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Abstract

Rothschild and Stiglitz (1976) showed in their insurance market model
(R-S model) that imperfect asymmetrically distributed information can imply
non-existence of Nash equilibria. We supplement their model with market
intransparency (i.e., customers do not know all offers). When no Nash equi-
1ibrium exists in the original R-S model then, under market intransparency,
there emerges a market solution according to which many different contracts,
arranged as to a certain distribution, are offered simultaneously. If there
exists an equilibrium in the original R-S model, the two equilibria coin-
cide. Customers’ welfare is not affected by the degree of market
intransparency. Instead of intransparency, alternative frictions ensure

analogous solutions.



1. Introduction

Imperfect information is playing an increasingly important role in
explaining economic phenomena (see Stigler 1961, Phelps 1970, Akerlof 1970
for early papers). Rothschild and Stiglitz (1976) and Wilson (1977) have
shown in their insurance market model that imperfect information on one side
of the market about the good to be exchanged may imply non-existence of
market solutions.

In these models of Rothschild and Stiglitz and of Wilson (R-S model)
customers with different probabilities of a loss look for insurance con-
tracts. Insurance companies cannot distinguish between these customers, but
customers with different risks have different preferences with respect to
contracts: For an increase of the amount of coverage, high risk customers
accept a higher increase of the premium than low risk customers. Rothschild
and Stiglitz show that, for a high enough proportion of good risks in the
whole population, to every set of cost-covering contracts offered in the
market there can be offered an additional contract which makes positive
profits while, due to the new contract, the old contracts either make losses
or get no customers. In this case a Nash equilibrium does not exist.

In the analysis of a number of other markets these informational
asymmetries raise analogous problems: On credit markets banks can judge the
risks of their customers only imperfectly and the preferences of the
borrowers with respect to the térms of the contract (credit amount and
interest rate) differ with their riskiness (e.g., Jaffee and Russell 1976,
Milde and Riley 1986). On labor markets the principals have the problem of
filtering out the good workers among indistinguishable applicants (e.g.,
Miyazaki 1977, Rosenthal and Weiss 1984). In some cases these existence

problems are formed to an argument for regulation of the concerned industry



(for references see Kunreuther, Kleindorfer and Pauly 1983, and Eisen 1984).
In my view, these models make it evident that our conceptions of a market
with imperfect asymmetrically distributed information are so far not subtle
enough to describe markets consistently.

In this paper we show that a suitable supplementation of the R-S model
by further informational frictions ensures the existence of a market solu-
tion. For this we take into account that for customers the market is
intransparent: Every customer knows only a small random fraction of the
contracts offered and chooses only within this subset. In view of the
extremely small market transparency of real insurance markets this is a
sensible abstraction.

If no Nash equilibrium exists in the original R-S model, then under
market intransparency there exists an Epsilon-Nash equilibrium in pure
strategies. That is, if the contracts offered by the firms are arranged
corresponding to a certain canonical distribution then (1) all firms make
zero expected profits and (2) no firm can increase its expected profit
over a certain positive boundary e by changing its offer while all compet-
ing firms stick to theirs. This upper boundary e converges to zero if the
size of the customer population grows to infinity while the publicity level
of firms, that is the expected number of customers informed about a given
offer, is kept constant. Thus, if firms incur small but positive switching
costs each time they vary their offer and the customer population is large
enough, then the canonical distribution forms a Nash equilibrium. If the
customer population is not large enough then there always remain small
incentives for firms to change their offers. However, large deviations of
the actual distribution from the canonical distribution imply profit

possibilities the exploitation of which reduces the deviation and, thus,



stabilizes the offer distribution. If there exists a Nash equilibrium in
the original R-S model without market intransparency, it retains its
equilibrium property when market intransparency is introduced.

The publicity level of firms has no effect on customers’ welfare. If
this level increases and each customer can choose among more firms, then the
offer distribution of firms adapts such that the distribution of sales
remains unchanged.

Instead of market intransparency, alternative frictions can be employed
to ensure market solutions with analogous structures. We consider hetero-
geneity among firm-specific characteristics of offers -- e.g., with respect
to the location of a firm's offices or special terms of the contract fitting
to the needs of some consumer groups -- and preferences of customers which
get influenced by these characteristics non-uniformly. If there is enough
heterogeneity of this kind then the same canonical distribution leads to an
Epsilon-Nash equilibrium, respectively to a Nash equilibrium in case of
positive switching costs.

If none of these frictions is big enough to ensure the existence of a
Nash equilibrium then the market will establish an alternative form in which
firms allocate different offers to different customers randomly. In the
extreme case, if firms can vary their offer without cost either over custom-
ers or quickly through time but cannot observe current offers made to a
specific customer by competitors, then there exists a unique mixed-strategy
pooling Nash equilibrium.

To ensure a market solution in the R-S model, alternative equilibrium
concepts have been proposed, see Wilson (1977), Miyazaki (1977), Grossman
(1979), and Riley (1979). However, as is shown in Zink (1985), each of

these concepts becomes implausible if one takes into account that the market



share of each firm always remains a small fraction of the whole market.
Another solution was proposed by Dasgupta and Maskin (1986) who proved the
existence of mixed-strategy equilibria in games which contain the R-S model
as a special case. Rosenthal and Weiss (1984) constructed such a mixed-
strategy equilibrium for the case of linearized indifference curves. The
structure éf this equilibrium turns out to be similar to our mixed-strategy
equilibrium, however, we offer an alternative interpretation of mixed-
strategy equilibria.

In the present paper, for simplicity, we assume that every firm offers
one contract only. In this case, for the existence of an Epsilon-Nash
equilibrium, we have to assume a suitably bounded risk aversion of the
customers. For the general case of arbitrary many different contracts per
firm a similar market solution emerges but no such assumption on the risk
aversion is required (Zink 1985).1

This paper is organized according to the following plan. In Section 2
we describe the assumptions of the model. Section 3 analyzes how the expec-
ted profit of a firm depends on the choice of its own contract and on the
offers of competing firms. In Section 4 market solutions are constructed
both for the case where the R-S model leads to an equilibrium and.for the
case where it predicts market solutions to fail. The Epsilon-Nash
equilibrium property is proved in Section 5 and Appendices A-E. Subsequent
sections deal with the stability of the offer distribution (Section 6),
mixed-strategy equilibria (Section 7), heterogeneity of contracts and
preferences (Section 8), welfare effects of market intransparency (Section

9), and real insurance markets (Section 10). Section (11) gives a summary.

Footnotes are listed in the Appendix.



2. The Assumptions of the Model
o

We consider individuals whose wealth Wl > 0 reduces in case of
accident to Wg (= W; - d2=0 and insurance companies who offer insurance
contracts at a premium oy guaranteeing to pay the amount v if a loss
occurs. A contract, therefore, is described as an ordered pair (Wl’w2)
where Wl - W; Y is the net wealth of the policyholder in case of no

accident and W2 - W; -d - al + Vv = Wg + a2 is his net wealth in case of

accident. Without a contract all customers face the same (W;,W;). (See

Figure 1.)
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FIGURE 1

We assume that there are two groups of individuals (risk classes): 1low
risk customers have a loss probability of pg and high risks of ps where
0 < pg < ps < 1. Among the offered contracts known to him let every custo-

mer choose the contract which gives him highest expected utility,

(1) U W) = T V(W) + (L-pOV(H), X € (8,8,



where x describes the risk class of the customer and V 1is a usual
utility function with continuous derivatives V' >0, V"< 0, implying
risk aversion. For simplicity, we complete this preference ordering by
assuming that each customer prefers among two contracts with the same
expected utility that one with the higher coverage v.2 If a customer has
to choose between contracts with the same parameters but of different
companies, let each contract have the same probability of being bought. We
assume that in each period t, t € N := (1,2,...}, k new customers buy
contracts for their whole lifetime, k € N, among them being an expected
number of Qg > 0 1low risks and an expected number of Qs > 0 high risks.3
We denote q := Qg/Qs as market quality proportion.

Let there be infinitely (but countably) many firms i, i € N, each of
which offers one contract P = (Wl,Wz) with Wi 2 Wl = W2 = Wg. At the
beginning of each period each firm decides whether to offer the same con-
tract as in the previous period or to change its offer. 1Its objective is to
maximize its expected profit from the present period, ER(P), 1in competi-
tion with other firms.a, The occurrences of accidents are stochastically
independent. 1If a firm offers a contract P = (Wl,Wz) and sells to a mean
number of EQg low risks and EQs high risks then its expected profit is

given by
(2) ER(P) = EQB[(1-p)a; - PBa,] + EQP[(1-PV)ey - P'a,]

o
where a, = Wl - Wl

which the firm is paying to the policyholder in case of accident. We assume

is the premium and a, = W2 - Wg the net amount
that firms are unable to distinguish between customers of different risk
classes and, therefore, have to accept all risks which apply for their con-

tract; in this respect information is asymmetrically distributed.



To incorporate market intransparency into this model, which is so far
essentially identical to the R-S model, we assume that each customer knows
the offer of a given firm with a probability =« with 0 <= <1 where
these informational relations are stochastically independent. We denote =«
as the degree of market transparency, and the expected number of customers
informed about a given offer as publicity level of firms, p = Krx. The
degree of market transparency = Wwe consider as exogenously given by the
parameters K and p. With growing market size K and constant publicity
level pu the degree of transparency = converges to zero. However, for
any market size, the customers informed about a given offer remain perfectly
mixed among the whole population.

In reality, to know the offer of a given firm involves more than just
being told that the policy terms of this firm are given by (wl’WZ)' As a
preliminary, the customer has to acquire an understanding of the generally
rather complicated clauses and to compare them with other offers. These
obstacles are reasons for market intransparency.

As a further friction we assume that each period a firm varies its
offer, it incurs switching costs 6 = 0. However, unless stated otherwise,

we assume § = 0,

3. The Determination of the Expected Profit of a Firm

In this section we determine how the expected profit ER of a firm
depends on the position of its own offer P and on the position of the
offers of the competing firms.

3.1 First we analyze the preferences of the customers. Although we
have completed the preference ordering, we denote each set of contracts with

equal expected utility as indifference curve. According to (1), indiffer-



ence curves have slopes

2 1-p* V' (¥y)

) Eﬁ; N T Tk Vi@,
du*=0 P

X € (g,s)}.

Thus, in every offer point (wl,wz) each indifference curve is downward
sloping and, due to the risk aversion, it is the steeper, the higher W2
and the smaller Wl. For low risks it is steeper than for high risks; for

an increase of the indemnity v, high risks are willing to pay a higher

price than low risks (see Figure 2).
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FIGURE 2

3.2 Now we calculate the risk composition of a firm's clientele.
A discrete offer distribution is defined as a mapping which assigns to
each firm i1 € N an offer P, in the offer space A := ((W,W,): Wi 2 W, =z

W2 > WZ}. Alternatively, we describe a discrete offer distribution by the



set function H which assigns to each A’ C A the number of firms offering
in A', H(A') :=#(1 e N: P, €A’).

Firms, which offer in (wi,wg), always make zero profits. They are
called inactive. All other firms are called active.

If a given firm j offers a contract P € A and the distribution of
all other active firms is equal to H, then the expected number of new type
X customers, x € (g,s), buying from firm j is denoted by E[Qx(P)|H].

We define the quality proportion of this firm as
(4) a(e|H) := E[QB(P) [H]/E(Q(P) |H]

provided there is demand for firm j, i.e., E[QB(P)[H] + E[Q%(P)|H] > O.
The quality proportion attains values in [0,«]. |

Suppose, besides firm j there are m-1 firms, m€ N, offering in
P from the distribution H. Then, a customer of risk class x, X € {g,s),
buys the contract P if he knows at least one of the m offers in P but

no offer which he would prefer to P. There are
(5) eX(P|H) := H((P' € A: [UF(P') > U"(P)] or
[U(B') = UX(P) and W,(P') > Wy(®)])

firms which he would prefer to P. Thus, since all informational relations
are stochastically independent and each of the m firms in P has the same
chance to be chosen, the expected number of type X customers of firm j

is given by

, X
(6) BIE® 1] = & L (1--m®) @-mf EIW.

Hence, with the short-hand

7 p = -1n(l-n) > 0,
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the quality proportion of firm j is

5 &
(8) q(PIH) - aep[g (PIH)'€ (PIH)]

as long as there is demand for firm j so that (8) is well-defined.

Equation (8) can be interpreted graphically. The term [£s-£g]
describes the difference of the hatched areas in Figure 2 weighted accord-
ingly to H. Firms in the vertically hatched area are preferred against P
only by low risks and, thus, contribute to a worsening of the quality pro-
portion in P. Firms in the horizontally hatched area are preferred against
P only by high risks and, therefore, improve the quality proportion in P.
Firms in the punctuated area are preferred against P by both risk groups
and, hence, have no influence on the risk composition in P.

3.3 The expected profit of a firm also depends on the position of its
own offer in the offer space. As fair odds value B(P) of a contract P
we define that quality proportion q which implies expected profits of zero
for a firm offering in P (if such a quality proportion exists in [0,x]).

According to (2), the fair odds value of any contract P is given by:

s ]
(1'P )al'p 02

(1'Pg)a1'pgaz

(9 B(R) = -

where (al,az) are the transformed coordinates of P according to Figure

1, provided pB(P) € [0,»]. All points with the same fair odds value B’

form a straight and decreasing line in A running through (Wi,wg). We
call it the B'-fair odds line or (f=f'}. It has the slope

P
(10) = -

M ag-0 P
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where pﬂ 1= pgﬁ'/(1+ﬁ') + ps/(1+ﬁ') denotes the mean loss probability for

FIGURE 3

For all discrete distributions H the expected profit of a firm, which
offers in P additionally to H, can be estimated using the quality

proportion and the fair odds value,
> >
(11) E[R(P)[H] 2 0 <=> q(P[H) Z A(P)

provided there is demand in P and B(P) € [0,»]. Thus, a contract P,
which is demanded with a quality proportion pB', makes positive expected

profits if P 1lies below the g'-fair odds line and negative expected
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profits if P 1lies above.

4. The Construction of Market Solutions

4.1 To construct a market solution we first define some $pecia1
contracts in the offer space in correspondence to Figure 3. Let A be that
contract on the high risk fair odds line, ({f=0}), which gives maximum
expected utility to high risks. A comparison of (3) and (10) shows that A
lies on the 45° line; at fair premiums customers prefer their wealth to be
without uncertainty. Let B 1lie in the intersection of the low risk fair
odds line, {B==»)}, and the indifference curve of high risks through A,
ﬁs(A). Let C be that contract on the market fair odds line, {f=q},
which gives maximum expected utility to low risks. Because of (3) and (10)
C lies below the 45° line. If the market quality proportion q is so high
that the indifference curve of low risks through B, ﬁg(B), intersects the
market fair odds line, we denote this intersection by D. If it exists, D
lies to the right of C.

If no intersection point D exists then, in the original R-S model
without market intransparency, the contracts iA,B) form a Nash equilibrium
(where it is assumed that at least two firms offer in B): Both firms make
zero expected profits, since low risk customers buy contract B and high
risks prefer contract A. No firm can gain positive profits by a variation
of its offer, since any single deviating firm, which wanted to attract both
risk types, had to place its offer above or on the low risk indifference
curve ﬁg(B) and, thu;, above or on the market fair odds line. But there,

its quality proportion of q would imply losses.

In Appendix A we show that the introduction of market intransparency

does not violate the equilibrium property of this separating market solution
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{A,B}. For simplicity, though, we assume that both in A and B there are
offers of infinitely many firms. This implies that each customer knows at
least one offer in A and one in B. Hence, all high risks buy in A and
all low risks in B as in the case of no intransparency. Again, no firm
can gain positive profits by varying its offer, since any firm which could
attract both risk types had to place its offer above or on the market fair
odds line. Then it would receive a quality proportion of q which implies
losses there.

In the remaining part of the paper we always assume q to be so high
that an intersection point D does exist. In this case the R-S assumption
of perfectly informed customers would prevent the existence of Nash or
Epsilon-Nash equilibria: Pooling contracts like C" in Figure 3 (with
B(C") < q and Ug(C") > Ug(B)) could profitably éttract away all customers
from (A,B). Contracts like G’ (with UB(C') > U8(C) and US(C') <
US(C)) could profitably attract away exclusively low risks from the pooling
equilibrium candidate C. However, we will show that in this case the
introduction of market intransparency ensures the existence of a market
solution.

4.2 We give now a brief preview of this market solution. An
endogenously determined finite number of firms will offer contracts simul-
taneously in the interval [C,D] while the remaining firms offer in (A,B}.
In [C,D] each firm receives a positive expected number of customers and
makes zero profits because its quality proportion equals q. If for some G €
[C,D] the offer of a firm moves to the right along the indifference curve
ﬁg(G) then its expected number of low risk customers remains constant.

However, its expected number of high risks decreases, and it decreases the

more, the larger the number of firms offering in the neighborhood of G.
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Thus, a canonical continuous density of firms in [C,D] will be determined
by the requirement that both the quality proportion and the fair odds value
of a contract increase with the same rate if this contract moves away from
G. We will show that each single firm can gain at most marginal profits by
varying its offer if the contracts are arranged approximately to this dens-
ity. Such discrete distributions, thus, will form Epsilon-Nash equilibria.

Before constructing these market solutions we make precise the notion

of an Epsilon-Nash equilibrium.

Definition: A sequence of offer distributions (H;);=1 is denoted as

Epsilon-Nash equilibrium if for any profit boundary e > 0 there exists a

market size K+(e,p) < o such that for any population of customers K =

K+(e,p) and a distribution of active firms equal to H; we have:

(1) The expected profit of each active firm is zero.

(ii) If a firm i (previously active or jnactive) varies its offer and all
other firms stick to their contracts then the expected profit of firm
i remains smaller than e and its expected per customer profit

remains below ¢€/pu. Fkok

We now construct discrete offer distributions H which we will prove
to form Epsilon-Nash equilibria in the next section. For any two points
G,S from the interval [C,D] on the market fair odds line let Wor Vg be

their Wl-coordinates. For any nonnegative, integrable function h on
[wC,wD] and any number £ € [0,»] let D(h,2) be the set of all discrete

distributions H on A with the following properties:

w
(12) l1cte, s - f° hwaw| =< 2
G
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for all subintervals [w,wg] € [wo,wpl, H((A)) = H({B)) = «», and H({A')})

- 0 for all A’ c A which are disjunct from (A,B) U [C,D]. For any £ €

[1,], each set D(h,£) contains at least one discrete distribution, since
the offers Pl’PZ"" of a discrete distribution H in [C,D] can be
chosen according to the formula fg h dw - 1/2, ii h dw =1 for all
i=1,2,... (see Figure 4). 1If Hle D(h,£), we caizl H a discrete ap-

proximation with respect to the density h and £ its approximation error.

/
H* /)
/
/ (
h*
_ - VVC Wp V.V?
w
wp,  Wp, Wp,Wp,
FIGURE 4

Now we can state the main result of this paper. It determines a unique

function T such that discrete approximations with respect to I'/p form an

Epsilon-Nash equilibrium.
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Proposition 1: Let the market quality proportion q be so high that there
exists an intersection point D. Let the risk aversion of customers be
bounded from above by inequality (C5) in Appendix C. Then there exists a

nonnegative integrable function T on (w such that for any approxi-

c*¥p!
mation error £ = 1 each sequence of discrete distributions (H;);_l with
H; e D(T/p,2), p = -1n(1-p/K), K € N, 1is an Epsilon-Nash equilibrium.®
Except for sets of measure zero, the function I 1is uniquely determined by
the above property.7 I' is presented in Lemma 1, equation (15). The set

D(T'/p,2) we denote as canonical set with respect to the approximation error

2; each element of it is called canonical discrete distribution. K%

If we take into account positive switching costs ¢, then the above

Epsilon-Nash equilibria become Nash equilibria.

Corollary 1: Let the assumptions of Proposition 1 hold true. If each firm
incurs positive switching costs # each time it changes its offer, then
there exists a market size K++(p,0,£) < ®» and a publicity level of firms
4 7T(K,0,8) >0 with the following property: if (i) K=K ' or p=p
| and (ii) all firms are distributed according to a canonical discrete
distribution H; € D(T'/p,2), then all firms make zero profits and no firm
has an incentive to change its offer. K™ increases in p and decreases

in 6, p++ increases in K and §. *kk

Proof o orolla 1: According to Proposition 1 we can choose K++(u,0,£)
such that the maximal expected profit per period under any discrete distri-
bution H; € D(I'/p,2) with K 2= K'' is smaller than the switching costs

. Thus, no firm has an incentive to change its offer.
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From the estimation of the maximal expected profits in the proof of
Proposition 1, (22), we will see that an analogous argument holds true for
++
p. From (22) we will also see how K++ is influenced by (u,0), and p

by (K,0). sk

5. The Proof of Proposition 1

5.1 Let h be any nonnegative, integrable function on [wc,wD], 2 e
[L,») and H € D(h,£). Let all firms be distributed according to H.
First, we prove that then each firm in [C,D] receives a positive expected
number of customers and all firms make zero expected profits. The proof
uses Figure 3.

We have already seen that contracts in A are only demanded by high
risks and contracts in B only by low risks. Thus, both of them make zero
expected profits.

Contracts in [C,D] are put in the same preference ordering by both
risk classes because in all points of (C,D) the indifference curves of
both risk classes are flatter than the market fair odds line. Thus, for any
contract P € [C,D] the number of contracts from H with a higher expected
utility level than P is finite and the same for both risk classés,
H([C,P)). Any two customers of different risk classes buy contract P with
the same positive probability. Hence, the expected number of customers in
P 1is positive and the quality proportion equals that of the total popula-
tion, q. On the market fair odds line this implies zero expected profits.
This result follows also from equation (8) since £S(P|H) - §g(P|H).

5.2 To prove that for any market size K no firm from H; can gain

more than marginal profits by choosing another offer, we utilize general

offer distributions.
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As general offer distribution H we denote any nonnegative o-additive
function on the set of Borel-measurable subsets A" of A.s H(A') can be
interpreted as the number of firms offering in A’', however, it is not
restricted to natural numbers as is the case for discrete distributions.
Every discrete distribution is also a general distribution.

For any nonnegative, integrable function h on [wc,wD , £ € [1,o)
let ﬁ(h,ﬂ) be the set of all general distributions H on A with the
properties: (i) 1inequality (12) holds for all subsets [wG,wS] C [WC,WD],
(i1) H({(A)) = H({B}) = =, (iii) H({A'}) = 0 for all subsets A’ C A
which are disjunct to {A,B) U [C,D]. ﬁ(h,l) contains D(h,%). B(O,w)
contains all (general) distributions H with support (A,B) U [C,D] and
H({A}) = H({B)) = o, ﬁ(h,O) contains exactly one distribution and on
[C,D] this has a density which coincides with h almost everywhere.

We will show in Lemma 1 that for each K € N there exists a unique

* ~
general distribution HK € D(0,«) such that, if all firms are distributed

*
according to HK’ an additional firm would make zero expected profits on

*

K and negative profits with any other contract demanded by

the support of H
customers. The result of Proposition 2 then follows for discrete approxima-
tions of H;.

First, we introduce another representation of offer points.
Corresponding to Figure 3, let A be the set bounded by the indifference
curves UB(C), U°(c), 08(B), and U°(D), the (p=w}-fair odds line and the
bisector (W;=W,), that is A:= (P € A: UB(C) = UB(P) = UB(D), U°(C) = US(P)
> US(D), 0 < B(P) < w}. All points P € A we now describe by their indif-
ference curves ﬁg(P), ﬁS(P): According to Figure 5, for each two points G
and S of the interval [C,D] with abscissa-values Ve and wg we define

point P = P(G,S) = P(WG,WS) as the intersection of the indifference curves
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#8(G) and US(S). The first argument in P(+,*), therefore, fixes the
intersection of the ﬁg(P)-curve with the market fair odds line and the
second argument fixes the intersection of the ﬁs(P)-curve with the market
fair odds line. P(G,S) 1lies to the righthand side of {ﬂ-i} if Vo < Vg

and to the lefthand side if wG > ws.

Wy {B:ﬁ}c {B=cg

Now we extend our definition of the quality proportion to general
distributions in ﬁ(O,m). For any H € B(O,w) and any P(G,S) € 3 we
define

qe? HUC,SD-H(C.CI)  y¢ gpy 2 §

(13) q(P(G,S) |H) :=
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which coincides with (8) if H is discrete. If H € ﬁ(h,O) then we have

] pfz h dw.
(14) q(P(G,S)|H) = qe

This definition can be interpreted in the following way. For points P
on the righthand side of the market fair odds line, the integral fg h dw
describes the number of firms which are preferred against P by high risks,
but not by low risks. Therefore, the quality proportion in P 1is greater
than or equal to that of the population, q, and it is the better the
higher the density in the interval (G,S). For points on the lefthand side
of the market fair odds line the integral f: h dw 1is negative because of
W < W The absolute value of the integral describes the number of firms
preferred against P by low, but not by high risks.

Now we can state our basic Lemma 1 which will also be used for the

analysis of alternative models with other frictions than market intrans-

parency (e.g., in Section 7.2).

Lemma 1: For all w, € [wc,wD] let

c
(15) F(w.) = S In B(P(w.,w.))
- e T v | L c¢'Vs
e
and
‘ * 1
(16) he(ug) =3 D), p = -In(l-m) = -In(1-p/K).

Let the risk aversion of customers be bounded from above by inequality (C5)
in Appendix C. Then, for any general distribution H € ﬁ(O,w) the quality

proportion q{P(G,S)|H) fulfills
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= B(P(G,S)) for G =S5
(17) q(P(G,S) |H)
B(P(G,S)) for G = S

A ~ %
for all points P(G,S) € A 1if and only if H € D(hK,O). The unique element
-~ % *
in D(hK,O) we denote as the canonical continuous distribution HK.9 The
* .
quality proportion q(P(G,S)lHK) is independent of the market size K and

of the publicity level of firms p.lo L

Lemma 1 states that any distribution with support ({A,B} U [C,D]
fulfills condition (17) if and only if on [C,D] it has no atoms and is
given there by the density h;.

Before we prove Lemma 1 we make plausible that T 1is of the form
depicted in Figure 4. We do not, however, use this argument in any of the
following proofs. In C a marginal shift of a contract along the ﬁg(C)-
curve, dP(wC,wS)/dws, results in a marginal fair odds value change of zero
since the market fair odds line is tangent here. Hence, T 1is zero in C.
In other points G of [C,D] such a marginal shift causes a marginal B-
shift of positive proportion. The higher the abscissa L of G, the more
closely packed are the fair odds lines and thé flatter are the indifference
curves there. Thus, if G 1is approaching (wi,wg), the marginal shifts

along ﬁg(G) result in increasing and, in the limit, infinite increments of

the logarithmed fair odds values.

Proof of Lemma 1:

1. In Appendix B we show that any H € ﬁ(O,w) which fulfills (17) is
absolutely continuous on [C,D] with a density given by (16). Here we show

the same result in an easier way under the assumption that H has a

continuous density on [C,D].
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Condition (17) requires for any point G € (C,D) that, if a contract
P 1is moved along ﬁg(G) to the right, then the corresponding proportions
q(P|H)/ﬁ(P) reach a local maximum at G. Since we assumed the existence of
a continuous density of H, both q(P!H) and B(P) are continuously

differentiable in the interior of A. Thus, the local maximum implies

(18) - 1n q(P(G,S)|H) = =% In B(P(G,S))
dWS W, =W dws W_=W
s~ s~

for all G € [C,D]. Straightforward differentiation of 1n q(P(G,S)IH)
according to (14) yields ph =T and, hence, (16).

2. Now we show that q(P(G,S)IH;) fulfills (17) for all P(G,S) € A
and is independent of K and u.

We know from (14) that

} fs I dw
(19) a(P(6,9) ) = G ©

Thus, it is independent of K and u. For G =S it is equal to q=
B(P(G,S)). The property q(P(G,S)lH;) < B(P(G,S)) for G = S 1is proven
rigorously in Appendix C. However, in the following we make plausible by
means of Figure 6 why this property holds true without requiring any
restrictions on the risk aversion of customers.

For the purpose of this heuristic argument we assume that h; =T/p
for all points on the market fair odds line in A; this does not change the
quality proportion for points P in A. For each G € (C,D) we compare
the growth rates of the quality proportions for movements along ﬁg(G),
d[1ln q(P(wG,wS)IH;)]/de, with the corresponding growth rates of the fair
odds values, dfln ﬂ(P(wG,wS))]/de. The B-growth rates are monotonically

increasing in w in the tangency point TG they are zero, and in PG

S’
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FIGURE 6

they reach infinity. The g-growth rates are also monotonically increasing.
However, they remain positive and bounded. Therefore, the difference
between both rates, 7 :=d ln q/dws -dln ﬁ/dws, has to be positive in

TG’ negative in PG’ and continuous everywhere. Thus, it must be zero in
*
at least one point. We know already that, due to the definition of hK and

(17), the difference is zero in G. The existence of more than one zero
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point is at least not immediately plausible. Under the assumption that
there is only one zero point, the difference is positive on the lefthand
side of G and negative on the righthand side. Hence, the fair odds value

is larger than the quality proportion on both sides of G on ﬁg(G). *kk

5.3 Now we proceed with the proof of Proposition 1. Using Lemma 1, we
show that the maximal expected profits from changing an offer converge to
zero if the market size K increases to infinity. Let H; be a (canonical
discrete) distribution from the canonical set ﬁ(h;,,ﬂ) for some Ke N, 2=
1. Let all firms be distributed according to H;.

First, we analyze the profit possibilities of a firm which in the
previous period was inactive or had an offer in (A,B}. Suppose, in the
current period it offers in P(G,S) € ﬁ. We make use of the following three

relations: From (8), or (13), we know
(20) q(P(G,S)]H;) - gePH((G.S])

where in case of Ve > wg e define H((G,S]) := -H([S,G)). From Lemma 1

we use the inequality

S . *
} el h,dw
(21) a(B(e,8)|H) =G © X < B(R(G,SN.

From the definition of the fair odds value and the abbreviation cx (=
(1-px)a1 - pxaz, x € (g,s}), we get ER = EQgcg + EQscs, B = -cs/cg, and

0 < -c° < psv. Now, the expected profit can be estimated as

(22) E[R(P(G,S)) |Hy] = EQ® B + EQ® c°
.o racelE . racelE
= -c¢~ EQ TP)— -l =spwvp |—m— -1

*
q(P|Hy)
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+ s  *
p[H ((G,8])-[ h,dw]
< pSvu [e & ¢ kM 1] < pSvu [P2-1].

For the expected profit divided by the expected number of customers we get
analogously

E[R(B(G,S)) |Hy] o [aCRHD)

< -c%|—=
E(QB(P) K] + E[Q8(P) |Hy) AEE)

(23) - 1] < pSviet 1.

If a firm i changes its offer from [C,D] to some P(G,S) € A then
the distribution describing firm 1i's competitors is no longer H; but
some other discrete distribution, H;,-i’ which now lies in ﬁ(h;,£+1).
Thus, the same boundaries as in (22) and (23) remain valid if £ is
replaced by A+1.

The expected profits from offer variations in A, thus, converge to
zero if p = -1n (1-p/K) 1is sent to zero. In Appendix D we show that the
same boundaries are valid if a firm moves its offer to some P ¢ A.

The uniqueness of T we provide in Appendix E. FkK

6. The Stability of the Offer Distribution

6.1 The profit possibilities which remain in each period with zero
switching costs under a discrete distribution H; € ﬁ(r/p,l) are
illustrated in Figure 7.

Let Pn-l’ Pn, Pn+1 be three neighboring offer points from H;. The
firm offering in Pn could increase its profits by increasing its premium.
As long as its new offer remains in the triangle (Pn_l,Pn+1,P’) its qual-

ity proportion remains constant and the decrease of its fair odds value

results in positive expected profits.
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FIGURE 7

Any firm previously offering A or B could make profits with a
contract like P" or P"'. In P" its quality proportion is q ﬁhile its
fair odds value is smaller than ¢q. In P"' the quality proportion is
higher than q since high risks can get attracted away by one more firm
than low risks. The fair odds value of P"', however, can be chosen arbit-
rary near to q. This case corresponds to the instability argument of
Rothschild and Stiglitz. But in contrast to their model, market intranspar-
ency ensures that the firm in P"' attracts some high risk customers as
well as low risks.

In all three cases, the profit possibilities are the smaller the

greater the market size K. An increase in K increases the canonical

discrete densities and, therefore, the distance between neighboring firms
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, P This pushes P’ and P" nearer to the market fair odds

Pn-l’ Pn nt+l’

line. 1In the case of P"' a decrease of = reduces the filtering function
of the offer Pn to attract away high risks from P"'.

6.2 Both, exogenous disturbances and the exploitation of the small
profit possibilities which remain in canonical discrete distributions, could
magnify deviations of the actual offer distribution from the canonical
continuous distribution H; € ﬁ(h;,O). We will see that these deviations
cause new profit possibilities. The exploitation of these possibilities by
some firms can affect the quality proportions of other firms and, thus,
result in further reactions. Although we do not analyze this adaptation
process explicitly we show why large deviations of the actual distribution
from H; are corrected in the course of this process.

A deviation of the actual offer distribution which leads to an
additional offer P sufficiently far away from the [C,D]-interval, but
which leaves the distribution on [C,D] wunchanged, will experience an
immediate correction since P will suffer losses. A deviation which only
affects the offer distribution within [C,D], however, will not receive a
direct correction since the profits of all firms remain zero. For simplic-
ity, in the following we only consider the impacts of such disturbances and
we assume that the actual offer distribution H in [C,D] 1is absolutely
continuous and has a piecewise continuous density ﬁ there, ﬁ € ﬁ(ﬁ,O).

First we analyze the profit possibilities given under ﬁ, E[R(P)lﬁ].

Proposition 2.1: If for some interval (w',w") C [wC,wD] we have ﬁ(w)
% A

(z) hK(w) for all w € (w',w") then profit possibilities, E[R(P(G,S)|H]

> 0, exist for some points P(G,S) € A with Vo and Vg € (w',w") and

B(P(G,S)) tz) q. Fkk
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Proof: Let G be any contract in [C,D] with w' < Ve < w". Then q(GIH)
= B(G). From (1l4) and (15) we get

(26) = In q(B(vg,vg) [H) - Eg; In B(P(vg.¥g))

S
Wg=Wa We=Wa

- plhewy) - h .

Thus, in case of (ﬁ - h;)l(w > 0 a marginal shift of the contract

’ 'w")
from G along ﬁg(G) to the right side will increase the quality propor-
tion more than the fair odds value and, therefore, result in positive
expected profits. In case of [ﬁ(w) - h;(w)]|(w, w") < 0 the difference in

(24) is negative and a marginal shift of the contract from G along ﬁg(G)

to the left will increase its expected profits. *k

Now we show that the exploitation of profit possibilities at points
P(G,S) € A with G » S will lead to a partial correction of the actual

A

distribution H.

Proposition 2.2: Suppose E[R(P(G,S))lﬁ] > 0 for some P(G,S) € A with
G » S. Then, in case of B(P(G,S)) > i the interval (G,S) is overcrow-
ded, i.e., fg (ﬁ-h;)dw > 0, and additional offers in P(G,S) imply losses
for offers in P' € (G,S). 1In case of B(P(G,S)) < q the interval (S,G)
is underloaded, 1i.e., fg (ﬁ-h;)dw < 0, and additional offers in P(G,S)

imply positive profits for offers in P" € (8,6). Rkt

A A *
Proof: E[R(P(G,S))|H] > 0 implies q(P(G,S)|H) > q(P(G,S)|H,) and, thus,
due to (14), fz ﬁ dw > fz h; dw. In case of B(P(G,S)) > i we have Vg <

ws and, hence, the interval (G,S) is overcrowded. In case of B(P(G,S))

< ﬁ we have wS < wG and the interval (S,G) is undercrowded.



29

Let m firms offer in P(G,S) in addition to H. If B(P(G,S)) > q
then the quality proportion for any contract P’ € (G,S) 1is given by
q(P'Iﬁ,P(G,S)) -qe™< g implying losses there. If B(P(G,S)) < q then
the quality proportion for any contract P" € (§,G) 1is given by

q(P"Iﬁ,P(G,S)) = q¢™ > q implying profits. : Fekk

Proposition 3 shows that overcrowded intervals (w',w") C [wC,wD] with
ﬁ(w) > h;(w) for all w e (w',w") cause profit possibilities, the exploi-
tation of which implies losses for all firms within some subinterval
(WG,WS) € (w’',w"). Thus, these firms have an incentive to vary their offer.
If some of them leave (w',w"), then the deviation measured as lf:T(ﬁ-

h;) dw|, decreases. Undercrowded intervals (w',w") C [wC,wD] with

ﬁ(w) < h;(w) for all w € (w',w") cause profit possibilities, the
exploitation of which implies profits for all firms located in some
subinterval (wG,wS) c (w',w"). Firms in A and B, and possibly others,
have an incentive to move their contract to this subinterval which, again,
would reduce the deviation.

6.3 We have not analyzed the adaptation process explicitly. 1In
particular, this would require assumptions about the speed with which firms
switch their offers in order to exploit profit possibilities, respectively
to avoid losses. In reality, a calculation of the profitability of an offer
variation has to take into account uncertainties concerning the behavior of
competitors and customers, costs of acquiring information to reduce these
uncertainties, and switching costs. Together with the analysis in Section
6.2 this suggests that the probability, respectively the expected speed with

which firms react to profit differentials is the greater, the larger these

differentials are. Thus, smaller deviations are not corrected quickly, but
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with increasing deviations, correcting reactions will set in with increasing
vigor.

Therefore, the performance of the market depends critically on the
market size K, the publicity level of firms pu, and the switching costs
§ which determine the magnitude of the profit possibilities remaining under
canonical discrete distributions.

If the parameters K, 1/u and 4 are high enough (for given
approximation error £ = 1), then according to Corollary 1, any canonical
discrete distribution H; € ﬁ(h;,l) forms a Nash equilibrium in pure
strategies.

If these parameters are small enough then firms will vary their
contracts permanently both to exploit profit possibilities and to avoid a
predictable behavior which would be exploited by competitors and, thus,
cause losses. Ideally, in case of 4 = 0, a mixed strategy equilibrium
will evolve as we shall discuss in Section 7.

If the parameters K, 1/ and § 1lie between these two extremes then
there always remain small though uncertain profit possibilities. The above
arguments suggest that these profit possibilities are exploited reluctantly.
If this results in larger deviations from the canonical continuous distribu-
tion, these deviations are gradually corrected as indicated by Propositions

3.1 and 3.2. The larger the deviations are, the higher is the expected

adjustment speed.

7. Mixed Strategy Equilibria

In this section we present a variation of the market intransparency
model. We take into account that, in some markets, firms change their

offers frequently and unsystematically either over time or over customers,
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and that firms, consequently, are not perfectly informed about the offers
being made by competing firms to a specific customer. We will show that for
every finite (not to small) number of firms there exists a unique mixed-
strategy Nash pooling equilibrium even if customers have perfect information
about all offers.

Let all assumptions of Section 2 be employed with the following
supplementations. The publicity level of firms may be equal to the market
size, i.e., p € (0,K] respectively = € (0,1]. Each customer chooses
among all contracts known to him according to his completed preference
ordering, no customer can wait for the next period to get better offers.
There are M = 2 firms i, i € IM := {1,2,...,M}), M < . In each period
each firm chooses an offer in A without knowing which offers will be
chosen by competing firms.

To keep the model simple, we further assume that there are three
additional firms i, i ¢ IM' which are restricted to offer in (A,B} and
are known with certainty; two of them offer in B, the other in A. This
is denoted as assumption (*). We will show that assumption (¥*) can be
dropped in case of m = 1. These three additional firms make zero expected
profits independently of the strategies of firms i € IM since only low
risks buy in B and only high risks buy in A. We will show that in equi-
librium the maximal expected profit any one of these additional firms could
gain from an unrestricted variation of its offer converges to zero if M
increases to infinity.

Firm i € IM is said tobfollow a pooling-strategy ¢i if ¢i is a

nondecreasing function on [WC,WD] with values in [0,1] and firm i

chooses its offer Pi randomly from the subset [C,D] U {(A,B) such that

the probability of Pi lying in [C,G] c [C,D] 1is given by ¢i(wG). The
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pooling-strategies (¢i)?_l form a (mixed-strategy) Nash equilibrium iff
each firm 1i € IM makes zero expected profits in the support of its
strategy ¢i .and negative expected profits with any other offer which

receives customers with positive probability, provided all other firms j €

IM\{i) offer according to ¢j.

Proposition 3: Let the market quality proportion q be so high that there
exists an intersection point D and let the risk aversion of customers be
bounded from above by inequality (C5) in Appendix C.

The pooling-strategies (¢i)§_1 form a (mixed-strategy) Nash equilibrium if

and only if for all i € IM

w

1 G
" RT Ju, T

C

(25) (W) == (1 - e )

where T is defined in (15).11

Any single additional firm i ¢ IM (including any one of those which were
assumed to offer in (A,B) only) could make positive expected profits if
all firms i € IM offer according to (25). However, the magnitude of these
profit possibilities converges to zero as M grows to infinity.

In case =n = 1 the above remains true if we drop assumption (*) but require
instead that M > 3 and at least one firm i € IM chooses its offer from

[C,D] U {A} and at least two firms i € IM choose their offer from [C,D]

U {B}. Kk

Proof: First, we determine the quality proportions of firms’ clienteles.
If any firm 1i € IM chooses an offer P(G,S) € A with G » S and the
other firms j € IM\{i} offer according to the pooling-strategies ¢j,

then firm i is the only firm offering in P and any given customer of
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risk class x, x € {g,s), buys from firm i with probability

[ n - e )] if A(P) > gq
JELA(L) .
(26) X" (P(G,S)) = 1
I [1 - lim 1r¢j(w)] if B(P) < q
JET\ 1) Wi
where w8 = Vo and w° = L Using the abbreviation
(27) ¢j(W) i= -1n (1-7r¢j(W)).
in case of B(P) > q, firm i's quality proportion is given by
) 1-w¢.(wG)
(28a) TGN IES SR S e ]
jeIM\{i} iv’s
1 1
pl= b Y. (wo) - = z Y. (w.)]
N 1= SNTOIE RSN 5 NS IE
In case of B(P) < q it is equal to
1-lim #g,(w)  plilim = $,(w) - = lim = %, (W]
. witw 3 P wtw jri J wtw,, je=i
(28b) qn g - ge s G
. 1-1lim #=¢, (W)
j=i A/
w?ws

In case of G = S the quality proportion in P(G,S) 1is equal to q since
both risk classes apply the same preference ordering over contracts in
[C,D]. Hence, in this case (28) is valid, too.
The pooling-strategies (¢i)?-1 form a Nash equilibrium if and only if
the quality proportions fulfill
= B(P(G,S)) if 6=S8

(29) 9(P(6,5)[45,5 € [\(1])
| < B(P(G,S)) if G =S
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for all G,S € [C,D] and all i € IM’ since contracts outside of A can be

dealt with in analogy to Section 5, respectively Appendix D. Since the

right side of (28) has the same form as the quality proportions defined in
(13), Lemma 1 can be applied: The quality proportions q(P|¢j,j#i) fulfill

if and ohly if for all w, €

condition (29) for all P € A and i el G

M

(30)

© [+

1.8 wy
z Y. (w,) = (w)dw.
jepay 3¢ Ve "k
Thus, (¢)}i{_1 is a mixed-strategy Nash pooling equilibrium if and only if
(30) holds true on [wc,wD].

Now we show that (30) is equivalent to (25). From (30) and (16) we get

Ve M M
(31) Mfw F'(w)dw = X = ¥ (o) = (M-1) Z . (wp),
c -1 jer\(i) i=1

and from (30) and (31) for all 1i e IM

M 1 wa
(32) P (w) = Z P.(w,) - > Y. (W) = 7 r(w)dw.
i’ jml jve jeIM\{i} jiveG M-1 Ve

This implies (25). On the other hand, straightforward calculation shows
that the strategies (¢i)?_1 from (25) fulfill (30).
If all firms 1 € IM offer according to (25), then the profit

possibilities of an additional firm 1 ¢ IM are given in analogy to (28) by

M
C G B R fE Tna.
(33) qa(B(G,S) |4, ,1€T) = qge - qe

For movements of firm M+l along ﬁg(G)' this implies
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(34) E;iT In q(B(G,S)|4,,1€T,) - ﬁ r(ug) > EST 1n B(P(G,S)).
s

wS-WG S wSng

Thus, firm M+l can make positive profits with contracts, which have
slightly reduced premiums compared with those of firms i € IM. However,
these profit possibilities converge to zero if M grows to infinity since
then q(P|¢i, ie IM) converges to q(Plﬂz) according to (33).

In case =« = 1 we can relax assumption (*) in the way described since
then each customer still knows at least two firms with expected utility US =
US(A) and U® > Ug(B). Thus no firm can gain positive profits by increas-

ing its premium in events in which it would otherwise offer in (A,B}. F*dek

Dasgupta and Maskin (1986) have shown the existence of mixed-strategy
Nash equilibria for a wide class of games which covers in particular the R-S
problem. In a recent paper Rosenthal and Weiss (1984) constructed such a
mixed-strategy Nash equilibrium for a labor market model, which has a struc-
ture analogous to the R-S model but assumes linear indifference curves for
workers. This result is similar to the mixed-strétegy equilibrium derived
in the present paper for the case of perfectly informed customers.

Rosenthal and Weiss point out that their model does not deter entry.

In our model, however, we do estimate the maximal gains from entry and show
that these gains converge to zero if the number of firms increases to
infinity.

Rosenthal and Weiss note that the interpretation of the mixed-strategy
equilibrium as a one-shot game is not appropriate for labor and insurance
markets since randomized strategies require each offer on the one hand side
to be known to all customers and on the other hand side not to be known to

any of the competing firms.
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We offer an alternative interpretation of our mixed-strategy
equilibrium. We identify each new customer with a new shot of the game,
i.e., the number of new customers K per period is ;ssumed to equal 1.
This implies that each firm offers different contracts to different custom-
ers. In Section 10 we show that this presents a sensible description of
many industry insurance markets. When classifying a given (industrial)
insurance object into a rating system, each insurer relies so much on
subjective judgment that competing firms have to view the outcome as random
event. Since all customers get different offers from a given firm, it is
quite difficult for competing firms to get valid information about a parti-

cular offer of the considered firm prior to the ratification of the

contract,

8. Heterogeneity of Contracts and Preferences

In this subsection we describe a further variant of the model where
customers have perfect information about all offers but products and prefer-
ences are heterogeneous. Suitably simplified, this mdoel has the same
formal structure as the market intransparency model.

We apply the same assumptions as listed in Section 2, except that p =
K, i.e., m =1, and the utility maximization is modified in the following
way. Each customer evaluates an offer not only according to the expected
utility calculated from the premium and the amount of insurance. He also
takes into account further firm-specific properties like special terms of
the contract, fitting to the needs of some customer groups, distance to the
insurer's office, the firm's reputation, etc. We assume that each customer

j combines his subjective evaluation of each firm i's specific properties

to a number Z(i,j). The effective utility which customer j from risk
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class x assigns to an offer Pi of firm i 1is then given by

(35) v, = e + 2L D).

This variable contains both the heterogeneity of the insurance
contracts and the heterogeneity of individual preferences. Let each
customer j choose that offer i which gives him highest effective
utility, Ueff(i.j) = U?ff(i,k) for all firms k. Draws are decided by
random.

On real markets, subjective evaluations vary considerably among
customers and firms. Since we do not want to analyze individual evalua-
tions, we assume that (Z(i’j))i-l,Z,...;j-l,K are stochastically
independent and identically distributed random variables. In the present
paper we do not analyze this variant in this generality. Instead, with the
help of a crude simplification, we show the analogy to the market
intransparency model. We assume that for each (i,j):

0 with probability =«
(36) 2(1,) =

o with probability (1l-=)
where o is prohibitively high, a > V(Wi) - Ug(B). Then, each customer
either accepts the offer of a firm or he rejects it completely. Replacing
the events ({(Z(i,j) = 0} and (Z(i,j) = a) by {customer j knows the
offer of firm i) and (customer j does not know the offer of firm i}

we get back the market intransparency model. Thus, all results established

are valid in both variants of the model.

9. Welfare Effects of Market Intransparency

In this section we analyze how the distribution of customers’ expected

utilities is affected by the publicity level of firms, u.
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Let all firms be distributed according to a canonical discrete
distribution H; € ﬁ(h;,l). Any given customer buys a contract in a sub-
interval [C,G] ¢ [C,D] 1if and only if he knows the offer of at least one
firm in [C,G]. Thus, the probability that any given customer succeeds in
buying in the interval [C,G] 1is given by

+
((c,61)
(37) v([C,6][Hy) = 1 - 1-m) ¥

-J¢ Taw ) -pLHF([C,G]) - [ hdw].

=] - e

*
Since le;([C,G]) - fg thw| < pf, which converges to zero if K grows to

infinity, we have

-fG I'dw
(38) Lim v([G,6][H)) =1 - e~ ©

Ko

which is independent of pu, K and n.13

This means that the publicity level of firms, g, has no influence on
the probability distribution of customers’ sales if the market size K con-
verges to infinity, for finite market size its influence is ambiguous and
depends on which discrete offer distribution H; € ﬁ(h;,ﬂ) has emerged.14

This result may seem contra-intuitive. For any fixed offer
distribution, an increase of pu increases the probability v([C,G]) to
find an offer in [C,G]. However, with (suitably) increased pu, the old
offer distribution H;(u) does not form any longer a canonical discrete
distribution (wrt. the initial approximation error £). The new canonical
continqous distribution H; requires a smaller density in (C,D] since
1/p = 1/-1n (1-p/K) has decreased in (16). Although customers know the

offers of a firm now with a higher probability, there are now less firms in
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[C,G] to choose from.

10. Real Insurance Markets

Real insurance markets are quite intransparent for customers. However,
one has to distinguish between industry insurance and household insurance.

While industrial customers have to cover large amounts of risk and are
able to become well-informed about the offers at the market, private house-
holds insure much smaller amounts and, correspondingly, apply smaller means
. to improve their information and understanding. According to an Allensbach-
inquiry (Allensbach 1980), in the German life insurance market, only 28% of
those insured had compared different offers, and only 33% knew that there
were considerable price differentials. This intransparency is aggravated by
the multitude of tariffs, deductibles, stipulations, and obliging services.
Even in the relatively transparent FRG-automobile insurance market, where
contracts are quite uniform due to governmental regulation, there are price
differences up to 31% (Capital, 1981).15

In industrial insurance markets on the other hand, high amounts of
insurance justify high search costs. With expertise, brokers and often in-
house insurance departments, customers gain insight into the market. How-
ever, in classifying the insurance object of ‘a customer into the rating
system of the insurer there always is ample opportunity for subjective judg-
ment. High insurance amounts even justify specific contractual provisions
fitted to the customer's special needs. Thus, premium and other terms of
the contract are not set uniformly by the insurer, but rather are negotiated
individually. Due to short notices, customers have an opportunity to revise
their contract or change their insurer practically at any time. Thereby,

the relations between firms and their customers are not anonymous, each
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insurer knows the mostly few other insurers which compete for the same
customer. Hence, an oligopolistic situation is given. Each insurer reacts
quickly on the actions of its competitors. This causes permanent,
unsystematic variations of the offers. On the one hand this aggravates the
customers’ search problem. On the other hand it prevents firms from
predicting their competitors’' offers. Consequently, large price and profit
differentials emerge in the industry insurance market, and prices and market
shares fluctuate considerably.16

The empirical comparison of insurance markets meets the predictions to
be drawn from our models. Household insurance markets exhibit a low degree
of market transparency and a relatively stable distribution of offers.
These properties are reflected in the market intransparency model with posi-
tive switching costs and a low degree of market transparency. Industry
insurance markets, on the other hand, have a much higher degree of transpar-
ency. With a high degree of transparency, the intransparency model leaves
for each firm considerable profit possibilities, exploitable by offer
variations, and incentives for offer randomization to avoid predictable
behavior. The mixed-strategy Nash pooling equilibrium provides an idealized
description of industry insurance markets since in real markets, too, each
firm reacts quickly on actions of its competitors and the subjective classi-
fication of insurance objects can be viewed as a randomization of

17,18 The higher degree of heterogeneity in industry insurance

offers.
markets can also be interpreted in accordance with our models. With a high
degree of market transparency any firm with a constant offer would be
exposed to losses since it presents profit possibilities to other firms.

Each firm can reduce this risk of being exploited by other firms both by

randomizing its offer or by offering a more specialized product as discussed
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in Section 8.19 This incentive for product specialization is much higher in

industry insurance markets than it is in household insurance markets.

11. Summary

In this paper we showed that special market features like market
intransparency, product and preference heterogeneity, and offer randomiza-
tion can be essential for an understanding of markets.

Each of these features ensures that each firm holds only a small, but
positive market share. Small variations of the terms of any firm’s contract
then cause only small changes of other firms’ market shares and risk compo-
sitions. On the contrary, in the original Rothschild-Stiglitz model, a
marginal variation of the offer of a single firm can lead to a total change
in all other firms' risk compositions. Those discontinuities are reason for
the nonexistence of Nash equilibria in the original model.

If there exists no Nash equilibrium in the original R-S model, then
market intransparency ensures a market solution according to which many
different contracts are offered simultaneously. If the offered contracts
are arranged corresponding to a canonical distribution, then each firm makes
zero expected profits and, by a variation of its offer, no single firm can
gain expected profits above some positive boundary which converges to zero
if the population of customers increases to infinity. Thus, these canonical
discrete distributions form Nash equilibria if each firm incurs small, but
positive switching costs for each variation of its offer and the market size
is large enough.

If the population of customers is too small, then there always remain
small incentives for firms to vary their offer. However, in case of

positive switching costs and imperfect information of firms about their
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profit possibilities the analysis suggests that 'the canonical distribution
is stable. If the actual distribution deviates from the canonical
distribution then the exploitation of profit possibilities leads to a
reduction of the deviation. The greater the deviation, the greater is the
expected speed of a correction.

These local instabilities become more severe if the market size
decreases or the publicity level of firms increases. In the extreme case,
if switching costs are zero, then there exists a mixed-strategy Nash equi-
librium, even if customers are perfectly informed about all offers. The
probability distributions of the mixed-strategies of the firms have a form
related to the canonical distribution.

This corresponds to real insurance markets. In household insurance
markets customers only compare very few offers and, thus, there is a low
degree of transparency. Contracts are offered uniformly to all customers
and are rather constant in time. In industry insurance markets on the other
hand, customers invest high amounts in search for good offers and, thus, the
degree of transparency is much higher. Here, contracts are negotiated
individually. For competing firms the outcomes of these bargains are uncer-
tain. Therefore, whereas the mixed-strategy version of the model depicts
the features of industry insurance markets, the market intransparency model
with positive switching costs provides a good description of household
insurance markets.

In all versions of the presented model, the welfare of customers
remains constant if the publicity level of firms is increased. Indeed,
customers will be informed about more offer then, but the offer density of
the canonical distribution will reduce in response and,thus, there are less

firms with good contracts to choose from.
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1In Zink (1985) we analyze the case of arbitrary many contracts per
firm. There we construct an Epsilon-Nash equilibrium where each firm offers
two contracts. Although this leads to a separation of risks by self-
selection, there are no fair prices. Each firm will make profits with the
offer chosen by good risks, while the offer chosen by bad risks produces a
loss of equal amount. No firm, however, can drop its loss-making contract
since then the other contract would be demanded by both risk types and turn
unprofitable.

2The existence and form of Epsilon-Nash equilibria remains valid if we
refuse to complete the preferenée ordering. As one can see later, the only
difference is that firms, which would otherwise offer in point B (defined
later), then have to offer below the indifference curve ﬁS(B) sufficiently
near to B.

3For simplicity, we assume that once a customer has bought a contract,

he never reenters the market. Otherwise, we would have to consider the
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extent to which customers accumulate information about firms and the extent
to which firms accumulate information about customers.

4Finitely many firms would suffice, too. In that case, the minimal
number, however, would be determined endogenously and depend on the market
size K and the publicity level of firms pu. To keep the model simple, in
that case we would have to assume that there are three firms which are per-
fectly known, two of which offer in A and one of which offers in B
(points A and B are defined later).

5If customers search for offers and they determine an optimal number of
costly search steps in advance (as done by Stigler, 1961), then again each
offer is known with a probability which is the same for all firms. Then,
however, for each customer the knowledge about firms is negatively corre-
lated. If customers search sequentially and make the decision of a further
search step dependent on the outcome of previous steps, then each firm will
be known with a different probability and for each customer, again, the
informational relations to firms are negatively correlated.

However, this negative correlation is no property to be desired in any
case. Especially, if the quality of the goods is not homogeneous and
requires a complex judgment, then the offers are tested simultaneously.

Each customer undertakes activities by which he acquires information grad-
ually and about many firms simultaneously. E.g., customers study consumer
journals, talks to specialists, etc. 1In these cases a positive correlation
between the informational relations seems to be more likely. For
simplicity, in this paper we assume them to be stochastically independent.

Extending our model, we could assume that the probability = increases
with the expected utility it offers. The only consequence would be that the

canonical distribution (defined later) would be of a more complicated and
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more convex form.

6Under any canonical discrete distribution there are infinitely many
firms in A and in B. Thus, the expected number of customers in each of
these firms is zero. We accept this unrealistic feature for the sake of
simplicity. See also Zink (1985) where we assume that offers in A and B
are known with certainty.

7This uniqueness result can be strengthened. Actually, we prove that
the reference distribution on [C,D] with the density T is uniquely
determined by the properties stated in Proposition 1 not only within the set
of absolutely continuous distributions on [C,D], but-also within the set
of all (right-continuous) distributions on [C,D].

8This is the mathematical concept of a measure, although it is not a
probability measure. See Halmos (1956).

*
9One may conjecture that HK is the only (general) distribution H

= B(P) for P € supp H

q(P|H) ]
< B(P) for P € Ao\supp H

where supp H:= (P € A: H(A’) > 0 for all open subsets A’ containing P}

and AO := {P € A: E[QB(P)|H] + E[Q®(P)|H) > 0). However, a rigorous proof

seems to be technically subtle.

10Lemma B in Appendix B implies that we can ease condition (17) to

allow quality proportions to be equal to the respective fair odds values.

11We only claim uniqueness of mixed-strategy Nash equilibria within the

set of pooling-strategy combinations.
12Let me remark that I proved the main properties of the market

intransparency model before I was aware of the paper of Rosenthal and Weiss
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(and before that paper was published).

13The expected number of customers per (additional) firm at G is

givens by

f‘é h.;dw-’ f‘é Tdw

Kx(1l-n) pe (K-) .

14The same result holds true in the mixed-strategy version of the model

developed in Section 7. With the notation introduced there we get:

N
-ﬁfgl‘dw

v([C,G]) =1 - 1 [1-mp. ] =1 - e

jer, i

which is independent of K and u.
15Nevertheless, sales react distinctly on prices. For the FRG
automobile insurance market, Finsinger (1984, p. 110) finds an elasticity of
-12.

16See also Muller-Manske (1969), Farny (1983), and Roper (1978).

17To describe industry insurance markets by mixed-strategy equilibria,
we would drop the assumption that no customer ever reenters the market once
he has bought a contract. Then, in equilibrium customersvwould not accumu-
late information about firms since offers are in permanent variation.
However, one had to consider how firms could learn about the riskiness of
individual customers. If losses occur seldomly enough, though, firms could
not accumulate information about individual customers.

18A mixed-strategy equilibrium can also evolve from deterministic
decision rules if the payoff functions of all players are sufficiently

disturbed and each player can only observe the disturbances of his own

payoff function. This property was first pdblished by Harsanyi (1973).
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19In the simple version of the heterogeneity model an increased
specialization of a firm i would correspond to a reduction of the

probability of {Zij-O) in (36).

PPENDIX A

roposit : Let the market quality proportion q be so small that no
intersection point D exists. Then a discrete distribution H forms a
separating Nash equilibrium if H((A)) = H({B}) = « and H({A'}) = 0 for

any subset A' with ({(A,B} n (A') = ¢. Ak

Proof of Proposition A: Let H fulfill the condition given in Proposition
A. Since each customer knows at least one offer in A and one offer in B,
all low risks buy in B and all high risks in A. Thus, all firms make
zero profits. It remains to be shown that no firm can gain positive |
expected profits by varying its offer. Any contract P = B above or on the
ﬁg(B)-indifference curve but not above the {f=»}-line would be preferred by
both risk groups and, thus, would receive a quality proportion of q. How-
ever, P would make non-positive profits since we assumed that ﬁg(B) lies
above the market fair odds line. Contracts P’ » A below ﬁg(B) are

demanded either by no customers at all or only by high risks in which case

they produce losses. *x%
APPENDIX B
Lemma B: Any distribution H € 5(0,w), which fulfills

= B(P(G,S)) for G =S

(B1) q(P(G,S) |H)
< B(P(G,S)) for G =S

for all points P(G,S) € 3, is absolutely continuous on [C,D] with a
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density given by (16) i

Proof: Let H be an element of ﬁ(O,w) fulfilling (Bl). First, we show
that the absolutely continuous part of H fulfills (16).

For any two points G,S € [C,D], (Bl) and (13) imply
(B2) a(®(G,8) |1y = qe? BUCSD-RUC.EDY o gpg,5)) if wg > w,

(B3) a(B(G,5) |H) = qe? HCICSN-HUC.ENY < gep(e,s)) 1f wg < wg.

Since i - B(P(G,G)) we get from (B2) and (B3)

(B4) 1im BUC.SD - H([C,GD) _ 45, 1 1n B(R(G,S)) - In B(P(G,G))
Vg - W, P W, - W
wS-'wG S G wS-’wG S G
w S>W e : ws>wG
(B5) lim H<[C'Si> - §<IC’G)> > 1in L 1nB(R(G.S)) - in B(P(G,G))
ws+wG S G wsﬁwc P wS G
WS<W fe ‘ WS<WG

Since V 1is continuously differentiable, A(P(G,S)) 1is continuously
differentiable in (P € A: B(P) < »). Thus the limits on the right hand
sides of (B4) and (B5) coincide. Since any distribution function is
differentiable almost everywhere (wrt. the Lebesgue measure; see, for
exampie, Chung, Theorem 1.3.1), the limits on the lefthand sides of (B4) and
(B5) will exist and be equal for almost every w,. Thus, for almost every

G

Ve there is equality in (B4) and (B5), and the absolutely continuous part

of H fulfills (16).

Now, we show that the singular part of H,
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H((C,6]) - [.© i if w, € ]

([C,G]) - v, h dw wg € [wo,vp

(B6) F(v) = 4 0 . if wg e [0,w)
D * o

H([C,D)) - f"’c h,dv if w, € (v, W)

(see, e.g., Chung; F might be singular continuous) vanishes. First, we

show that there exists a point X, € [wC,wD with

F(xo+y) - F(xo-y) . 1 F(wD)

2y : 2 vy Ve

(B7) lim
y-0
y>0

To see this, we partition [wC,wD] for each n € N in 2"

subintervals of equal length,

n -n -n n
(B8) Jk - [wC+(k-1)2 (WD-WC), Ve + k2 (wD-wC)], k=1,...,2.
For at least one ko(n) € {1,...,2n), F must increase over JE (n) by not

o
n
less than F(wD)/[Z (wD-wC)],
) F(wD)

(B9) F(wgtk 277 (wp-we)) - lim F(x) 2 ———,

: xiwC+(k°-1)2 (wD-wC 2 (wD-wC)

where we can choose these intervals such that for each n € N

n n+l
(B10) Jk (n) > Jk (n+1) "
o (4}
n
Let X, = lim Jk ()" Then X, fulfills (B7).
nto 0

Now we can show that F(wD) > 0 would contradict with (Bl). Let G €

[C,D] be such that Ve = Xq- For each ne N let Pn t- P(Gn,Sn) 1=

P(wG-l/n,wG+1/n) be a sequence of contracts converging to G from the
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right of [C,D]. Then we get from (B2), (B6), and (B7)

In q(P_|H) - 1n q(G|H)

, H([c,s"]) - H(C,G"]D)

(B11) lim 2/n = lim 5/n
100 n-+o
* % 1 1
1n q(B_|H,) - 1n q(G|Hy) F(wgt ) - F(ug- 3)
= lim 7 + 1lim p )
T /n - ~ 2/n
] 1n ﬂ(Pn) - 1n B(G) 1 F(wD)
> lim 2/n +§W-W ,
N+ D C

*
where the last inequality follows from (B7) and the fact that q(PIHK) is
continuously differentiable in P and tangent with B(P) in [C,D] by
definition. Hence, F(wD) > 0 would imply that there are some contracts

*
Pn with q(Pn|H) > ﬂ(Pn) contrary to (Bl). Thus, H = HK and Lemma B is

proven. ik

APPENDIX C

A

Lemma Cl: Condition (17) holds true in A if

(1) &5; —d:—s In B(P(vg,wg)) < O

for all points P = P(G,S) € A, where A is defined to be the interior of

(P e A: in P the curve US(P) is flatter than (8 = B(P)}). *kk

Remark: For each G € [C,D] there is a point TG € A such that in TG
the line ({8 = ﬂ(TG)) is tangent to ﬁg(G) (see Figure 6). The curve of
these points is upward sloping and A 1lies to the right of this curve (see

Figure D in Appendix D).

Proof of Lemma Cl: From (19) we have seen that q(P) = B(P) for all P €

[c,D]. Thus it suffices to show for all P € A that the growth rate
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differential

(€2) $(B(C,9) [H) =z ; 1n a(Blvg v Y ) - g 1m B(P(Wg, W)

is negative if Ve S Vg < wg =W, (i.e., if B(P) > q) and positive if

Ve < vy < L/ < v (i.e., if B(P) < q).

From (14), (16) and (15) we get

(€3 2 1n a(Blugug) [Hp) = phe(ug) = T(wg) = Sol  1n B(RGug, ).
S

W=w S

Inserting (C3) into (C2) we get from (CL)

(C4) $(R(G,S)|Hyp) 3 0 1f wg < v,

provided P(G,S) € A. For Pe A \ A we have < wg =<V and

Ve = G
d{ln ﬂ(P(G,S))]/de <0 and d[ln q(P(G,S)IH;)]/de > 0. Thus, (C4) is

true for all P € A. Kk

Lemma C2: Inequality (Cl) holds true for all points P(G,S) € A if the
risk aversion of customers is bounded by

V(W)
__ 17 E E -
V’(W ) > 2(1 + pg . p ) for all (WI’WZ) € A. Ak

(C5)
Remark: Before we prove this lemma we note that there are utility functions
v which fulfill (C5) but exclude the existence of Nash equilibria in the
original R-S model. Since the right side of (C5) is smaller than unity, the
inequality holds if V' decreases suitably slowly with increasing income.
Condition (C5) is independent of i. For given V, pg, ps, however, Nash

equilibria are excluded in the original R-S model if q is large enough.
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Proof of Lemma C2: For P € A the derivative in (Cl) is equal to

1n B(P(w.+k,w +h)) - 1n B(P(w +k,w.))
(C6) lim [ | G S
h~+0

k-0

1n ﬂ(P(wG,wS+h)) - 1n ﬂ(P(wG,wS))
™ .
Since B 1is continuously differentiable it suffices to show that for all

points P(G,S) of A there is an e = ¢(P) > 0 with
(€7) [1n B(B(ug+k,ugth) + In B(B(wg,Wg))] - [1n B(R(vgHk,Wg))
- 1n B(P(wg,wg*h))] < -¢ hk
respectively
(c8) B(P(wg+k,we+h)) B(P(Wg,ug)) < o cBE B(P(ug+k,wG)) B(B(W,Wg+th))

for all small positive h and k.

It suffices to prove inequality (C8) for a special sequence (h,k) -+
(0,0). For every h we choose k such that ﬂ(P(wG,wS)) - ﬁ(P(wG+k,wS+h))
holds true. As can be seen from Figure Cl such a choice is always possible
in A.

Let Q be any point in A. According to Figure C2 we construct the
points R, R', P’ and P as corner points of a parallelogram with center
Q, edges the slopes of which are equal to those of 9% and 7° in Q, 
B(R) = B(R') = B(Q), and a horizontal distance § between P’ and Q

which is chosen arbitrarily but so that all five points lie in A.

According to (C7) and (C8) it suffices to prove the inequality

2
(c9) BRIBR') < e ¢ p(RIp(®"),

where the assumption of straight indifference curves in the neighborhood of
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Q implies a mistake which is negligible in the limit.

Let the fair odds values be expressed in (al,az) coordinates
according to (9). If Q has coordinates (al,az) then, by construction,
we have P' = (a1+6,a2+76) and P = (a1-6,a2-18) where -y 1is the slope

of the line P'P. Using the function

(1-p%) (ay+6) - P°(ay*76)

(C10) A(S) = -
(1-p8) (a;+6) - pBlay*16)

we have to show A2(0) < e €% A(6) A(-6). We transform A to

[a,-P° (ay+a,) ] + 8[1-p°(14+7)]

(C1l) A(S) = - .
[a,-PE(aj+ay) ] + §[1-pE(1+7)]

Using the third binomial formula, we have to show:

s 2 s 2 2 s 2
(C12) [al-p (a1+a2)] < [al-p (a1+a2)] - §7[1-p (147)] e-€62
la,-pB(ayta)1?  [ay-pBapta,))® - 67 [1-pE(1em))°

or equivalently

s 2 g 2
(C13) [1-p (l+l)] / [1-p (1+Z)] < ¢(e,d),
s 2,2 2,.2
[1-p°(+ 2917 [ [1-p81+ 2]
1 1
where
2 g 2
€6° [a,-p°(a,+a,)] 2
(C14) ¢(e,62) - 1-e2 1 - 1 22 + ee&
6 [1-p®(1+7) ]
2

s

Using the relation 562 < (ee -1)/62 < 2562, for a suitable constant k

and suitably small values of ¢ we have ¢(e,62) >1 - ke&z. Therefore, it
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suffices to show that the left side of (Cl3) is smaller than unity. For
that, we look at the signs of the differences in this expression.

From the slopes of the lines (g=0}, {B=f(Q)} and ({(p=w} we get

(1'ps)/Ps < az/al < (1-pg)/pg and thus

s %2 g “2
(C15) 1-p(1+ ;—) <0<1-p3(1+ ;—).

1 1

Since in all points of A the indifference curves are flatter than the
{f=w}-1line we have 7y < (l-pg)/pg resp. 1 > pg(1+y). Hence, two cases
have to be distinguished (i) 1 < ps(1+1) and (ii) 1 > ps(1+1) where in
case (i) the line P'P is steeper than the (f=x)-line, and in case (ii) it

is flatter. In case (i) the left side of (C13) is equal to

)
s 1-pB(1+ a2
(C16) p (1+y)-1 7 1] ,
S(1+ 22)_1 1'pg(1+7)
P a

hence it suffices to show

[+ [0 4
(c17) (p° (L4 -11 [1-p8(1+ D1 < [p°(1+ 25)-1) [1-pB(Lem].
1 1

But this follows straight away by using v < a2/a1 and pS > pg.

With this, (Cl) holds if case (i) is valid, that is if
1-pS
(C18) v > -—-1;—
P

The slope v can be estimated from below by the arithmetic mean of the

slopes of the indifference curves 08 and 0° in Q,
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V' (W) g s
1 17 1-p 1-p
(C19) T ( + ).
2V (Wz) pg ps
With this, (C18) holds if
V(W)
1 1
(C20) Ty > 2 -
2 1+ 128 p°
p® 1-p°

This completes the proof. *kK

APPENDIX D

Lemma D: Let A be defined as in Lemma Cl. If for some ¢ > O

(D1) E[R(P)|H;] < e

for all P € A, then (D1) holds true for all P € A which have a positive

expected number of customers. Lkt

Proof: Let (D1) hold true in A. Corresponding to Figure D, we will

compare the expected profit of contracts from several domains Ak CA, k=
1,2,...,6, with the expected profit in suitable points of A.

Let a contract P € A, := (P € A: UB(D) = UB(P) = UB(c), in P 0B(P)

1
is steeper than (B8 = B(P)}} move along ﬁg(P) to the right until it
enters A. Then its quality proportion does not decrease, but ité fair odds
value decreases. Thus (Dl1) holds true in P.

Let P e A, := (P €k UB(R) > uB(c), v°(P) = U°(C)). Then q(P) = q

but B(P) > q which implies losses in P.
Let a contract P € A, = (P € A: US(c) > u3(p), uB(P) > UB(C)) move

along ﬁs(P) to the left until it enters A. Then its quality proportion re-

mains constant but its fair odds value decreases. Thus (Cl) holds true in P.
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FIGURE D

Let a contract P € A4 := (P € A: Ug(P) > Ug(D), US(P) < US(D)} move
along ﬁg(P) to the left until it enters A. Then its quality proportion

remains constant but its fair odds value decreases. Thus (D1) holds true in

P.

Let PeAg = (P€ A: UB(P) < uB(D), U°(P) = US(A), P »# A}. Then

q(P) = 0 but B(P) > 0 which implies losses in P.

Let Pe A, := (P € A: US(P) < US(A)}. Then no customer applies for

6

Since A U U6

= A Hkk
k=1 Ak A we have completed the proof.
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APPENDIX E
Lemma E: Except for sets of measure zero, the function T in Proposition 1
is uniquely determined by the properties listed in this proposition. Its

shape is described in equation (15). Fkek

Proof: Let T be any nonnegative integrable function on [wC,wD] which
differs from I on a set of positive measure. Let £ =1 and fixed. We

A
show that then there exists a point P € A with

Ko

(E1) lim E[R(P)]H;] > 0

for any sequence (H;);=l with H; € ﬁ(f/p,!).

We use the uniqueness result in Lemma 1. For any K € N, any ﬁK €
ﬁ(f/p,O) and any G € [C,D] we have q(GIﬁK) - i. Thus, according to
Lemma 1, for any K &€ N there exist a point Po = PO(G,S) € A and a real
number § > 0 with

A _ 2 Edw
(E2) a(B |H) = qe > (148) B(RB).
Since the quality proportion q(PolﬁK) does not depend on K, we can
choose Po and' § independent of K. For any discrete distribution HE €
ﬁ(f/p,l) we can estimate the expected profit possibilities in Po with the

help of the first two equations in (22) and (E2),

<+
+ S S q(Po|HK)
(E3) E[R(P ) |[Hg] = - EQ [__E??ZT_ - 1]

+
(P [Hp) ]

> -c°EQ® [(1+5) —2 = -1
q(P_|Hp)
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+ sS”
p[H,((G,S]) - [.T/pdw]
= -c°EQ° [(1+6)e R ¢ - 1]

> -cSEQS [(1+6)e PF - 1].

This implies (El) and, thus, proves the lemma. *kk
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