n n

u(x,) + 152 IU(xi)-u(xi_l)]f(j:Zi Pj)-
This theory is efficient in unravelling some well known paradoxes in expected
utility theory, like the Allais paradox (Quiggin (1982), Segal (1985a)), the
common ratio effect (Yaari (1985a), Segal (1985a)), the preference reversal
phenomenon (Karni and Safra (1984)), and the Ellsberg paradox (Segal (1985b)).
This paper shows that the concept of stochastic dominance for two-stage
lotteries may be useful in establishing an axiomatic basis for this new theory
(Section 6). The shape of the decision-weight function f 1is discussed in

Section 7. Some concluding remarks appear in Section 9.

2. Definitions

Let L; = {(xl,pl;...;xn,pn): 0<% < ees €%, P >0,00u,p >0,
Zpi = 1}. Elenents of L;, denoted by X, Y etc., represent simple
lotteries, yielding x; dollars with probability py, 1 =1,...,n. Let X =

(xl,pl,...,xn,pn) € Ll’ and define the cumulative distribution function Fy



by Fx(x) = Pr(X<x).
On L; there exists a complete and transitive binary preference relation
> X ~Y {ff X>Y and Y 3X, and X >Y 1ff X >Y but not Y >X.

Assume that the relation » satisfies the two following axioms:

Continuity: 23 1s continuous in the topology of weak convergence. That is,

if X, Y, Y;, Yp,... € L, such that at each continuity point x of Fy,

1

FY (x) » FY(x), and if for all 1, X >¥Y then X & Y. Similarly, if for
i

i’
all 1 Yi > X, then Y >X.

First Order Stochastic Dominance (FOSD): If, for every x, Fy(x) < FY(y),

then X & Y.

Let X = (X],p15e¢3%XsPp)s ¥ = (¥1591300+3Ypsqn)+ It 1s well known that
X dominates Y by FOSD iff for every nondecreasing real function u,
Zpiu(xi) > Zqiu(yi) (see Fishburn and Vickson (1978)).

Later on I use the following stronger version of stochastic dominance:

Strict First Order Stochastic Dominance: If, for every x, Fy(x) < FY(x),

and there is x for which Fy(x) < Fy(x), then X Y.

U: Ly » R represents the order > if for every X,Y € Ll’ X.& Y iff

U(X) > U(Y). The most celebrated representation is the expected utility

function.
(2.1) U(x) =/Zpiu(xi)

Preference relations represented by this function satisfy FOSD (provided
u 1is an increasing function). If u 1is continuous, they satisfy the
continuity axiom as well. Of course, these two axioms do not imply the

expected utility functional. Further assumptions are required, either on a



itself, or on its extension to two-stage lotteries.

One possible extension of (2.1) is the anticipated utility functional

(Quiggin (1982), Yaari (1985a)):
n n

(2.2) V(X) = u(xy) + 152 [u(xi)--u(xi_l)]f(jfi pj)
where £(0) =0, £(1) =1 and u(0) = 0. If f is linear, then this
function reduces to the expected utility representation (2.1). It is easy to
verify that this functional satisfies the continuity axiom (for continuous
u and f) and FOSD (for increasing u and £). I discuss this theory in
detail in Sections 6 and 7 below.

Let Ly = {(xl,ql;...;xm,qm): Iqy = 1, qpreeesqy > 0, Xp,eee,Xp €Ly}
Elements of Lg, called two-stage lotteries, are denoted by A,B, etc. A

lottery A € L, yields a ticket to lottery Xy with probability qy, 1 =

2
l1,¢s.,m. More specifically, at time t; the decision maker faces the lottery
(1,975+++3m,qy) . Upon winning the number 1, he participates at time t, >
t; 1in the lottery X;. Assume that the decision maker's discount rate for
future income is 1. Thus, once he knows that he won a certain amount of
money, the actual time at which he receives this prize does not make any
difference to him.

Let >, be a complete and transitive preference relation on L,. tz is

~2
the decision maker's preference relation at time t); over two-stage lotter-
ies, the only time at which he faces a cholice problem. In particular, he is

not allowed to make any new decision at time tz.l The decision maker is time

neutral, thus L, naturally becomes isomorphic to a subspace of L,, where

1Other models, like those of Kreps and Porteus (1978) and Epstein (1985)
assume several decision periods.



(xl’Pl;"°3xn’Pn) and ((xl,l),pl;...;(xn,l),pn) are equally attractive.
The subscript 2 1s therefore omitted and the preference relation over one-
and two-stage lotteries is denoted by k. A similar discussion holds for
mixed lotteries, where the set of prizes is R\qu.

This last discussion is relevant only for lotteries of the form
((x1,1) P13 00+3(x51),P,) . So far, nothing restricts the decision maker in
comparing other lotteries in L, with lotteries in Lj. The following two

axioms deal with such comparisons:2

1. Reduction of Compound Lotteries Axiom (RCLA): If the decision maker is

indifferent to the resolution timing of the uncertainty, then he may assume

both stages to be conducted at time t;. Thus, a two-stage lottery is reduced
to a simple one-stage lottery. Formally, let Xy = (Xi,Pi;-~-;Xi ,Pi )
i i

i = l’ooo,m'
(301) (XI,ql;ooi;xm’qm) -~

(xl 1, 'xl 1, D m, ™ m
l’qlpl’.'.’ n ’qlpn 3000, l’qmpl’...’ n :qmpn
1 1 m m

2. Independence Axiom (IA): Let X > Y and consider the lotteries

A= (X,q;Z,1-q) and B = (Y,q;Z,1-q). With probability 1-q these two
lotteries yield the same outcome Z. Therefore, the decision maker's attitude
toward these lotteries depends on the alternative possible outcomes. As

X Y, the IA claims that he should also prefer A to B. Formally,

(Xl,ql;c..;Y,qi;o'o;Xm,qm) ? (Xl,ql;...;Z,qi;...;xm,qm) <=> Y t yA

2In this section I restrict myself to a formal presentation of these
axioms. For a more detailed discussion, including some remarks on the history
of these axioms, see Section 8 below.



Let CE(X) be the certainty equivalent of X, given implicitly by

(CE(X),1) ~X. If » satisfies IA, then

(302) (XI,ql;oon;xm,qm) ~ (CE(xl),ql;...;CE(Xm),qm)
Finally, note that both IA and RCLA are compatible with continuity and

FOSD. Formally,

Theorem 1: Let E- be a continuous and transitive preference relation on
L; and assume that > satisfies FOSD. & can be uniquely extended to Lp

-~

to satisfy RCLA, and it can be uniquely extended to L, to satisfy IA.

Proof: Let Xy = (xi,pi;--.;xﬁ ,pi ), 1 =1,.0.,8, let

i i
v, = (vielseoayl Ly, 1= k, and let A = (Xq,pi3ece;Xysp,)
i 1’ 1’..., mi,q.Ini ’ ooy H 1’p1,.'.’ 2,pz ’
= . . - 1 1, . 2
B (Yl,ql,...,Yk,qk). A 3B <= (xl’plpl"°"xn2’pzpn2) >

(yi,qlqi;...;yi ,qkqg ) 1is the only extension satisfying RCLA, while
k k

A >B <= (CE(Xl),pl;-..;CE(Xl),pz) > (CE(Yl),ql;...;CE(Yk),qk) is the only

extension satisfying IA. Q.E.D.

To illustrate Theorem 1, consider extensions of the anticipated utility
functional (2.2) to two-stage lotteries. Let Xy = (Xl,Pi;---;Xn,Pi), i-=
l,s4.,m, and let A = (Xl,ql;...;Xm,qm). Suppose that > can be represented

by the anticipated utility functional (2.2). If & satisfies RCLA, then

n
(2.3) V) = ulx) + T lulx)-ulx,_)]EC Iz qkpg)
1=2 k=1 §=1

On the other hand, if % satisfies the independence axioms, then by (2.2)

n

CE(X,) = ul [u(xy) + & [u(x,)-ulx, 1)]f( z pj) and 1f CE(X;) <
1=2

eee S CE(xm), then



m m
(2.4) V(A) = V(A)) + I [V(X)-V(X _D)If( X q)) =
N T AL

n n m n

u(x,) + I [u(xi)-u(xi_l)]{f( I pl) + I [f(C I Pk

)-
1=2 jei 3 k=2 g=i 1

n n
£C T p‘j"l)lf( £ apl
j=1 2=k

It is easy to verify that (2.3) and (2.4) are equal if and only if f is

linear, i.e., when anticipated utility reduces to expected utility.

3. Stochastic Dominance

This section discusses conditions under which the two stage lottery A
stochastically dominates the two stage lottery B.

U: L; R is called an increasing function if whenever X dominates Y
by FOSD, U(X) » U(Y). Let U* be the set of all the continuous and

increasing functions U: L; + R.

Definition: Let A = (X{,pj5eee;XysPy)s B = (Yl,ql;...;Yz,qz) be two two-
stage lotteries. A dominates B by VWSD (very weak stochastic dominance) if
for every U e U*, ZpiU(Xi) > Zqu(Yi). > 1is sald to satisfy the VWSD axiom

if A & B whenever A dominates B by VWSD.

Remark: This should be the definition of stochastic dominance for two-stage
lotteries according to Levhari, Paroush, and Peleg (1975), Hansen, Holt, and
Peled (1978), and Fishburn and Vickson (1978). I call it very weak stochastic

dominance because it is the weakest definition I discuss.

Lemma 2: Let A = (xl,%;...;xm,%), B = (Yl,%;...;Ym,%) be two two-stage

lotteries. A dominates B by VWSD if and only if there is a permutation o



on {1,...,m} such that Xy(y) dominates ¥; by FOSD, 1 =1,...,m.

Proof: The "1f" part of the Lemma is obvious. Assume now that for all

U € U*,
(3.1) ZU(xi) > ZU(Yi)

Let X* = {Y: Y » X by FOSD}. Define $(Zq5e00sZg50): L > R by

1

H(Z,,000,Z,3X) =
1 2 0 X £ z*

and let

WY, ,eee,Y, ) = #{UY* )N {X,5000,X }}
il iz j ij 1 m

¢(Zl,...,Zz;.) 1s increasing (with respect to FOSD), hence by (3.1)

(3.2) WY, ,e0e,Y, ) > 2
4 )

I now prove by induction on m that if (3.2) holds for all subsets of
{Yl”"’Ym)’ then there exists a permutation ¢ on {1,...,m} such that
xo(i) dominates Y; by FOSD. For m =1 the claim is obvious. Suppose
that it holds true for m - 1, and prove it for m. If there exists
p 21 © {1,...,m] such that {Yi}ieI) = #I, then by the induction
hypothesis we can define ¢ on I. For each J EE {l,...,m} \NI, it

follows that

#{(jg] ) N {xi}iﬂ} > #

Otherwise, Y<K #T + #3 = #(I1UJ). By the induction hypothesis we

M{Yi}iEIUJ
can extend o to {l,...,m}\T.

Suppose now that for every 9 * I & {1,e00,m},

(3.3) W {Yi}iel) > #1
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* = | I t =
Let Xy € Yl and define o(1) i. The sets X {xj}j¢i and Y

{Yj}j¢1 satisfy the induction hypothesis. To see this, as with ¢, define
V' for X' and Y'. If there exists I & {2,...,m} such that

w'({Yi}iEI) < #I, then ¢({Yi}iel) = #I, in contradiction to (3.3). Q.E.D.

Consider now two general two stage lotteries A and B. By the
continuity assumption it follows that A dominates B by VWSD if and only if
A and B can be rewritten as A = (Xl,rlg...;Xl,rz), B = (Yl,rl;...;Yz,rz)
with X; dominating Y; by FOSD, 1 =1,...,2. This last observation leads

to the following conclusion:

Theorem 3: If > satisfies RCLA, or if it satisfies IA, then it satisfies

VWSD if and only if it satisfies FOSD.

4., Other Concepts of Stochastic Dominance

This section discusses some alternative definitions of stochastic
dominance for two stage lotteries. FOSD for simple lotteries states that if
for every x the probability of winning more than x wunder X 1is at least as
large as the corresponding probability under Y, then X should be preferred
to Y. The major problem in adapting this idea to two—-stage lotteries 1s the
lack of objective complete order on L;. Instead, we can try to use an object-
ive partial order on this space, namely, the partial FOSD order. Formally, let
X* = {¥: Y dominates X by FOSD}. For each A = (X,py;.-;Xp,Pp) and
s < L, let Pu(S) = Zi:XieSpi’ The above discussion suggests that if for
every X, PA(X*) > PB(X*), then A > B. Denote this axiom by SD*. However,
this is not the only possible extension. FOSD for simple lotteries also says
that if for every x the probability of winning less than x under X 1is
less than the corresponding probability under Y, then X 1is preferred to Y.

Let Xi = {Y: X dominates Y by FOSD}. This last observation leads to the
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assumption that if for all X, P,(Xs) < Py(X,), then A » B. Denote this
axioms by SDx. I use these two axioms in Section 6 to construct an axiomatic
basis for anticipated utility theory.

These two interpretations of stochastic dominance coincide on R, but
not on Lj. (Counterexamples can easily be constructed.) The following weék

stochastic dominance axiom therefore seems a possible extension of FOSD:

WSD: If for every X, P,(X*) > PB(X*), and if for every X,

Pp(Xs) < PB(X*)’ then A » B,

Alternatively, one may suggest the following stochastic dominance axiom:

SD: If for every X, Pp(X*) > Pg(X*), or if for every X, Pp(Xa) <

Pg(Xyx), then A > B.

The following theorem discusses the connection between these axioms and

RCLA and VWSD:

Theorem 4: If > satisfies FOSD, then RCLA => SD => SD*, SD4 => WSD

=> VWSD, but VWSD #> WSD; WSD #> SD*, SD,; sp*, SD, #> SD, and SD #> RCLA.

Proof:

RCLA => SD: 1 will prove that if » satisfies FOSD and RCLA, then

[¥X P,(X*) > Pp(X*)] => A& B. Let A = (X|,pj;-++;Xp,Py) and B =
(Y1’915‘°';Ym’pm) (there is no loss of generality by assuming the same

probabilities vectors), such that for all Z e L PA(Z*) > PB(Z*). &

1’

satisfies FOSD and RCLA, hence it is sufficient to prove that for all x,
= -p: *

EpiFXi(x) < EpiFYi(x). Let Zp (0,1-p;x,p). For every p, PA(Zp) >

*
PB(Zp)’ hence

zi:Fx (x) < 1-p Py ? Zi:FY (x) < 1-p Py

i i
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It thus follows that

zi:Fx (x) > 1-p P1 ¢ z1:FY (x) > 1-p P1*

i i
As stated in Section 2, X dominates Y by FOSD iff for every monotonic

utility function wu, Egl[u] > EY[u]. It thus follows that

Ip,F, (x) < Ip,F, (x).
X, £y,

SD => SD*, SDy; SD*, SDy => WSD; WSD => VWSD: Obvious.

SD #> RCLA: Let 2z = (0,1;1,1). Define Vv: L. + R by
207 1
1 X e Z*%
V(X)) =

0 X g Z*
% on L; 1is represented by V, and A = (Xl,pl;...;xm,pm) (Yl,ql;...;
Yz,qz) iff V(V(Xl),PI;‘-.;V(Xm),Pm) b V(V(Yl)’ql;...;V(Yz)’qz). ObViOUSly,
> satisfies TA and FOSD. It also satisfies SD. Indeed, if ¥X PA(X*) >
Pg(X*), then in particular Pp(Z%) > PB(Z*), and by FOSD A > B. Suppose

that ¥X PA(X*) < PB(X*) and let

Fw(x) = min{min{F

x ()i X, £ Z¥], min{FY (x): Y £ zx}}

i h
It follows that

=1 Iy ew, Pt

>1-13 = I
L j:Y, ew, 93 1Y ez 94

. p
1.Xi€Z* i 5
hence A » B.

1, 1., 2y 2
& does not satisfy RCLA. For example, V(V(0,1),3;V(0,351,5),y) =
V(O,%;l,%) =1, but V(V(O,%;l,%),l) = V(0,1) = 0, although these two

lotteries are equivalent by RCLA.

WSD #> SD*, SDy ; SD*, SDx #> SD: Construct counter-examples based on the
observation that by SDy, A = ((0,%11,29,%i(o;éiz,lég%b'E'B =

((0,§11,%9,%1(0,%11,%;2,10,%J, by SD*, B & A, and by SD, A ~ B, while
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WSD does not compare these two lotteries.
VWSD #> WSD: Contruct a counter—example based on the observation that by WSD,
2
A= ((0,%;2,3) ,%;(0,%;1,—%-;3,%),%;(1,—%-;2,%;3,%-) ,%) >

- co.l.1.2y L. 1.0l 141 1
B ((093)193)’3’(121),39(0!3)2"3')3,3),'3')

while VWSD does not compare these two lotteries. Q.E.D.

5. Expected Utility

Let § be a transitive and continuous preference relation. We know that
if % satisfies RCLA and IA, then it can be represented by the expected
utility functional (2.1). On the other hand, it follows from Theorem 3 that
if » satisfies IA, then it also satisfies VWSD, hence all continuous and
transitive preference relations on Ll can be extended to Lp through IA
satisfying VWSD. As SD, SD*, SD4x, and WSD are successive weakenings of RCLA,
the question naturally arises as to which preference relations are consistent
with TA and these axioms. A partial answer to this question is given in this

and in the next section.

Theorem 5: If » is continuous and satisfies IA and SD, then it can be

represented by the expected utility function (2.1).

Proof: Let X e 1L; and define X% = {(x,p): p > Fx(x)}. Let L; = {x°:

X e Ll}s let A= {[x,y] x [p,q]l € [0,») x [0,1]: x < y, p < q}, and let

¥ = {(XO,G) € Lg x At Int X° NInt § =9, XU ¢ Li}. Finally, for
S € L?, st is the lottery in Ll such that S = (S+)°-

Proposition 5.1: Let X,Y € L1 such that X°§Y°, and let § € A such

that (X°,8),(1°,8) ¢ ¥. A = (UL, ~ X UHY,D = B,
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Proof: Let 2 e L;. If Pj(Z*) = 0, then obviously Pg(Z*) > P,(Z*). If
P, (Z*) =-l, then either (X°U 8% dominates z by FOSD, but Y does not,
or Y dominates Z by FOSD, but (XOLJ6)+ does not. 1In both cases

(Y°U & € 2%, hence Py(z*) > P,(Z%). If P,(Z%) = 1, then X =
((X°UONY)" € 2%, and Py(z*) = Py(z*). By SD, B > A. Similarly, for

each Z ¢ L, Pa(Zy) < PB(Z*)’ hence A % B. It thus follows that A ~ B.

Proposition 5.2: Let (X°,8), (¥°,8) ¢ ¥. (X°U&* » (YPUH* <=> x K 1.

Proof: By IA and Proposition 5.1, xPu &)’ * (YU st <=>
(U 5V HTD & (XU LUt D =

1

(VD UH' LKD) & (FOUTHUST,5T,D) <> X & 1.

Define on A partial orders Ry by SIRXGZ iff (X0(161)+ >

+
(xX° U 8,)".

Proposition 5.3: For every X and Y, RX and Ry do not contradict each

other. In other words, if 61 and 62 can be'compared by both Ry and

Proof: Let X,Y €L such that (Xo,Gi), (Yo,Gi) eV, 1=1,2, and let

1

z° = X°N Y°. Obviously, 2z°

€ Lo

1’ and (20,61) e ¥, 1 =1,2. There exist

§-1
%,...,si, and 6%,...,62 such that ¥§(z°U U 611(,61) ey, i=1,2, X0 =

t k=1 i

s t
1 2
Z°ngl 8, and Y0 =200 ku:!l 8- By Proposition 2, & Ry$, <=> (Z°v6}u
1 + 0,,z:1 1 + . - o + o +
L8 U & (ZPUS UL US V)T > Ll <> (22087 & (2°U8)

- = (720U &2 2 + 0y 2 2 + o
<=> vee > (ZPU SV LU 80U ST 2 2PV U L U 8 U BT => SRS,

For the proof of the next proposition, I assume strict first-order

stochastic dominance. Although not essential, this assumption makes the proof
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of Proposition 5.4 less tiresome.

Let R= U R,. That is, &,RS, 1iff there exists X € L, such that
XeL X 1772 1
GlRXGZ. We can prove that R 1is acyclic. That is, 61R62R...R6tR61 imply

GlRGtR...RGZRél. Let & * be the transitive closure of R: §

there are 63,...,6t such that 61R63R...R6tR62.

| &+ 8, iff

Proposition 5.4: There exist V: L1 + R and W: A + R such that

a. V represents the relation
b. W 1is finitely additive, i.e., if § &, €A, then W(61U §,) = W(§) +
W( 62) - W( Glf\ 62)

t j-1 t
c. If X° = U §, where ¥j(U §,,8,) € ¥, then V(X) = I W(§).
k=1 k=1 J k=1

Proof: Let [0,x] x [0,p] ~* [x,yl] x [p,1] (see Figure 1)
[Insert Figure 1 here.]

and let W([0,x] x [0,p]) = W([x,yl] x [p,1]) = 1. By the continuity
assumption there exist z and w such that [x,w] x [p,1] ~* [0,z] x [0,p]
< [w,y;] x [p,1]. Define W(Ix,w] x [p,1]) = W(lw,y;] x [p,1]) = . This
can be repeated again and again for the x as well as for the p axes. By
the monotonicity assumption, the areas of all these rectangles will become
smaller and smaller. W can thus be defined as an atomless, continuous,
finitely additive measure on [0,x] x [0,p] and [x,yll x [p,1]. Similarly,
it can be defined for the rectangles [yi,yi+1] x [p,1] ~* [0,x] x [O,p],
i=1,.4. « By the continuity assumption, {yi} is not bounded. Indeed, let
lim y =y <= Forall 1, ([0,y] x [p,1D">([0,5,] x [p,1D)" ~
(([0,y41} x [p,211DVU (10,x] x [0,p]1))F, 1in contradiction of the continuity

and monotonicity assumptions. This process defines a finitely additive

measure W on [x,®) x [p,1], which can be extended to [0,®) x [0,p] and
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to [0,x] x [p,1], and thus to [0,®) x [0,1]. Define V as in part ¢ of
Proposition 5.4. Because W 1is finitely additive, V does not depend on the

choice of §

l’...’ t.
) ot , s j-1 3-1
et X° = U Gk and Y = U g, where ¥ (U Gk,G ), (J Z,,L,) €
k=1 g1 ¥ k=1 377 T VT

¥, such that X% Y. Let k, < s be the first index for which 8 Fx o o
o o

If ﬂ( L% Ck , construct CL € A such that ci ~ % Gk and o =
e} o o o o 1

Cl(ck\\cL ) € A. We can therefore assume, without loss of generality, that
o o

t t
for k <t, & ~* g . Obviously, V(U § )+) =V((U ¢ )+)’ and as
PN Bl o

s »t, 1t follows that V(X) » V(Y).
I now turn to the proof of the theorem. Let (xl,%;...;xn,%) €L,

X, € ees € X - By the continuity assumption, there exist 0 < p < 1 and

1 1
Yyseess¥, such that Xy = (0,p;yy,1l-p) ~ (xi,l). By IA, (leﬁ;...;xn,ﬁb ~
(x{523++03%_s2). Let k be the first index for which x; > 0, and let 0 <
€ < p. Define Yy = (O,p—e;yk,e;yi,l—p), i=%k,e00yn, Let 1,j > k. By SD,

1 1 1 1 1 1
(Xl,ﬁg...;Yi,E;...;Xn,a) ~ (Xl,E;...;Yj,E;...;Xn,E)

IA implies that on L,, ¥» can be represented by ¢(V(X1)f%;"°;
V(Xn),%). By Proposition 5.4 there exists B > 0 such that V(Yy) = V(Xi)
+ 8, 1=1,...,ns Moreover, for every sufficiently small B, there exists
an appropriate e. It thus follows that for every (yi,...,y:) there exists
f* such that for every (yl,...,yn)3 satisfying y, <y}, 1 =1,...,n, for

every 0 < B< 8%, and for every i and j,

(5.1) 4>(y1,...,yi + B,...,yn) = ¢(y1,...,yj + B,...,yn)

3The assumption that Y1 € eee € Yn is not essential, because the value

of a lottery depends on its prizes and not on their order.



17

Let (¥1seee5¥y) € R:. Let y* = Zyi, and let B* be appropriate for

(y%,000,7%)e Let (Z],000,2,) € R: such that Lz, = y* and

max |y1-zi| < s*. By (5.1).

$(yysecesy ) = dyyseeesy y * Yy, = 2,2) =

ty

¢<y1,-.-,yn_2 t Y~ 2 N

n-1 - zn,zn_l,zn) = see = ¢(zl,ooo,zn)
hence  $(V(x;),Z5.+03V(X ),1) = £(IV(X)). Let x > 0. V(x,1) =
¢(V(x,l),%;...;V(x,1),%J = £(aV(x,1)), hence f£(a) = 2. It thus follows that
¢(V(Xl),%;...;V(Xn),%) = %—ZV(Xi). By the continuity assumption it follows

that
¢(V(Xl),pl;---;V(xn),pn) = Ein(Xi)

Let u(x) = V(x,1). It follows that on L;, > can be represented by

Zpiu(xi). Q.E.D.

6. Anticipated Utility®

In the last years, several authors suggested alternatives to expected
utility theory. One of the most promising of these new theories is the
anticipated utility theory (also known as "expected utility with rank
dependent probabilities”), first suggested by Quiggin (1982). The anticipated
utility functional 1s a special case of an extension of Machina's functional
(Machina (1982), Chew, Karni, and Safra (1985)), and it is helpful in solving
several paradoxes, including the Allais paradox (Quiggin (1982), Segal
(1985a)), the common ratio effect (Yaari (1985a), Segal (1985a)), the prefer-

ence reversal phenomenon (Karni and Safra (1984)) and the Ellsberg paradox

AI am especially thankful to Bill Zame for extensive discussions of this
section.
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(Segal (1985b)). This theory is a natural extension of expected utility
theory, and it suggests that the value of the lottery X is

n n
(6.1) V(X) = ulx)) + I luCxp)-ulx, HIEC T p,)

i=2 j=1i
where £(0) = 0 and f(1) = 1. Note that when f 1is linear, this functional
reduces to the expected utility form (2.1). In the general case, the

anticipated utility functional is defined as

(6.2) JZ u(x)dE(1-F(x)).
0

Although its descriptive force is evident, this new theory did not
recelve so far a clear normative justification. Quiggin himself suggested to
weaken the independence axiom, but an essential part of his axiomatic basis
leads to the conclusion that f(%) = %u However, we now know that in this
theory risk aversion is associated with convex f (see Chew, Karnl, and Safra
(1985), Yaari (1985b), and Segal (1985a)). Assuming that f(%) = %- thus
takes a lot of power out of this theory.

Yaari (1985a) suggested another axiomatic basis, necessarily leading to
the conclusion that the utility function u 1is linear. An attempt to obtain
the general function (6.1) was done in Segal (1984), but this approach lacks
in normative appeal. In this section I.suggest what I believe to be a
normatively appealing set of axioms implying (6.1) with general utility
function u (thus avoiding the linearity of Yaari's functional) and which
allows f to be either concave or convex (thus letting in the concept of risk
aversion). This axiomatic basis includes the independence axiom and extended
concepts of the first order stochastic dominance (or monotonicity) axiom. One
advantage of this set of axioms is that it makes anticipated utility a natural

extension of expected utility theory.



19

Consider again the first order stochastic dominance axiom. One possible
interpretation of it is that if for every x, Pr(X > x) » Pr(Y > x), then
X t'Y. According to this interpretation, the decision maker is interested in
the probability of receiving more (or less) than every possible outcome x.
It is therefore a natural extension of this axiom to assume that whenever he
compares X and Y, the decision maker examines those prizes x for which
these probabilities do not equal. Formally, I suggest the following

"irrelevance” axiom.

Irrelevance: Let X,Y,X',Y'€ Ly, and let SC R. If on S,Fx =Fy, Fyi =
Fyr, and on R\S, Fy = Fy1, Fy = Fyr, then X »Y if and only if

X' 4Y'. (See Figure 2).5
[Insert Figure 2 here.]

This axiom suggests that decision makers first eliminate all the points
x for which the probability of receiving more than x 1is the same at X
and Y. Then, they compare X and Y by their corresponding cumulative
distribution functions at those points where these probabilities do not
equal. Furthermore, they do it independently on the probabilities that are

equal. This axioms resembles Savage's sure thing principle (Savage (1954)),

but it is much weaker. Savage suggested the following axiom as a basic rule

to be used in uncertain situations.

Sure Thing Principle: Let S be an event and let X, Y, X', and Y' be

lotteries. If on S, X=1Y, X' =1Y', and on "not S" X=X', Y=1Y',

then X *>Y if and only if X' &» Y'.

5This axiom is equivalent to the cancellation axiom in Segal (1984).



20

Among other things, this axiom assumes that the evaluation of the prizes
available if S happens does not depend on the prizes available if "not S"
happens. In particular, it does not depend on whether the prizes at "not S"
are larger or smaller than those of S. It is well known that this axiom is
unacceptable from a descriptive point of view, apparently because of this last
objection. The irrelevance axiom, on the other hand,brestricts thé sure thing
principle to those cases where the order of the prizes is not reversed. For
example, the irrelevance axiom agrees with the sure thing principle that
(5,0.1;0,0,01;0,0.89) » (1,0.1;1,0.01;0,0.89) <=> (5,0.1;0,0.01;~1,0.89)
»(1,0.1;1,0.01;-1,0.89), but it does not agree that (5,0.1;0,0.01;0,0.89)
»(1,0.1;1,0.01;0,0.89) <=> (5,0.1;0,0.01;1,0.89) & (1,0.1;1,0.01;1,0.89).
Therefore, the irrelevance axiom does not rule out Allais-type behavior
patterns, as does the sure thing principle. Indeed, the reason decision
makers violate the sure thing principle through the Allais paradox 1s that
replacing (0,0.89) by (1,0.89) makes (0,0.01) strictly worse than all other

prices. (See Figure 3.)

[Insert Figure 3 here.]

Lemma 6: If » on L; 1s continuous and satisfies strict first-order
stochastic dominance and the irrelevance axiom, then there is a finitely
additive measure v on R, x [0,1] such that X XY 1if and only if

wx%) > WY%).

Proof: Follows from Propositions 5.3 and 5.4 in the proof of Theorem 5. See

also the proof of the first part of Theorem 2.2 in Segal (1984).

In anticipated utility theory (and expected utility theory), the value of

the lottery X 1s a measure of the set X°. These theories require in
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addition that the measure is a product measure. The measure of [x,y] is
u(y)-u(x), and the measure of [p,q] € [0,1] 1is f(1-p) - f(1-q), reducing
to q-p 1in the expected utility model. I now show that given a measure,

SD* and SD, guarantee that it is a product measure.

*

As is clear from the discussion in Section 5, SD” implies that

+ +
A= (Xppysee s (XY XDTop3e e o3 (X7 XD Tp540 03X 50 ) 2B = (X),py500 05K, 05
---;Xj,p;...;xn,pn) while by SDx, B » A. I do not know whether these

conditions are equivalent to sp* and SDy, but they are certainly not

stronger. I will therefore replace SD* and SD, by these weaker axioms.

* + +
WSD™:  (Xy,p a3 (X] X?) 2P3 e e (X7 X?) sP3eeesX 4P ) % (Xy4Py5eee;
XisPseee3Xg5Ps50005X,,Py)e

[o} o+
WSDg:  (Xp,P15eeesXysPiese; X sPseee;Xy,pg) & (Xp,pp50005 (X OX)Dp5eee;

(x{ L)X§)+,p;---;xn,pn)-

The main result of this section is presented in the following theorem:

Theorem 7: Let » satisfy the continuity, strict first-order stochastic
dominance, 1rrelevance and independence axioms. It can be represented by the
anticipated utility functional (6.1) with concave (convex) f if and only if

it satisfies the WSD® (WSD4) axiom.

Proof: By Lemma 6, » can be represented by a measure v. I first prove
that if X satisfies WSD*, then it can be represented by (6.2) with concave
f (Propositions 7.1-7.3). Thén I show that if it can be represented by (6.2)
with concave f, then it satisfies wsp* (Proposition 7.4). The proof for

the WSDy-convex f case is similar.

Proposition 7.1: Let x <y € x' < y' sguch that v([x,vy] x [0,1]) =

W([x',y'] x [0,1]). For every p,q, and Yy such that 0 <p<p+ Yy €q <
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q+ v <1, vix,y] x [p,p+Y]) < wW([x",y'] x [q,q+Y]).

Proof: Let X,Y L; and 6 € A such that X°C Y%, (X,8),(Y,8)€
¥, X ~ (x,1), (XOUS)+ ~(y,1), and Y ~ (x',1). Since Vv 1is a measure,
WU &) - WY%) = w(x°U8) - wx%) = w([x,y] x [0,1]) = w([x',y'] x [0,1]),

hence (YOU®' ~ (y',1).

Let S, Té€ L; such that T & (y',1),(x",1) £ S > (y,1) and let s

and t such that S ~ (s,1) and T ~ (t,1). By WSD* it follows that
(0,p3X,Y38,a-p-13 (YU &, v;T,1~q-7) > (0,p;(X°U 87,738, q-p~¥; ¥, 1T, 1-q-y) =>
(0,05%,Y;8,9-p-Y;¥', Y5 t,1-g-Y) % (0,0;y,Y;8,9-p-Y;x',Y;t,1-q-Y) =>

Wx',y'] x [q,9+Y]) > v([x,y] x [p,ql).

Proposition 7.2: Llet =x,y,x', and y' be as in Proposition 7.1. For every

0 <p<qcx 1: 'V([xs}'] X [P,Q]) = \’([X',}"] X [Psq])'

Proof: By Proposition 7.1 it follows that for every n and i < n-2,
Wix,y] x [p + =(a-p),p + Txq-p)]) < W(ix',y'] % [p + Eliq-p),
p+ igg(q-p)]), hence for every n, V([x,y] x [p,q -%5q-p)]) <
WIx',y'] x [p + %(q—p),q]), and by the continuity of % it follows that
WIx,y] x [p,q]) < W([x',y'] x [p,q]).

Similarly, W[x,y] x [0,p]) < w([x',y'] x [0,p]) and V([x,y] x
[q,1]) < ®([x',y'] x [q,1]). Since w([x,y] x [0,1]) = wW([x',y'] x [0,1]),

it follows that Vv([x,y] x [p,q]) = v(Ix',y'] x [p,ql).
Define u(x) = vw([0,x] x [0,11).

Proposition 7.3: There is a concave function f such that v([x,y] x

[psqa]) = [u(y) - w(x)]1[£(1-p) - £(1-¢)].
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Proof: By the definition of u, V([x,y] x [0,1]) = u(y) - u(x) . By
Proposition 2, if u(y) - u(x) = %—[u(y') -u(x')], then V([x,y] x [p,q]) =

%-\K[x',y'] x [p,ql). Hence, by the continuity assumption, v([x,y] x [p,q])

8(p,q) [u(y)-u(x)]. Define f£(p) = 8(1-p,1) and as Vv is a measure,
Wix,y] x [p,q]) = [u(y)-u(x)}[£(1-p)-£(1-q)].

Finally, since for every n w([x,y] x [p,p + 1) < WIx,y] x
[p + %up + %J) it follows that £(1-p) - f(1l-p- %) < f(1-p- %) - f(1-p- %),

hence f 1s concave.

Proposition 7.4: If % satisfies the independence axiom and can be

represented by the anticipated utility functional (6.1) with concave f, then

it also satisfies WSD*.

Proof: Let A = (X1’ $eeesX ,;11-) and B = (xl,%;...;(x nx) ,
(X LJXO) o ,..., ,%), that is,

(1) (2) (2+1) (5+2) (1)  (1+1) (G-1

1 o o + 1 1 1 1 1
B = (xl’;’..., 2” 9(X n y ;X2+19 ’°°’, {- 1 xi"‘l’ s”';xj_lfa;

(1 (k-1) (k) (k+1) (n)

1 1 + 1, 1, 1
Xj+1’;l_;...;xk’ ,(X UXO) s H k+1’ ’°°‘, ’_)

It is sufficient to prove that the value of B 18 greater than that of A.

By using the independence axioms and (6.1) it follows that the value of A is

given by
s n—m+1
W(A) = V(X)) + I [V(X)-V(X__ )£ )
=2
Hence,
W(B) - W(A) = - T V(X ) - V(X ;1[f<“"m+1) - £(ED) +
) m m-1 n -

m=+2
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k
I O[V(X) - V(X DII£(C
m=j+2 m m-1

n-m+2
= )

- £( )] -

n-m+l
n

0 o+ n-4% n-4-1
[V(Xy, ) = VNP DIEED) - £E)] -

V(x) - v(x,_DIECEE) - g2y

[V(Xj+1

_ n—-j+1, _ n—j
) = VEOIEEED - 25D +

n—k+1 n-ky, _
< - £(29) -

V(XTUEDT = V) TIEC

k
n-m+2 n-m+l
Sty VO = VO ISR - £E0) +

o o+ n~-k+1 n-k
[V((XiKJXj) ) = V(X Y ) - £(=)] -
T IV - V(K ][RRy | gmy)
=442 m m-1 n n
0 o,+ n—4% n-4-1
[V(X%+1) - V((XiIWXj) )][f(—;—? - f( = )1 >
k

Do) - vk DMECEED - el .
m=j+1

0y vOy* n—j+1 n-
VU D™ - vaxp e - 222D -

i
n-1+1 n—-i
W) - V& DIEES) - 65D -
(Vg 1) = v AxDHIEEED) - 122D -

[v((x‘;ng’)w‘) - V(Xj)][f(.n_-.gl.tl_) - f(P%l)] -

vz = 3D HIEEED - £y >

i n

N {1E AT - ey - 1B - 6B} > 0
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The proof for convex f and WSDy, 1is similar. Q.E.D.

Strict first order stochastic dominance and irrelevance are essential in
the proofs of Lemma 6 and Theorem 7, as is demonstrated by the following

examples.
Example 1: % can be represented by the function
V(X) = max{x: 1-x > Fx(x)}

3 1s continuous, satisfies first order stochastic dominance and
irrelevance. It even satisfies SD* and SDx, but it does not satisfy
strict first order stochastic dominance. Obviously, V 1is a measure, but &

cannot be represented by a product measure.
Example 2: 3 can be represented by the function
V(X) = w(x®%) + wx°N[0,1] x [0,1)u(x°N[1,=) x [0,1])

where u denotes the Lebesgue's measure. & 1s continuous, satisfies strict

first order stochastic dominance and WSD*, but does not satisfy the

irrelevance axiom. Indeed, it cannot be represented by a measure.

7. The Shape of the Function f

Theorem 7 suggests two possible shapes for the anticipated utility
decision-weight function f — either convex or concave. These results have
clear behavioral relevance. Consider the case where the cumulative distribu-
tion function F 1is continuous and differentiable. By using Machina's
results for his local utility function (Machina (1982)), Segal (1985a) proved
that X %Y whenever Y differs from X by a mean preserving increase in

risk 1f and only if

(7.1) u"(x)f'(1-F(x)) - u'(X)£"(1-F(x))F'(x) < 0.
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As this inequality must hold for all F and x, it follows that the decision
maker is risk averse (lover) if and only if u 1is concave and f convex (u
is convex and f concave). For similar results see Chew, Karni, and Safra
(1985) and Yaari (1985b).

The significance of the convexity of f 1is wider than simple risk
aversion. It turns out that some phenomena that have nothing to do with the
standard definition of risk aversion lead to the conclusion that f 1s con-
vex. For example, the common response to the Allais paradox, and especially
to the generalized Allais paradox, implies that f 1s convex (Segal (1985a),
but see also Quiggin (1982) for a different opinion). The rejection of the
probabilistic insurance leads to the conclusion that f 1is convex (Segal
(1984)). Yaari (1985b) found that if f 1is convex, decision makers prefer
stable prices. The convexity of £, which is necessary for risk aversion,
enlarge the set of problems which can be analyzed by using the concept of risk
rejection.

One interesting implication of the convexity of f 1s its connection to

quasl convex preferences.

Definition: The preference relation & is quasi convex (quasi concave) 1iff
for every X,Y € L1 and a € (0,1), the lottery A = (X,a;Y,1-a) 1is not
strictly better than both X and Y (is not strictly worse than both X

and Y).

For the importance of this concept see for example Green (1984).
Obviously, 1if § satisfies the independence axiom, then it is both quasi
convex and quasi concave. The next proposition deals with preference

relations satisfying the reduction of compound lotteries axiom.
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Proposition 8: If § can be represented by the anticipated utility

functional and satisfies the reduction of compound lotteries axiom, then it is

quasi convex (quasi concave) if and only if f 1is convex (concave).

Proof: Assume first that f 1is convex. Let X = (xl,pl;...;xn,pn), Y =
(X1,973+++3%,59,) and let a € (0,1). Let Z = (xl,qp1 + (l—a)ql;...;

X ,0p + (l-a)qn). By RCLA, Z ~ (X,a;Y,1-a). By (6.1)

n n
V2 = ulxy) + T laGepmuley DIECE (opyHima)g]) <
= jsi
n < n
alu(x,) + I [uo(x))-u(x, DIf( L p] +
1 1=2 i i-1 j=1 i
n n
(I-a)[ulx,) + T [ul(x,)-u(x, )If( T q,)] = aV(X) + (1-a)V(Y)
1 1=2 i i-1 =1 3
Hence either X &2 or Y & Z.
The proof for the case where f 1s concave is similar. Q.E.D.

Theorem 7 gives some more insight into the concept of risk aversion.
Naturally, if a decision maker does not like risk, then he should be concerned
with the possibility of receiving less than what he already has. Therefore,
he prefers a lottery that reduces the probability of receiving less than each
possible outcome (the SD, axiom.) Risk lover, on the other hand, is more
interested in the possibility of receiving more than what he already has, and
will therefore prefer a lottery that increases the probability of winning more
than each possible prize (the sp* axiom.) Theorem 7 shows indeed that SD,

implies risk aversion while sp* implies risk loving.

8. Some Remarks on the Independence Axiom

One of the common vindications of the expected utility theory (besides

its usefulness) is that it is based upon normatively appealing assumptions.
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Special attention was given to the independence axiom, which became almost
synonymous to the theory itself. It was first formulated by P. Samuelson in a

lecture he gave in Paris in 1952, and in an article in Econometrica in the

same year. Its formal presentation, as suggested by Samuelson, 1is as follows:
Strong Independence: If lottery ticket (A)l is (as good or) better than
(B;), and lottery ticket (A), is (as good or) better than (B);, then an
even chance of getting (A)l or (A)2 is (as good or) better than an even
chance of getting (B); or (B)j;.

This is simply a version of what Dr. Savage calls the "sure thing
principle.” Whether heads or tails comes up, the A lottery ticket is
better than the B lottery ticket; hence it 1s reasonable to say that the
compound (A) ticket is definitely better than the compound (B)

[1952, p. 672]
Note that this is exactly the independence axiom I used throughout this
paper. Moreover, Samuelson himself was aware of the fact that it requires a
different reduction axiom and outlined it separately (p. 671, Sec. 4).
For a long time it was believed that Savage's sure thing principle and
the independence axiom are equivalent (this is explicitly claimed by Samuelson
himself). The sure thing principle, when adjuéted to money-probabilities

lotteries (rather than outcomes—-events lotteries) states that
(xl,pl;...;xn,pn;zl,rl;...;zl,rz) > (yl,ql;...;ym,qm;zl;rl;...;zz,rz) <=>
(xl,pl;...;xn,pn;wl,sl;...;wk,sk) > (yl,ql;...;ym,qm;wl,sl;...;wk,sk)

As the sure thing principle compares lotteries in L, and the independence

axiom compares two-stage lotteries, these two axioms are equivalent only at

the presence of the reduction of compound lotteries axiom. This confusion led

to it that today the independence axioms is unjustly rejected on normative and
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descriptive grounds, while normative arguments and empirical evidence prove it
to be the most natural décision rule to be used for two-stage lotteries.

The best known evidence against the expected utility hypothesis 1s the
Allais paradox. Allais (1953) claimed that most people prefer X; =
(0,0.9;5000000,0.1) to Y; = (0,0.89;1000000,0.11), but Y,y = (1000000,1)
to X, = (0,0.01;1000000,0.89;5000000,0.1) while by expected utility theory
Xy t‘Yl iff X2 & Y2‘ Such a behavior certainly contradicts the sure thing
principle (see Savage (1954) and Section 6 above). It is sometimes argued
that it also contradicts the independence axiom (Machine, p. 287). Indeed,
let X = (0,1:55000000,12
independence axiom, A; = (X,0.11;Z,0.89) > B; = (Y,0.11;2,0.89) iff Ay =

), Y = (1000000,1), and Z = (0,1). By the

(X,0.11;Y,0.89) % B, = (Y,0.11;Y,0.89), while by Allais paradox A; & B,
but BZ > Ay. It is, however, beyond doubt that this argument crucially
depends on the reduction of compound lotteries axiom. Indeed, anticipated
utility theory, which may be consistent with the independence axiom is not
contradicted by the Allais paradox.

Some empirical results show that people are willing to accept the
independence axiom, but they usually reject the reduction axiom. Kahneman and
Tversky (1979) found that most people prefer (3000,1) to (0,0.2;4000,0.8),
but (0,0.8;4000,0.2) to (0,0.75;3000,0.25). Consider now the compound
lotteries A = ((3000,1),0.25;0.0.75) and B = ((0,0.2;4000,0.8),0.25;0,0.75).
By the independence axiom A » B, but by the reduction axiom, B } A.
Kahneman and Tversky found that most people prefer A to B. Other evidence
for the rejection of the reduction axiom, especially when time between the
stages is involved, can be found in Ronen (1971) and Snowball and Browm

(1979).
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Another common error is the claim that Savage's sure thing principle and
the independence axiom have the same normative justification. This is false,
as becomes apparent from the explanations Savage and Samuelson gave for their
axioms. Savage claimed that if X and Y differ only on S, then the
common outcome on "not S" should not effect the preference order between X
and Y. Samuelson said that if X is preferred to Y, it should be
preferred to Y even when receiving X or Y becomes uncertain, and other
prizes are possible. This argument cannot justify the sure thing principle,
as there is no initial preference order between half lotteries like
(0,0.01;5000000,0.1;-) and (1,0.11;-). Similarly, we usually assume that
(X]5%X9500e,%,) & (xi’XZ""’Xn) iff X ? xi, because there is a well
defined natural order on quantities of commodities. However, we do not
necessarily assume that (xj,X),X3,ee0,%X)) & (xi,xé,x3,...,xn) iff
(X]5%X9,¥350005¥,) §.(xi,xé,y3,...,yn), because there is no initial natural
order on the bundles (XI’XZ")'

In this paper I interpret the independence axiom as a mechanism that
transforms two-stage lotteries into one-stage lotteries. This is done by
using the certainty equivalents of the possible outcomes in the compound
lotteries. According to this approach, the independence axioms and the reduc-
tion axiom cannot be used together. Indeed, if the decision maker uses the
reduction axiom, then the independence axiom becomes meaningless, as he is
never really concerned with two-stage lotteries. Similarly, if the decision
maker transforms two stage lotteries into simple lotteries by using the
certainty equivalent mechanism, then he can no longer use the reduction axiom.
However, using the stochastic dominance axioms is not ruled out by the
independence axiom, because they do not change the structure of a compound

lottery. (These stochastic dominance axioms become redundant at the presence
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of the reduction axiom, as follows from Theorem 4). I therefore believe that
Theorem 5 gives a better normative basis for expected utility theory than the

standard IA-RCLA one.

9. Concluding Remarks

This paper showed that alternatives to expected utility theory can be
developed even if the independence axiom is accepted, provided one is willing
to forgo the reduction of compound lotteries axiom. As an alternative to this
last axiom I suggest several different concepts of stochastic dominance for
two-stage lotteries. I believe that in the context of lotteries over time,
these stochastic dominance axioms are more acceptable than the reduction of
compound lotteries axiom. Moreover, by using these stochastié dominance
axioms it becomes evident why anticipated utility theory is a natural
extension of expected utility theory.

Some questions were not answered by this paper. For example, it is not
clear whether WSD* and SD* (and WSD, and SD;) are equivalent. Although
Theorem 6 needs only the weaker versions WSD* and WSD4, the question whether
anticipated utility theory satisfies sp* and SD4, which have a clear normative
appeal, is still open. Another interesting question 1s what preference rela-
tions satisfy WSD, together with IA and irrelevance.

Finally, a natural possible extension of the anticipated utility
functional is a general measure on R, x [0,1]. (Recall that anticipated
utility theory assumes a product measure and expected utility theory assumes a
product measure with a linear measure on the probabilities axis.) Lemma 6

shows that such an extension can be obtained from the irrelevance axiom.
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