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1. Introduction

This paper examines competitive equilibrium in an infinite horizon
model with incomplete markets. The class of economies we study is
relatively broad: it allows production, both infinitely lived agents and
overlapping generations, and market participation which is either random or
deterministic. 1In addition to the traditional overlapping generations model
and the finite horizon incomplete markets model, this class of models
includes as a speéial case the monetary model of Bewley [1980, 1983],
applications of which can be found in Scheinkman and Weiss [1986], and
Levine [1986a, b]. Cash-in-advance constraints of the type studied by Lucas
and Stokey [1984] can also be modeled in this framework by careful
limitation of market participation.

The goal of this paper is to characterize equilibria in the infinite
horizon as limits of finite horizon truncated equilibria. The central focus
is on a condition called extensibility. In an incomplete market model, this
condition says that if short sales constraints have been satisfied through a
particular date, then, at equilibrium prices in the next period, it is
possible to trade in such a way as to satisfy the short sales constraints
again. We show by counterexample that without this cohdition there can be
limits of finite horizon equilibria that are not infinite horizon
equilibria, and show that if it is satisfied then it is both necessary and
sufficient for an infinite horizon equilibrium to be the limit of finite
horizon truncated equilibria.

The characterization of infinite horizon equilibria as limits of
finite horizon truncated equilibria can be used to prove existence theorems
as Balasko and Shell [1980], Wilson [1981], Muller and Woodford [1983] and

Spear [1985] do in studying various special cases of this model. By



assigning weights to terminal stocks of assets such as money it can also be
used to prove the existence of specific types of equilibria, as Bewley
(1980, 1983] and Levine [1986a, 1986b] do in showing that money has value.
In all of these models the extensibility criterion is satisfied, and the
limit of truncated equilibria is shown to be an infinite horizon
equilibrium. The converse - that every infinite horizon equilibrium arises
this way - is either trivial in the case of pure overlapping generations
models, or has not been examined in the case of models with production or
infinitely lived agents.

The complete characterization of infinite horizon equilibria as the
limit of truncated equilibria has been examined in a game theoretic setting
by Fudenberg and Levine [1983], and Harris [1985]. This study is very much
in the spirit of those. There is, however, one important difference:
because the game models do not involve budget constraints, there is no need
for a criterion such as extensibility.

One complication that is common to the game theoretic setting and the
one here is the fact that there may be infinite horizon equilibria that are
not limits of finite horizon equilibria. In the game theoretic setting, for
example, the tit-for-tat equilibrium of the infinitely repeated prisoner’s
dilemma is not an equilibrium of the finitely repeated game. In the current
sefting, an equilibrium in which money has value is not an equilibrium of a
finite horizon economy. The game theoretic solution is to relax the
solution concept by allowing agents in the truncated games to only get
within ¢ of the optimium, and to require that epsilon approaches zero as
the truncation horizon increases. The solution here is to relax the
solution concept by assigning terminal stocks of assets weight ¢ in fhe

utility function, and to require that there be an upper bound on the present



value of the terminal stocks that approaches zero as the truncation horizon
increases. The proof that such a "transversality condition" works is more
complicated than the straightforward game theoretic proof that every
infinite horizon equilibrium may be approximated by finite horizon e-
equilibria with ¢ small.

Section 2 of the paper introduces the model. Section 3 considers a
simple example which illustrates the definitions and shows how extensibility
is needed to get infinite horizon equilibria from finite horizon limits. It
also relates the model of this paper to some of the literature on incomplete
markets with a finite horizon. Section 4 states and proves the main
theorems about approximating infinite horizon equilibria with truncated
equilibria. Section 5 considers the conditions under which equilibria may

be guaranteed to be extensible.

2. The Model

We study an economy in which there are countably many markets s € S.
Each market s meets at a specific time t(s) € (1,2,...}. Only finitely
many markets meet at any given time. Different markets meeting at the same
time represent markets at different locations, or contingent markets which
meet only in certain states of nature. An example of a market structure of
this type has finitely many states of nature . in each period. A market
is identified with a finite history of the states of nature
s = (nl,nz,...,nt). The time at which the market meets, ¢t(s), 1is the
length of the finite history. Taking n, to be historically given, the set
of markets form a tree. In the more general case, we do not make this
assumption.

The objects that are traded in markets are called claims. There are

countably many claims c € C. A claim may represent a direct claim to



current consumption, or it may represent a claim to recieve other claims in
subsequent markets: it may be either a commodity or an asset. In general,
claims both figure into the utility function, and provide a future return.

Each claim is traded in exactly one market, and only finitely many
claims are traded in any given market. We write c € s if ¢ 1is traded in
market s. We also define t(c) = t(s) to be the time at which ¢ is
traded.

Claims are held and traded by agents. There are countably many agents
a € A, but only finitely many agents may trade in any given market. We
write a € s if a 1is allowed to trade in market s. Some finitely-lived
agents may only participate in finitely many markets. Other infinitely-
lived dynasties may participate in infinitely many markets.

It should be emphasized that the markets meeting at a given date, the
claims traded in a given market, and the agents who participate in a given
market are all finite.

The planned holding by agent a of claim ¢ 1is denoted by x: € R.
The infinite vector of planned holdings of all claims by agent a is
denoted by x?. We may think of x® as an element of ﬁw, the space of
all sequences of real numbers. This is a topological space in the product
topology. Agent a's preferences over claims is given by a utility

function Ua: 3w -+ R U {-o})., This satisfies

(A.1) v? is weakly quasi-concave and weakly monotone. For Ua(xa) > .o,

v? s uniformly continuous in the product topology.

Utility need not be strictly monotone: claims which are not claims to
consumption, but merely rights to future claims, do not enter into utility

at all. The assumption that v? s uniformly continuous in the product



topology. implies that consumption in the far distant future makes little
difference to current utility. It implies that for any given ¢ > 0 there
is a T such that if any two plans both yield some utility, and coincide at
and before T, the difference in utility between the plans is no more than
€. This insures that preferences are "continuous at infinity" in the sense
of Fudenberg and Levine [1983], and makes it possible to draw inferences
about infinite horizon equilibrium from the finite horizon case.

We make one other technical assumption about utility.

(A.2) 1If Ua(xa) > -0, Ua(ya) > -, and zi = xi for t(c) =T, z =y

for t(c) > T, then U%(z?) > -w.

This says that if two plans both yield some utility, then the plan that
consists of combining the earlier part of one plan with the later part of
the other also yields some utility.

As an example of a utility function satisfying (A.1l) and (A.2), let x:
be the subvector of x® for which the corresponding claims ¢ € s, and let
u:(x:) be a real valued continuous function on the non-negative orthant
weakly concave, weakly monotone and bounded above by ﬁ: > 0, below by

a -a

u =< 0. Assume that u <o, and = ga > -o. Define
s s€S s SE€ES ~s

}: Wity %220 all cec
s S C

Ua(xa) - s€es

a
- xc < 0 some c € C.

It may easily be shown that this function satisfies (A.1l), and it obviously
satisfies (A.2).
Some claims are claims to consumption and enter into the utility

function. Other claims return future claims. We let acd denote the units



of claim c¢ an agent will receive if he holds one unit of claim d. The
return ch » 0 only if t(c) > t(d): a claim can return only claims which
are traded subsequently. This rules out the possibility that the amount of
claims available for trade could be affected by trades which are consumated
later.

Let w” € R denote agent a's endowment of claims. The total amount
of claim ¢ € s available to a for trading at s is

6 xa + Wl
cd’d c’
t(d)<t(c)

that is, it adds the endowment to the returns on claims held in earlier

markets. The no trade portfolio x> is the holding that results if a

passively roles over his portfolio without trading. This is defined
recursively. If t(e¢c) = 1, then i: - wi. At time t, for claims with
t(c) = t, we may define

-a -a a
xc = E: ocdxd + wc.
t(d)<t(c)

Since t(d) < t(c), x°

d has already been defined inductively, and this

definition makes sense.
Let P, denote the price of claim c¢. If agent a is not allowed to
trade c, then his holding of ¢ is given passively by

a a a
(E.1) X, < }: ocdxd + v, ags, c € s.

t(d)<t(e)

If a 1is allowed to trade at s, then he must satisfy the budget

constraint

a a a
(E.2) }: pcxc < }: pc[ }: ocdxd + Wc] a € s.

CEs ces t(d)<t(c)



Notice that both versions of the budget constraint, (E.1) and (E.2) allow
the possibility of free disposal.

The rate of return on claims is non-negative:

(A.3) acd 20 all c,d € C.

This is a convention similar to the fact that utility is monotone: more
current claims can yield only additional future claims. It can be argued,
as Geanakaplos and Polemarchakis [1985] do, that it is not unreasonable to
allow negative returns on insurance contracts. However, Geanakoplos and
Polemarchakis make a the weaker assumption that there is at least one
portfolio yielding strictly positive returns. This can be shown to imply
that there is an equivalent set of claims (spanning the same set of returns)
with nonnegative returns. In understanding (A.3), it is important to keep
in mind that agents can construct portfolios with negative returns by
selling short.

It is generaiiy useful to distinguish between those claims which figure
directly into utility, and those merely present a claim to future claims.
We refer to claims that do figure into (some agent’s) utility function as
consumption claims. We can recursively define a backed claim to be either a
consumption claim, or a claim which pays out a positive amount of a backed
claim. Conversely unbacked claims pay out only other unbacked claims, and
never lead to an eventual payout of a consumption claim, no matter how many
times the portfolio rolled over. Money is a typical example of an unbacked
claim,

In addition to the budget constraints, there can be constraints on

short sales. Each agent a who can participate in market s 1is subject



s a . s
to a single borrowing constraint Xs' This is a subset of 3m, and we

require that
(E.3) x% ¢ x: for all a € s.

a .
The set Xs must satisfy

a

(A.4) Xs is a closed convex set;

if x% e X: and yi - xi for t(c) =< t(s), then ya € X:;
if x*ex? and ya >x% for ce C, then ya e x2.
s c c s

The second part of this assumption states that the constraint X:

constrains only holding at or before the market s. The third part of this
assumption assures that if a plan is feasible, then having more of
everything is as well. Like in the case of rates of return, this is a
convention that claims are unambiguously good: more claims can only make it
easier to satisfy the short sales constraints. However, the set X: may be
all of Rw, so that ﬁhis formulation is consistent with the absence of any
short sales constraints. Notice that large holdings of claims in earlier
markets may make it easier to satisfy the short sale constraints in the
current market. Since these earlier claims may have a return that will not
be realized until a future market, they may well be used as security for
current indebtedness.

It is assumed that
(A.5) If x% satisfies (E.3) for all s with a € s, then
3 (x?) > -«.

This amounts to assuming that the borrowing constraints are the only
constraints on the portfolio. Utility of -« is effectively a constraint;

it is assumed that these "extra" constraints do not bind if the borrowing



constraints are satisfied.
If we assume that no agent can be forced to trade, then the no-trade
portfolio %% defined above must satisy the short sale constraints. More

strongly, it is assumed that
-a . a
(A.6) x € interior( XS ) for all a € s,

so that the no-trade portfolio strictly satisfies the short sales
constraints. This is closely related to the assumption made in ordinary
general equilibrium theory that endowments are strictly interior, and could
be weakened in much the same way. Notice that there is no requirement that
agents have non-trivial endowments in markets in which they do not
participate.

The production side of the economy is represented in each market s by
a transformation matrix As with as many rows as there are claims traded at
s. This serves to convert current claims into current claims of different
types. This does not mean that there is no intertemporal production.
Converting a claim to current consumption into a claim for future
consumption is a form of investment. However, intertemporal production is
possible only by producing intermediate goods (claims) which are owned by
specific individual agents: firms themselves operate only
contemporaneously.

In a given market the amount of claims available prior to production is
given by adding the returns on previous claims held by agents who can
participate in that market to their endowments. Let g > 0 be the levels

at which activities are operated. Social feasibility requires that demand

not exceed supply:
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a a a
(E.4) }Z X < Asvs + }: [ v + }: 6sc X, J for some Vs > 0.

ac€s ac€s t(e)<t(s)

Here asc is the vector composed of 0dc with d € s.

Because more claims are unambiguously better by (A.1l), (A.3) and
(A.4), and because there is free disposal, we may assume that prices are
nonnegative, so that P, = 0. Moreoever, within a single market it is clear
that only relative prices matter. This leaves us free to adopt the
convention that prices within each market lie on the unit simplex.
Throughout the remainder of the paper we adopt this convention:

}: P, = 1, P, = 0.

ces

An equilibrium of this economy is a vector of consumption plans %,
production plans ¥, and prices $ which satisfy the social feasibility

condition (E.4) and the individual rationality conditions

(E.5) For each agent v? is maximal subject to the constraints (E.l),

(E.2) and (E.3). Profits are maximal in each market.

Because there are constant returns to scale, in equilibrium, profits are
necessarily zero.

In this setting of incomplete markets, the asSumption that firms act to
maximize profits is controversial. Ekern and Wilson [1974] and Radner
[1974], consider stockholder unanimity as an alternative criterion for firm
decision making. The argument is that alternative production plans yield
different patterns of returns across states, effectively creating a market
for a different type of claim. Consequently, owners may actually be willing

to take a current loss of profit in exchange for a better pattern of returns
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across states. In the model here, we avoid this issue by allowing only
contemporaneous production, and forcing claims to be held by individual
agents, rather than in the form of shares of firms: firms purchase claims
from agents, convert them into different claims, and sell them back to
agents. Alternative production plans do not alter the set of markets
perceived by price taking agents: agents always perceive that they can buy
unlimited claims of any type traded in markets in which they participate.
Roughly, the traditional "problem" with production, involves agents who do
not act competitively: they effectively realize that by changing the firm'’s
production plan to produce alternative claims, these claims will be
available at a more attractive price.

Our interest is not only in equilibria of the full model. We also are
interested in finite horizon truncated equilibria, and how they are related
to infinite horizon equilibra. We begin by definingvan economy truncated at
time T. We let x° and %> be contingent plans for holding claims by
agent a, and let ¢2T be nonnegative weights for ¢ < T. The truncated
utility recieved by a if he follows the plan xa, and the economy is
truncated acéording to %° and ¢; is defined as

(2.1) R R 40) = 0% + z bor¥e:
t(c)<T

where 2z 1is defined by

x: if t(c) =T
(2.2) z% -
if t(c) > T

To avoid degeneracy, it is always assumed that Ua(ia) > -o., Because of

(A.2), this implies that if Ua(xa) > -, so is U;(xa,ia,¢;). The
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weights ¢; are used to capture the fact that claims held prior to
truncation may have a valuable return beyond the truncation horizon. They
are essential in constructing truncated equilibria in which unbacked claims
have positive value.

An equilibrium is a vector of consumption plans &, production plans
¥, and prices p which satisfy (E.1) through (E.5) in all markets for the
original utility function. An equilibrium truncated at T with weights ¢T
and future consumption x also ié a vector of consumption plans XK,
production plans ¥, and prices {p which satisfy (E.1) through (E.5). Now
however the constraints (E.l1) to (E.4) are imposed only for markets with
t(s) <= T, the utility function in (E.5) is the truncated one, and profits
must be maximized in (E.5) only in those markets occuring at or before T.
Notice that a truncated equilibrium is by convention an infinite vector of
plans and prices. However, none of the components of these vectors occur-
ing after T 1is at all relevant to the equilibrium. 1In this sense the
model is really a finite horizon model: only the finitely many components

of plans and prices occuring at or before T matter.

3. An Example

In this section we consider a model with a single state of nature and
location in which a single trader must determine how to hold a single
perishable consumption good, and a single asset - a one period commodity
bond - over time. The unique equilibrium requires that prices be such that
the trader is willing to hold his endowment. After using this example to
demonstrate some of the notation introduced in the previous section, we
show how a sequence of truncated equilibria may converge to a non-
equilibrium. We use this to motivate the condition of extensibility which

we use in the next section to characterize infinite horizon equilibria as
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limits of finite horizon ones.

Markets meet sequentially, so S = (1, 2, . . .), and t(s) =s. 1In
each market two types of claims are traded: consumption claims c¢(s), and
bonds b(s). There is a single agent who can participate in all markets;
the remaining agents cannot participate in any market. The utility of the
single agent who matters depends only on consumption, and has the form:

}Z st(s) UK, (gy)r XyZ 0 all ceC

(3.1) U(x) = {55

- X <0 some c¢ € C.
c(s)

where u 1is strictly concave, bounded above and below, and differentiable,

and 1 > 6§ > 0. The consumption claim has no rate of return, so # 0

ce(s) -
for all claims c. The bonds are one period consumption bonds paying off one
unit of next period consumption, so 0c(s+1)b(s) =1, and for c¢ #‘c(s+1),
0cb(s) = 0.

The agent who_ _matters is endowed with a single unit of consumption,

1, and no bonds, 0. There are potentially two short sales

wc(s) - wc(s) =
constraints in the market s defining the set XS: holdings of consumption
are constrained to be nonnegative, xc(s) = 0, and short holdings of bonds

are limited by xb(s) =z x, where x < 0, and we allow the possibility that

X = -o. The budget constraint in market s is

(3.2) Pegs) [ Xeqs) ~ 1 7 ®p(s-1) J ¥ Poes) *p(s) = O
where xb(O) = 0 by convention. There is no production. As a result a plan
X 1is socially feasible if consumption is no greater than one, and bond

holdings are nonpositive.

In the truncated case, we take the weights ¢T = 0, and the truncated

consumption plan x is irrelevant, since (3.1) is additively separable.
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Regardless of the value of x there is a unique truncated equilibrium. In
the final period, T, it must be that pc(T)T =1, and pb(T)T =0, for
otherwise the agent would try to sell bonds short in the final period, and
use the proceeds to purchase more than the single unit of consumption
available to the economy. In earlier markets, t(s) < T, prices must be
given by pc(s)T = 1/(1 + §), and pb(s)T = 6/(1L + 6), in order that the
agent be willing to hold his endowment of a single unit of consumption and
no bonds.

The truncated equilibria converge to a limit: the plan is to hold the
endowment of consumption and bonds, and the prices are pc(s) =1/(1 + ¢),
and pb(s) = 6/(1 + 6) 1in all markets s. Whether or not this is an
equilibrium, however, depends on x. If X = -o», then the limit is not an
equilibrium. In this case a variety of Ponzi schemes can improve on the
equilibrium level of utility: short sales of bonds can be used to finance
extra consumption, and financed in turn by future short sales of bonds. If,
however, X > -o, then such Ponzi schemes are impossible, because the
debt, which must grow at the rate 1/§, will eventually exceed the limit on
short sales of bonds. 1In this case the limit is an equilibrium. Notice the
difference between the finite and infinite horizon cases: in the finite
horizon it is possible make short sales of bonds useless in the final period
by having their price equal to zero, while in the infinite horizon case
there are no final period prices to manipulate. This also makes clear how
the infinite horizon model differs from the finite horizon incomplete market
models studied by Hart [1975], Werner [1985], Duffie [1985], Geanakoplous
and Mas-Colell [1985], Geanakoplos and Polemarchakis [1985]), and Duffie and
Shafer [1986]. Although those models study what happens when there are no

short sales constraints, from our perspective there is a short sales
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constraint: in the final period no short sales are possible. Of course
this may equally well be arranged by making the prices of final period
assets equal to zero.

The reason that the limit of truncated equilibria is not an equilibrium
without short sales constraints is that the limiting budget constraint is
very unlike the budget constraints approaching the limit. To understand
why, let Ba(p) denote the budget constraint set in the infinite horizon
when prices are p: these are the points which satisfy both the short sales
constraints (E.3), and the budget constraints (E.1) and (E.2). Let B;(p)
denote the T period truncated budget constraint when prices are p: here
(E.1), (E.2) and (E.3) only apply in markets at and before period T. Fix
T, and consider t bigger than T. Then in BT(pt) there are no
restrictions on short sales of bonds, while in Bt(pt) short sales of bonds
are limited by the fact that no bonds may be sold short in the final period.
Of course the limit reflects the behavior of BT(pt) as p_ P, and in
the limit, unlimited short sales are possible.

Turning to the general case, we can rule out the possibility that
B;(pt) is unlike Bi(pt)‘ by defining the prices P, to be extensible at
or before t if for every T =< t and every agent a, whenever x? e B;(pt)
there is ya € B;+1(pt) such that yi = xz for t(¢) = T. 1In other words,
it is never possible to trade into a position which will force the violation
of future constraints. This condition is clearly violated in the example
when there are no short sales constraints: there are points in B:_l(pt)
in which more than a single bond is sold short; no such point can admit an
extension to B:(pt) since the agent cannot repay more than a single unit
of debt in the final period. It is a consequence of the results in the next

section that if each truncated equilibrium price vector is extensible, then
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any limit of the truncated equilibria must also be an equilibrium.

Extensibility is not entirely adequate as a criterion for when
truncated equilibria converge to an infinite horizon equilibrium, however.
While any short sales constraint x > -» will restore the continuity
between the finite and infinite horizon model, if x < 1 the truncated
equilibria are not extensible, since no more than a single unit of debt can
be repayed in the final period. There are two cases that, taken together,
show how to weaken the extensibility criterion. First, when x < -1/(1 - §)
the short sales constraint is misleading. The present value of the future
endowment at the limiting prices p 1is equivalent to 1/(1 - §) wunits of
bonds. If, in the infinite horizon, the agent attempts to sell short more
bonds than this, he cannot possibly repay the debt, and will, in some future
period, be forced to violate the short sales constraint. The fact that
plans in BT(pt) that involve selling short more than 1/(1 - §) bonds
cannot be extended to Bt(pt) is irrelevant, since such plans are ruled out
in the limit anyway. As a result, in considering extensibility, we can
restrict our attention to those plans which are (approximately) feasible in
the infinite horizon limit.

If -1/(1 - §) = x < -1 then the extensibility criterion is still
violated. However the violation is not too serious in the sense that if t
is much larger than T, then for any plan in BT(pt) we can find a
slightly different plan, also in BT(pt) which can be extended. The reason
for this is that we can extend any plan for which short sales are slightly
less than 1/(1 - §): the effect of prohibiting short sales at the end
point (t) is gradually reduced as we work our way backwards in time (to
T).

The criterion that captures these two case is called approximate
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extensibility. Fix an € > 0. We say that a sequence of prices P. P

is approximately extensible if for any T and ¢ there exists a T' > T

such that for t = T’ and x; € B;(pt), x? e Ba(p) with
u |x -x | = e there exists x> € Ba(p ) Ba(p ) with
s pt(c)sT cT c! 7 o t T t’’ "t''t
. a
supt(c)sTlch - Xctl <€+ SuPt(c)sTlch - xcl. In other words, if x; 1is

within € of a point in Ba(p), there is a point x: within e of the
distance to that point which admits an extension to Bi(pt). In the
example, this property is always satisfied when x > -», and is not
satisfied when x = -o. In the next section we show that extensibility of
truncated equilibria is both necessary and sufficient for the limit éo be an

equilibrium. Notice that extensibility implies approximate extensibility.

4. Finite Horizon Approximations to Equilibrium

We now study the relationship between extensible equilibria in the
infinite horizon model, and those in finite horizon truncations of the
model. Our goal is to prove that infinite horizon equilibria can be
completely charagterized as limits of finite horizon equilibria,.

Our first step is to show that B;(p) is lower hemi-continuous for

each T.

a a a a .
Lemma (4.1): 1If P. P and x € BT(p), then there is x € BT(pt) with
22+ %2,

Proof: This fact is also implicitly used by Radner [1972] in his outline of
an existence proof when there are multiple budget constraints; the proof is
a minor variation on Debreu’s [1959] proof with a single budget constraint.
In case x° strictly satisfies the many budget constraints, the proof is

trivial. 1If a certain finite subset of budget constraints bind, then like



18

-a
Debreu, we draw a straight line between xa, and the no trade plan x ,
and take xi to be the point where this line first exactly satisfies one of

the binding budget constraints at the prices P.- Q.E.D.

Next, we must give a transversality condition linking equilibrium

holding of claims to the weights ¢;. For given weights and prices, define
a _a
t(c)<T ¢chc

The sequence of weights ¢T satisfy the transversality condition with

repect to the sequence of prices p; and plans x; provided that

a,,a . . a a
xT(¢T,pT) to be the minimum of 2 subject to x € BT(pT).

a _a

(4.1) 2t(c)sT ¢chcT

a,.a ..
- xT(¢T,pT) < €1 where 11mT~w€T = 0.

Our goal is to prove

Theorem 4.2: A triple %, 4§ and P are an equilibrium if and only if they
are the limit (in the product topology) of approximately extensible

equilibria % and ﬁT truncated with respect to X and weights ér

T T

which satisfy the transversality condition.

We begin by proving that limits of truncated equilibria are equilibria.

Proof that limits are sufficient: Convergence of ﬁT’ QT and ﬁT in the

roduct to R, ¥ d P X .. -+ R ¥ .=+ % , and
P pology to X, ¥ an P means that X7 X, Vo 7g

ﬁcT -+ ﬁc for each ¢ and s. It follows directly that % is both socially
and individually feasible at the prices $. The fact that 4 maximizes
profits at P and that & 1is optimal for any finitely lived consumer is an
immediate consequence of the fact that continuous finite horizon
optimization problems are upper-hemi-continuous. The crucial step is to
show that & 1is optimal at P for an agent who participates in infinitely

many markets.

Suppose in fact that z2 € Ba(ﬁ) and U%(z%) = U%(%®) + 6§ where
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§ > 0. Choose ¢ so that 9¢ < §. Since U? is uniformly continuous in
the product topology, we may choose T sufficiently large that if ya is
any plan satisfying the short sale constraints through T, and t =T

[l y®.5%,0) - VM| =
(4.2)
IU;(ya,ia,O) - U‘z(ya,ia,O)l < e.

Next we may choose t 2 T sufficiently large that

(4.3) luz&2,%%,0) - v 8%,3%,0)] = e,
since ﬁi - %% in the product topology and T is fixed. Since ﬁt )

in the product topology, by Lemma 4.1, we may also assume that there is a

a a,a .
zT € BT(pt) with
a, a ~a a, a -a
(4.4) |up(z,%7,0) - Up(zp, % ,0)| < .

We may also assume from (4.1) and 9¢ < § that

(4.5) € <& - 9e,

where e is from the transversality condition (4.1).
Finally, by approximate extensibility and (4.4), we may assume that ¢t

has been chosen sufficiently large that there is an approximate extension

a a, a .
zt € Bt(pt) with
a, a ~a a, a ~a
(4.6) IUT(z X7,0) - Up(z,X(,0)] < 2e.

This last step is the crucial one. Lemma 4.1 does not assert that we can

find z: € B:(ﬁt) close to za, it says only that for fixed T that we can
find z; € B;(ﬁt), close to z2. However, we need the former conclusion
rather than the latter, because we do not know that ﬁ; or ﬁ: is optimal

a

Py a A A
in BT(pt), while we do know that X

is optimal in Bi(ﬁt).

As we just remarked, since ﬁt and ﬁt are a truncated equilibrium
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and z e B2 (p ), it must be that

a,ada ~a a

4.7) U2G3,3%,60) = 022057, 40).

We shall now show that (4.7) contradicts Ua(za) - Ua(ﬁa) + 4.
From (4.6) and (4.2) we see that

a

(4.8) [U2(z*,%%,0) - uZ(z2,%%,0)| = 4e,

while from (4.3) and (4.2) we see that

a
t

Ad ~a a Aa -a

(4.9) lvZ(Re.x7,0) - UZ(R 0] =

Moreover, Ua(za) = U (& ) + 6§ and (4.2) imply

a Ad ~a

(4.10) U:(z x2,0) - U2 S(3%,%%,0) 2 5 - 2.

Combining this with (4.8) and (4.9) yields

a, a -a Ad ~a

a
(4.11) Ut( e X ,0) - Ut(xt,x ,0) 2 6 - 9e.
It follows that
a a ;a a,,a ~a ,a
(4~12) Ut( t) ,¢ ) = Ut(xt’x ’¢t) Z
a a a sa
§ - 9¢ + }: ¢ctzct E: ¢ct ct =
t(c)st t(c)<t
a ,a
5-9e+x(¢ quctct
t(c)<t

where the last line follows from the definition of x:(¢:,ﬁt). From the
transversality condition (4.1) we have

a, a ~a ,a a,,a -a ,a
(4.13) Ut(zt,x '¢t) - Ut(xt,x ,¢t) 26§ - 9¢ - € > 0,

with the final inequality from (4.5). This, however, contradicts (4.7).

Q.E.D.
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Next we prove that every equilibrium is the limit of truncated

equilibria.

A A

proof that limits are necessary: Given an equilibrium %, 9, p and a
truncation date T, we must construct ﬁT’ %T, ﬁT’ together with a

truncation plan x and weights ¢T which are a truncated equilibrium and
satisfy the transversality condition. We take the truncated plans and
prices to be the same as the equilibrium plans, ﬁT - R, QT - ¥, ﬁT - P,
X = %, and show how to construct weights which satisfy the transversality
condition. Notice that the proposed truncated equilibrium is obviously
both socially and individually feasible, and that profits are at a maximum.
To show that the truncated equilibria are approximately extensible, take
the approximation to be the given nearby plan in Ba(ﬁ). What we must show
is that, relative to the weights we construct, agents are indeed maximizing
their truncated utility.

The method of finding truncation weights is closely related to the
dynamic programming method used by Weitzman [1973] in establishing a
similar tranversality condition in a somewhat simpler model. Let
a

a ~ . . .
= xc - xc}. Notice that this is a

~ a A
QT = {(wc)lt(c) <T, 3Ix, X € Ba(p), w,

convex subset of a finite dimensional space. Define va: QT - R by

T
(4.14) v;(w) = max U,;(ia,xa,O)
x®,%%B%(p)
x -x2 <6 te) =T
[ (o] C

Since Ba(ﬁ) is a convex set, this is a concave function. Notice also, by
the monotonicity assumptions (A.1l), (A.2) and (A.4), that an argmax

. . a -a . .
satisfying X, - X, =, for t(¢) = T always exists. Moreover, since

-a . . \ -a -a
x  satisfies all the short sales constraints strictly, there is y << x



22

which does so as well. Since x° exactly satisfies the budget

constraints, ya strictly satisfies them. It follows that

0 € interior (O Consequently, there are weights ¢; (non-negative by

) -

monotonicity and free disposal) such that

(4.15) v;(w) - }: ¢2Twc < v;(O).
t(c)=<T

Since %% maximizes U? in BZ(p)

(4.16) v;(O) - %Y.
First set x° = %%, and let w, = ﬁ: - iz. Then, by definition of
a
VT
a a,~a sa
VT(w) > UT(X X ,0).

We conclude from (4.15) and (4.16) that

&% = va0) = URE%,%%,0) - Z bap(RorXD),
t(c)=<T

or, in other words,

[Ua(ﬁa) + }: ¢jT§a] - {U;(ia,ﬁa,O) + }: ¢iTi2] >0,
t(c)<T t(c)<T

a ., . . .
so % is in fact optimal relative to the weights ¢;.

Next, set x> = %2, and w, = xi - ii. Then, by the definition of

a a,.a _a
VT(w) > UT(x , X ,0).

We conclude from (4.15) and (4.16) that
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T
. t(c)=<T

U G% = va(0) = uz3%,x%,0) - Z bor(xa - £,

or, in other words,
a, .a a, .a _a a ,,a _a
€1 = U (") - UT(X X ,0) = }: ¢CT(XC xc).
t(c)=<T

Since U? 1is continuous in the product topology we may assume €r 0.

. a a, . a _a a, a a
Since this holds for all x € B (p), by letting chT ¢chc - XT(¢T,p),
we get

a Aa a,,a a
€r > E: ¢chc - XT(¢T,p). Q.E.D.
t(c)<T

5. Extensibility of Equilibria

We now consider the existence of infinite horizon equilibria. We must
show that truncated equilibria exist, and that there is a convergent
sequence of truncated equilibria that is approximately extensible. The
existence of truncated equilibria is relatively straightforward - we
indicate what is known on the subject, and outline conditions sufficient
for existence in the current context. These conditions also guarantee the
existence of a convergent sequence of truncated equilibria. Approximate
extensibility is more complex. However, there are a variety of sufficient
conditions which guarantee that every truncated equilibrium is extensible.

First we consider the existence of truncated equilibria, extensible or
not. When there is no production, markets form a tree, and all assets
return the same mix of good or money in a particular market, Werner
[1985], Duffie [1985], Geanakoplous and Mas-Colell [1985], and Geanakoplos
and Polemarchakis [1985] have shown in this model that there is a truncated

equilibrium in which short sales constraints can be chosen not to bind.
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Without the special assumption on asset returns, Hart [1975] showed that
there may be no equilibrium. However, Duffie and Shafer [1986] show that
even in this case an equilibrium exists in generic economies.

In the infinite horizon, to insure the absence of Ponzi schemes, we
observed that some short sales constraints are needed (although they need
not bind). If we take short sales constraints such that asset holding is
bounded below, Radner [1972] showed that we can dispense with special
return structure assumptions and generic economies. In the model of this
paper, which allows production, and drops the assumption that markets form
a tree, add the assumption that the production technology and short sales
constraints are such that social feasibility implies bounds on individual
holdings of claims. Then it can be shown that a truncated equilibrium
exists. Following Debreu [1959}], we truncate the budget constraints using
bounds on individual holding that cannot bind in equilibrium. Combined
with Lemma 4.1, which states that truncated budget constraints are lower-
hemi-continuous, this implies that demand is a upper-hemi-continuous convex
valued correspondence. Since social feasibility implies a _priori bounds on
individual holdings of claims, the activity levels vy are also bounded.
The fact that there are separate price simplices and versions of Walras's
Law in each market leads to only notational complications: the remainder
of the proof can follow any standard argument for the existence of
competitive equilibrium. An extra bonus of this approach is that
equilibrium claim holding and production plans are bounded in each period,
so that set of truncated equilibria lie in compact subset of R, This
implies that the sequence of truncated equilibria as T - «» has a
convergent subsequence.

The most productive approach to approximate extensibility is to impose
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conditions which guarantee that every equilibrium is extensible. Suppose
that if short sales constraints are satisfied prior to a certain time T,
when rolled to period T+1 they are satisfied again without trading. For
example, since rates of return are non-negative, this is true if the only
short sales constraints are that non-negative amounts of every claim must
be held in every market. In this case, since passive rolling over of the
portfolio automatically satisfies the budget constraint, budget constraints
are extensible, regardless of prices. The case of non-negativity
restrictions is important in practice: this is the type of restriction in
the Bewley money model, for example.

The condition requiring the feasibility of rolling over the portfolio
can be weakened if a priori bounds on relative prices can be established.
Suppose, for example, that there are two consumption goods, food and
shelter. Suppose that bonds pay off in food only, and consider an agent
whose endowment consists only of shelter, not food. If this individual
sells bonds short;‘he must trade in order to have non-negative food
holdings in the next period. If we can establish a priori using the
marginal conditions for food and shelter a equilibrium bound on the
relative price of food to shelter, the agent is guaranteed that he can
trade his shelter for a minimal amount of food, and use this to support
short sales of bonds. 1In this case also, the budget constraint, at

equilibrium prices, will be extensible.
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