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ABSTRACT

In an earlier study, we developed a reparameterization of a conventional
maximum likelihood probit model which allows estimation of regression-like
coefficients with variable-threshold "referendum" data. The procedure,
however, requires repeated evaluation of the integral of the standard normal
density function. Since this can be expensive, the present paper describes a
logistic analog, where the requisite integrals are simple closed forms.
Additionally, since earlier researchers have based their analyses on
conventional maximum likelihood logit estimates, we can show how their point
estimates can be transformed very simply to yield precise formulas for their
underlying inverse demand functions.



Valuihg Public Goods Using Referendum Data:
Estimation Assuming a Logistic Error Distribution

I. INTRODUCTION

"Closed-ended" contingent valuation (CECV) surveys (sometimes called
"referendum" surveys), have become very popular as a technique for eliciting
the value of public goods or non-market resources. For comprehensive
assessments of these survey instruments, see either Cummings, Brookshire, and
Schulze [6], or Mitchell and Carson [11]. Briefly, the procedure involves
first establishing the attributes of the public gqod or the resource, and then
asking the respondent whether or not they would pay or accept a single
specific sum for access. The arbitrarily assigned sums are varied across
respondents. This questioniﬁg strategy is attractive because it generates a
scenario similar to that encountered by consumers in their usual market
transactions. A hypothetical price is stated and the respondent merely
decides whether to "take it or leave it." This is less stressful for the
respondent than requiring that a specific value be named, and circumvents much
of the potential for strategic response bias. The challenge for estimation
arises because the respondent’s true valuation is an unobserved random
variable. We can only infer its magnitude through an indicator variable that
tells us whether this underlying value is greater or less than the offered
"threshold" value.

In two earlier papers (Cameron and James [4], and Cameron and James
[3]), we designed a new maximum likelihood procedure to utilize data of this

type. The first paper emphasizes the methodology and convenient

approximations; the second paper is an in-depth study concerning the valuation
of a recreational fishery. In both of these papers, we maintain

distributional hypotheses consistent with those underlying ordinary leasﬁ



squares (OLS) regression models: 1i.e. that the population error terms have
the familiar normal density function. The resulting parameters can therefore
be interpreted in the same manner as those resulting from OLS regression.

Earlier studies utilizing closed-ended contingent valuation data have
typically employed conventional maximum likelihood logit models. to estimate
parameters which can be combined with the data to predict the log-odds for the
respondent’s "yes" or "no" response to the offered amount. These studies
adhere to simply binary choice formulations, with the offered value tréated an
an "explanatory" variable in thg discrete choice model. Once these parameters
are estimated, an estimate of mean valuation across the sample (evaluated at
the means of the other explanatory variableé) is calculated by determining the
area under the fitted logit probability curve.? The limits of integration are
from $0 to the highest offered amount. Likewise, to determine the effect on
mean valuation of a one-unit change in some other explanatory variable, that
particular variable is permuted by one unit for all observations, and the area
under the recalculated probability curve is computed.

For policy, it is important to be able to assess the sensitivity of a
resource’s value to changes in the levels of factors which affect it. (E.g.
if pollution levels affect the value of a recreational area, and the
government desires to perform a cost-benefit analysis to determine the
advisability of an expensive clean-up program, it is essential to know by how
much a given decrease in the pollution level will affect the value of the area
to particular types of individuals, as well as the aggregate social value of
the area.) The difficulty with the earlier discrete-choice logit ﬁethods is
that while approximate point estimates of these sensitivities can be deduced

from the estimated model, it seems to be prohibitively difficult to assign

standard errors for these estimates,



Our reparameterized probit model resolves this problem, and in our other
papers, we have recommended this technique (with its underlying normality
assumption) primarily on the basis of its correspondence to OLS models. Given
that most practitioners and many policy-makers have some degree of familiarity
with the interpretation of OLS models, the normality assumption seems
particularly attractive. However, the normality assumption in discrete-
choice-based models has one shortcoming which: incidentally, accounts for the
emergence of logit models in the first place: it is expensive.

Discrete choice models require the computation of cumulative densities.
For the normal distribution, the cumulative distribution is not of closed
form--it is an integral which must be computed numerically. While there are
accurate subroutines for computing these integrals, they must be computed a
very large number of times during each iteration of a maximum likelihood
optimization procedure. This makes computation of discrete choice models
based on the normal distribution potentially very expensive (or at least time-
consuming) .

For logit models, however, which are based on the logistic distribution,
the cumulative density does have a closed form. Its value is simply a ratio
of exponentiated quantities which can be computed relatively cheaply and
quickly. Since the shapes of the standard normal and the standard logistic
distributions are almost identical (except that the latter is slightly thicker
in the tails), the logistic-based model provides a very convenient and
typically very accurate approximation to the normal-based model (which would
otherwise be preferred on criteria for statistical inference).

As a secsnd,rationale for developing a logit-based CECV technique, it
would be interesting to be able go back to published studies using the

conventional logit model to disentangle their estimated coefficients and to



uncover the underlying implicit inverse demand functions employed by the
authors.

In section II, we describe the likelihood function for use witﬁ CEGV
data under the logistic assumption. In section III, we examine a highly
simplified empirical example.using a subset of the data from our previous
study. We then re-examine some earlier published studies in section IV,
suggesting that a "random utility maximization" approach may be unnecessary

with CECV data.

II. LOG-LIKELIHOOD FUNCTION FOR CECV DATA WITH LOGISTIC ERRORS
This section is analogous to the discussion for a model with normal
errors given in Cameron and James [5]. Assume that the unobserved continuous
dependent variable iskthe respondent’s true willingness-to-pay (WTP)® for the
resource or public good, Y,. If we assume that the underlying distribution of

Y,, conditional on a vector of explanatory variables, x,, has a logistic

i’
(rather than a normal) distribution, with a mean of xi'ﬂ, then maximum
likelihood techniques are still appropriate.

In the standard binary logit model, we would assume that:

(1) Y, - x'f+u

i i

where Y, is unobserved, but is manifested through the discrete indicator

variable, Yys such that:

(2) y,=11f %, >0

= ( otherwise.

If we assume that u, is distributed according to a logistic distribution with

mean 0 and standard deviation b (and with alternative parameter k = bJ/3/x,

see Hastings and Peacock, 1975), then



(3 Pr(yi = 1) = Pr (Yi >0) = Pr(ui > -xi'ﬁ)
- Pr(ui/k > -xi'ﬁ/k)

=1-Pr(n < -x,'7),

where v = B/k and we use 5 to signify the standard logistic random variable
with mean O and standard deviation b = x//3. The formula for the cumulative

density up to z for the standard logistic distribution is
(4) 1 - (1+exp[z])™h.
Therefore the log-likelihood function can be written as:

(5) log L= Z -y, log{l + exp[-x,'v]}

+ (1 - y,) loglexp[-x,'7]/(1 + exp[-x,"v])}.
Simplification® yields:
(6) log L =2 (1 - y)(-x"7) - log[l + exp(-x,'7)].

Note that it is not possible in this model to estimate B separately, since it
always appears as B/k. The model must therefore be evaluated in terms of its
estimated probabilities, since the underlying valuation function, xi'ﬁ, cannot
be recovered.

With CECV data, however, each individual is confronted with a threshold

value, t , and by his (yes/no) response, we conclude that his true WIP is

i
either greater than or less than t,. Therefore, the conventional logit model
can be modified. As before, we can assume a valuation function as in (1) with
the same distribution for u,. However, we can now make use of the variable

i

threshold value as follows:



) y, = 1 if ¥, > ¢,

= 0 otherwise,
so that

(8) Pr(yi -1) = Pr(Yi > ti) - Pr(ui >t - xi'ﬁ)
- Pr(u/k > (t, - x,'B)/k)

=1 - Pr(n, < (t, - x,'B)/Kk).
With this modification, the log likelihood function can now be written as:

(9) log L= X -y, log(l + exp[(ti'- x,'B)/k]}

+ (1 - y,) loglexpl(t, - x,"B)/k]/(1 + exp[(t, - x,'B)/k])).
As before, this can be simplified to
(10) log L=2 (1 - y)I[(t, - xi'ﬁ)/k] - log{l + exp[(t, - xi'ﬁ)/k]).

The presence of t, allows k to be identified, which then allows us to isolate

g so that the underlying fitted valuation function can be determined. (Note

that if t, = 0, we agaiﬁ have the conventional logit likelihood function.)
The likelihood function in (11) can be optimized directly using a

general nonlinear function optimization computer program.5

This procedure
will yield separate estimates of B and k (and their individual asymptotic
standard errors). However, estimates of -1/k and B/k can be obtained more
conveniently from conventional packaged logit algorithms. If we simply
include the threshold, t,, among the "explanatory" variables in an ordinary

(maximum likelihood) logit model (as has typically been done by earlier

researchers using CECV data), it is easy to see that:
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(11) - (t,x") -1/k | = -x%'q%,
B/k

The augmented vectors of variables, x* and coefficients, vy*, may be treated as
one would treat the explanatory variables and coefficients in an ordinary
logit estimatipn. From vy*, it is possible to compute point estimates of the
desired parameters f and k. If we distinguish the elements of y* as (a, v) =
(-1/k, B/k), then k = -1/a and ﬂd - - 73/“- However, accurate asymptotic
'standard errors for these functions of the estimated parameters cannot be
computed directly. One task of this paper is to examine some alternative,
relatively simple, methods for deriving these standard errors, using only the
information gleaned from a conventional logit model.

One alternative is to use Taylor series approximation formulas for the

variances of the desired parameters (Kmenta [8, p. 444]):

(12) Var(k) = Var(-1/a) = [1/a?]? Var(a)
Var(p,) = [v,/a’]? Var(a) + [-1/a]?® Var(y,)

+ 2 [v,/a*][-1/a] Cov(a,v,)

A second possibility is to use the analjtical formulas for the Hessian matrix
corresponding to the likelihood function in (10) with the optimal values of 8
and k derived from y*. The negative of the inverse of this matrix can be used
to approximate the Cramer-Rao lower bound for the variance-covariance matrix
for B and k. Alternately, the expected values of the Hessian matrix elements

5 Formulas for the elements of the Hessian

are sometimes used in this process.
matrix and their expectations are provided in the Appendix.

In contrast, if the estimates of B and k are obtained directly by
maximizing the log-likelihood function in (11), packaged programs for

optimizing nonlinear functions will usually offer as an option the computation
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of the negative of the inverse of the Hessian matrix followed by a printout of
the computed asymptotic standard errors or t-test statistics. Whichever way
the asymptotic standard errors are detérmined, they are necessary-for
hypothesis testing regarding the signs and sizes of individual ﬂd parameters,

an important objective of the modeling process.’

III. ILLUSTRATION: VALUING A RECREATIONAL FISHING DAY
We will illustrate our procedures with a highly simplified version of
the valuation model (and a subset of the data) uéed in our earlier papers
based on CECV data assuming normal errors. Our abbreviated sample consists’of
1033 responses to an in-person survey of recreatiénal salmon fishermen

returning from fishing excursions.®

After assessing the actual level of
incidental expenses for the fishing day, respondents were asked if they would
still have gone fishing if the fishing day had cost some (randomly assigned)
number of dollars more. As explanatory variables in this simple illustration,
we will use NFISH (the number of salmon caught), LGFISH (the weight of the
largest fish, in pounds), TEMP (mean temperature that day, in degrees
Celsius), PRECIP (total precipitation, in millimeters), and a dummy variable,
NONRES, (which takes on a value of one if the respondent is not a local
resident, and is zero otherwise). Table I summarizes the data.

Maximum likelihood estimates of B8 and k (and their asymptotic t-test

statistics) from a very simple log-linear®

version of the model in equation
(10) are given in Table II. Also shown, for comparison, are point estimates
of B and k computed from estimates of ¥* from an ordinary logit model (and
approximate asymptotic t-ratios using standard errors computed by the Taylor

series approximation given in (12) and from the expected value of the Hessian

matrix).
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In the past, empirical work using binary choice logit models with CECV
data overlooked this reparameterization and therefore faced the awkward
limitation of working only with probability estimates. This restricted the
generality of the WTP functions unnecessarily. Here, however, any
specification which could be estimated by OLS if Y were known can now be
estimated quitebcheaply with only CECV responses, and the estimated
coefficients (other than k) can be interpretéd roughly as one would interpret
the results from an OLS regression..

The Bs in this very simple specification give the percent change in WIP
for a one-unit change in the level of each explanatory variable. As expected,
the number and size of fish caught both increase the respondent’s WIP: an
additional fish increases WIP by about 9.16% (the average effect of an
additional fish is $1.85). If the largest fish is one pound heavier, WIP is
higher by about 2.27% (or by about $0.46 on average). The inverse of TEMP
might be considered as a proxy for the avidity of the fishermen--only serious
fishermen will be out on bad days. Therefore, it is not surprising that
higher values of TEMP imply a less valuable fishing day. When the temperature
is higher by 1 degree Celsius, the WIP is lower by about 3.2% (or by $0.65 on
average). PRECIP will not affect the fish, but will definitely make the
fishermen less comfortable: for every millimeter of rain, WIP is decreased by
about 5.91% (or by about $1.19 on average). Non-residents have travelled
further to go fishing, and can hence be expected to value the experience more
(by about 58%, or $11.71 on average).

Clearly, the distortion in the standard error estimates due to use of
the Taylor series approximation is very small in this example. This suggests
that the model can quite readily be estimated using existing computer programs

for conventional logit models. General nonlinear optimization programs are
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less common and typically require greater programming skill, so this result is
very reassuring. We also provide estimates of the asymptotic t-ratios based
on standard errors computed using the expectation of the Hessian matrix.
These t-values appear to be biased downwards in this application.

The within-sample goodness-of-fit of the estimated model will oftenrbe
of interest. As in our earlier studies, we can adapt some measures
traditionally used with discrete choice models: (a.) individual prediction

¥ These are displayed in

success, and (b.) aggregate prediction success.
Table III. Model "validation" would be analogous to the validation of OLS
regression models.?

Compared to conventional methods for estimating models using closed-
ended contingent valuation data, the ability to determine (systematically and
simply) the effect upon expected WIP of changes in the levels of each
explanatoty variable is the clear advantage of this new approach.
Nevertheless, we might still be interested in the marginal mean of the
distribution of individual WTP values. Here, we can make use of an identity
which is familiar to regression analysts. Since the mean of u, is zero at the
optimal parameter values, E(Y,) = E(x,'f + u,) = E(x,'8) + E(u) = E(x,'8)."
Mean fitted WIP across all respondents is $20.20.

It is useful to compare the results obtained for this logistic model
(Tables II and III) with those which would have been obtained if normal errors
had been assumed instead. (See our earlier paper, Cameron and James [5]) for
the derivation of this procedure, which is analogous to that presented in
section II except that the different densities results in different likelihood
functions.) In both cases, the underlying fitted WIP is given by x'f. If

the same functional form is imposed for the relationship between the

unobservable Y, and x,'B, the parameters fp will be comparable. Furthermore,
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the standard deviation of the fitted error distribution in the 1ogis£ic case
will be b = ka//3, which will be comparable to ¢ in the normal case.

Table IV therefore shows results for the same log-linear specification,
but in this case we assume normal errors.!® Note first of all that the
maximized value of the log-likelihood for the model with logistic errors is
considerably better than that for the normal errors (-388.4 versus -403.9).
However, the models are not nested, so we cannot assess whether this
difference is statistically significant. Still, the superiority of the
logistic model is corroborated by the fact that the error standard deviation
for the normal model is 0.7591, whereas for the logistic model, it is only
0.6982. Within-sample goodness-of-fit for the model with normal errors appear
in Table V. These measures also suggest that in this case, the logistic model
is probably preferred.

The point estimates from the two models do differ slightly. The
implications for policy of the different error assumptions are best seen by
examining the means of the implied derivatiﬁes of WTP with respect to each
variable--these are displayed in Table VI. Also, while the overall marginal
mean of the fitted values for WIP with logistic errors was $20.20, it is

$19.69 for the normal model.

IV. RECONSIDERING THE ESTIMATES OBTAINED IN EARLIER LOGIT ANALYSES

Bishop and Heberlein [1] and Bishop et al. [2] addressed the valuation
of goose hunting permits for the Horicon Zone (in east central Wisconsin).
They employ a simple logit model to analyze respondents’ willingness-to-accept
(WTA) compensation for their permit. In their initial model, with only the
logarithm of the offered amount as an explanatory variable, the log-odds (LO)
of the probability of accepting an offer to sell (namely, the fitted value of

xi*'y*) is
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(13) LO, = 3.24 - .74 log(DOLLARS,).
Solving for the B parameters yields the underlying valuation function:
(14) log(WTA) = 4.378.

The fact that the fitted value of the logarithm of WTA is just a constant
means that we can recover a point estimate for individual value of $79.68.
Whereas Bishop and Heberlein report that the expected value of a permit
calculated from this model is $101 (versus $63 for their actual cash offers in
simulated markets), our interpretation of their fitted model yields a mean
value that is much closer to that found in actual transactions.

Bishop and Heberlein’s second model includes a categorical "commitment"
variable--a four-item attitude scale expressing the level of commitment each
hunter had to goose hunting with larger values expressing greater commitment.
Bishop and Heberlein assume that WIA is linear in the arbitrarily assigned
levels of this categorical variable (a set of three dummy variables might have

been preferable). Their estimated model is:

(15) LO, = -.58 - .84 log(DOLLARS,) + .40 COMMITMENT, .
After transformation, the fitted WTA relationship becomes:
(16) log(WTAi) = -.6905 + .4762 COMMITMENT,.

If we knew the mean "level" of the COMMITMENT variable, we could substitute
this number into the formula in (16) and compute the value of log(WTA) at the
"mean" of the data. This number would correspond to the overall marginal mean
of WTA in the sample, based on the fitted model. Without the data on

COMMITMENT, however, we cannot reconstruct a value to compare to Bishop and

Heberlein’s number.
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In the Sellar, Stoll, and Chavas [12] study, respondents were asked to
respond "yes" or "no" to the following question: "If the annual boat ramp
permit cost $X in 1980, would you have purchased the permit so that you could
have continued to use the lake throughout the year?" These authors used a
simple logit model to estimate the probability that the respondent would
answer "no" to a given value of X. In a second paper employiné a subset of
the same dataset, [13], these same authors devote considerable attention to
applying the tradition of random utility maximization models developed‘by
McFadden [10}. With the methodology described in the present paper, however,
it becomes apparent that appeals to this tradition are unnecessary. The data
environment here is distinctly different from McFadden's discrete choice
framework. CECV data are much richer. The "valuation functions" fitted to
CECV data are simply inverse demand functions. There is a mature literature
on the types of demand functions which satisfy the regularity conditions
necessary to render them consistent with classical utility maximization.
These functions can be adopted to whatever extent the range of available
variables will allow.

In the process of untangling the underlying valuation functions employed
by Sellar, Stoll, and Chavas [12] it is more convenient for us to work not
with the probability of a "no" response, but instead with the fitted
probability that the respondent would answer "yes" (implying that their
valuation is larger than the threshold value)!*. Additional data include the
number of visits per year, q. Let LO be the log of the odds of responding
"yes" to the WIP question. The models are fitted for four different

locations:
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(17) Conroe: Lo, = 6.13 1.79 log(Xi) + .16 1og(qi)

Livingston: L0, = 3.06 1.37 log(X,) + .67 log(q,)

Somerville: Lo, = 4.78 - 1.26 log(X,) + 1.75 log(q,)
LO

- 2.32 - 0.99 1og(Xi) + .47 log(qi)

Houston: N

Transforming these coefficients to uncover the B values yields an underlying

fitted WITP relationship for each location:

(18) Conroe: log(WTPi)
Livingston: 1log(WIP,)
Somerville: log(WTPi)
Houston: 1og(WTPi)

3.42 + 0.089 log(q,)
2.23 + 0.489 log(q,)
3.79 + 1.389 log(q,)
2.34 + 0.475 log(q,)

Thus, log(WTP) is a function of log(q). If we interpret WIP as the product of
the average price willingly paid (p) times the number of units (q), these

equations all have the form:

(19) log(pq) = log(p) + log(q) = a + b log(q).

We can rearrange these formulas to isolate log(q) on the left-hand side:
(20) log(q) = [a/(l-b)] - [1/(1-b)] log(p).

We then arrive at point estimates for the implied demand functions for each of

the four areas:

(21) Conroe: log(q) = 3.76 - 1.10 log(p)
Livingston: log(q) - 4.37 - 1.96 log(p)
Somerville: log(q) = -9.76 + 2.57 log(p)
Houston: log(q) = 4.46 - 1.90 log(p)

The coefficients on log(p) can be interpreted as price elasticities of demand

for boat ramp use. As noted by the authors, the results for Somerville are

inconsistent with the theoretical notion that demand curves ought to slope
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downward, and therefore this model should probably be rejected. For the other
areas, demand for boat ramp permits would appear to be uniformly somewhat
elastic, but to vary across locations. If we had the parameter covariance
matrices for the original models in (17), it wouid be a simple matter to
compute approximate standard errors for these elasticity point estimates using

the Taylor series approximation described in section II.

V. CONCLUSIONS

Extensive evaluation of CV methods in experimental settings suggests
that they are quite reliable, despite earlier concerns about the potential for
"strategic bias" and other hazards. These survey instruments are beconing
increasingly popular. Mitchell and Carson mention approximately 125 citations
in their partial listing of contingent valuation studies.

Our earlier research described CECV estimation procedures which
conformed as closely as possible with OLS regression models, but which could
be expensive or time-consuming to compute, since they required numerical
evaluation of integrals which were not of closed form. The statistical model
described here adapts our earlier work to the assumption of an underlying
logistic distribution for the conditional density of the unobserved valuation.
Since computations in this case involve only ratios of exponentiated terms,
computation can be significantly cheaper, especially for large saﬁples with
large numbers of explanatory variables and for complex functional
relationships between valuation and these variables.

This logistic error model for CECV data can be applied quite simply by
anyone who has access to a conventional maximum likelihood binary logit
computer algorithm. Selecting from a range of alternatives, we have
demonstrated two techniques for arriving at approximate asymptotic standard

errors: by Taylor’'s series expansion and using transformed ordinary logit
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point estimates in the formulas for the expected value of the Hessian matrix
corresponding to the full likelihood function for our logistic model. The
first, simpler, method seems to be sufficient (at least in our illustration).
Compared to the model with normal errors, the logistic model can be expected
to generate slightly different point estimates (and therefore somewhat
different policy implications), but the divergence does not seem to be too
severe, After all, given the similarities in the shapes of the simple
distributions, one would expect comparable results,

In our abbreviatéd empirical application, we find that for the simple
log-linear specification and our limited set of explanatory variables, the
logistic error model achieves a higher maximized log-likelihood value and
results in a smaller fitted error standard deviation than does the normal
error model. However, this will not always be the case--it will depend on the
data.

This logistic procedure also allows us to go back and reinterpret some
earlier results generated by other researchers, since the'derivation of this
model brings out the correct interpretation of the CECV parameter estimates
yielded by simple logit discrete choice models. It is easy to recover the
underlying demand functions with no more than just the fitted models reported
in the published versions of these papers. If the researchers who performed
these earlier studies have retained the covariance matrices for their
parameter estimates, it would be possible for them to calculate approximate
asymptotic standard error estimates without repeatiﬁg any of the original
computations.

A tangential result is that it is probably unnecessary for researchers
using CECV data to appeal to McFadden’s random utility maximization models for

discrete choice situations. Conventional demand theory would seem to suffice.
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TECHNICAL APPENDIX

Using the notation established in the text, we first define the following

simplifying abbreviations:
ng = (t5 - %4'8)/ ¢ R =1/(l+exp(-n,)) S, = Rexp(-n,)
The gradient vector for this model is then given by:

dlog L/3B, = Z (x,,/k) ((y; - 1) + R, ) r=1,...,p

dlog L/3o = = (ﬂi/k) { (yi -1 + R )
The elements of the Hessian matrix are:

%10gL/8B 3B = -(1/K?) = X, Xy S, . r,s=1,...,p
9210gL/3B k = -(1/K)% = X, ( (3, - +R@Q+n)) r=1,...,p

3210gL/ok? = -(1/k%) = (2n)) ( (y, - 1) + R ) + n,%S,

There exist function optimization algorithms which will find the optimal
parameter values using only the function itself (and numeric derivatives).
However, analytic first (and second) derivatives can sometimes reduce
computational costs considerably.

The expectation of y, is [1/(1+exp(ni))]. The negatives of thé

expectations of the Hessian elements are as follows:

- E(3%10gL/3B,38,) = (1/k%) = X, Xy S, r,s =1,...,p
- E(3%logl/ag.k) = (1/k%) = x,,n, S, r=1,...,p

- E(3%10gL/3k%) = (1/&%) = n? s,



Table I

Descriptive Statistics (n = 1033)

Mean
(proportion)

Standard
Deviation

Variable Description

Name

t, offered threshold

b A "yes" (willing to pay t,)
NFISH number of fish caught

LGFISH weight of largest fish
TEMP mean temperature (C)
PRECIP total precipitation (mm)

NONRES 1 if non-resident

27.78
0.4869
0.9671
3.191
13.11
0.7780

0.06583

1.476

5.404

4.096

2.340

-----------------------------------------------------------------

22



23

Table II
Estimation Results: Logistic Errors

"Dependent” Variable = Log(Unobserved Willingness-to-Pay)

Maximum Parameters

Likelihood Computed from
Variable Parameter Logit Model

Estimates?® Estimates
int 3.215  (24.49) 3.215P  (26.49)C (20.52)9
NFISH 0.09163 (3.100) 0.09163 (3.100) (2.402)
LGFISH 0.02267 (3.342) 0.02267 (3.342) (2.589)
TEMP -0.03198 (-3.815) -0.03198 (-3.815) (;2.955)
PRECIP -0.05913 (-3.126) -0.05913 (-3.126) (-2.421)
NONRES 0.5796 (4.292) 0.5796 (4.292) (3.325)
k 0.3850% (15.65) 0.3850 (15.65) (12.12)
Maximized log-likelihood: -388.4

® Asymptotic t-ratios from maximum likelihood estimation in

- parentheses.

® Due to the invariance property of maximum likelihood
estimators, the point estimates should be identical by either
method.

¢ Approximate t-ratios constructed from Taylor series standard
error approximations.

d t-ratios using standard errors computed from inverse of
negative of expected value of Hessian matrix corresponding

to the log-likelihood function in (8).

® standard deviation of error distribution is therefore 0.6982.



Table III

Prediction Success:

Individual:

Predicted Would Pay t
Would Not

(Percent Correct: 84.12)

Aggregate:

Would Pay t,

Would Not

Logistic Errors

Actual
Would Pay t, Would Not
415 76
88 - 454
Predicted Actual
503.0 503

530.0 530

24



Table IV
Estimation Results: Normal Errors

"Dependent" Variable = Log(Unobserved Willingness-to-Pay)

Maximum Parameters

Likelihood Computed from
Variable Parameter Probit Model

Estimates?® Estimates

b c d

int 3.210 (23.95) 3.210 (23.95)" (30.31)
NFISH 0.06976 (2.392) 0.06981 (2.393) (2.759)
LGFISH 0.02760 (3.983) 0.02759 (3.981) (4.453)
TEMP -0.03342 (-3.586) -0.03342 (-3.586) (-4.552)
PRECIP -0.06113 (-3.029) -0.06112 (-3.030) (-3.882)
NONRES 0.6304 (4.210) 0.6302 (4.210) (5.296)
o 0.7591 (18.00) 0.7589 (17.96) (21.32)
Maximized log-likelihood: -403.9

8,b,¢ gee Table II.

d t-ratios using standard errors computed from inverse of
negative of expected value of Hessian matrix corresponding to
the log-likelihood function for the model with normal errors.

(See Cameron and James [5].)



Table V

Prediction Success: Normal Errors

Individual: Actual
Would Pay t, Would Not
Predicted Would Pay t, 407 72
Would Not 96 458

(Percent Correct: 83.74)

Aggregate: v Predicted Actual
Would Pay t, 498.7 503
Would Not 534.3 530
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Table VI
Comparison: Logistic Model versus Normal Model

Mean Derivatives® (Standard Deviations) of WTP

Variable Logistic Model Normal Model
Estimates Estimates

NFISH $ 1.851 (0.7105) $ 1.374 (0.5454)

LGFISH 0.4580 (0.1758) 0.5436 (0.2158)

TEMP -0.6460 (0.2480) -0.6582 (0.2613)

PRECIP - -1.194 (0.4585) -1.204 (0.4780)

NONRES 11.71 (4.494) 12.41 (4.929)

® Since aWTP/axj - ﬂj*exp(xi'ﬁ), these derivatives vary across 1i.
We compute the fitted derivative for each observation, and report

the means and standard deviations of these quantities across

observations.
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! The data used in this study were collected under a project sponsored by the
Department of Fisheries and Oceans, Vancouver, Canada, supervised by Michelle
D. James, my co-author on earlier related papers. The comments of four
anonymous referees on these earlier papers have also contributed to the
evolution of the present paper. E. Jane Murdoch has offered helpful
suggestions.

2 or, over the curve, depending upon whether one is focusing on the "yes" or
"no" response.

3 These models can be adapted very simply to accommodate willingness-to-accept
(WTA) .

3 Note that many textbooks (e.g. Maddala [9]) exploit the symmetry around zero
of the standard logistic distribution to simplify these formulas even further.
We simplify this way to preserve consistency with the next model where we
estimate k explicitly.

5 We used a program called GQOPT.

® The outer product of the gradient vector evaluated at the optimum is
sometimes used. However, since the expectation of the Hessian has simple
formulas, it is probably preferred in this application.

7 Of course, if estimates are achieved by optimization of (10), hypothesis
testing regarding the fs is the same as in any maximum likelihood context.

8 This is the Victoria, British Columbia, subsample.

® If our underlying valuation function is assumed to have log(Y,) on the left
side, then we simply substitute 1og(ti) wherever t, appears in the formulas.

10 For individual prediction successes, one counts up the number of times the
model produces a fitted probability greater than (less than) 0.5 that the
respondent will pay the stipulated price when the individual actually responds
that he would (would not) pay that amount. For "aggregate prediction success,"”
each respondent is assumed to represent some large equal number of respondents
with identical characteristics and fitted choice probabilities are viewed as
proportions. Fitted probabilities are summed and compared to actual
responses.

11 For example, out-of-sample prediction success can be assessed by fitting
the model to a randomly-chosen subset of the data and observing its predictive
capability for the rest of the dataset.

12 1n OLS, this property is borne out by the fact that the fitted regression
line always passes through the means of the data. ”

13 Readers familiar with our other work using excerpts from the same dataset
(in particular, Cameron and James [5]) will note that fitted mean values of
WTP can also be quite sensitive to the choice of linear versus log-linear
functional forms. A Box-Cox generalization which subsumes these two
alternatives is examined in Cameron and James [4] for the full sample.

4 The probability of a "no" answer is 1/[l+exp(-x*’'7*)]; the probability of a
"yes" answer is just 1/[l+exp(x*'y*)], so the change merely alters the sign on
all coefficients v*.



