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Abstract

A two-step procedure of building state space models for vector-valued time series
with trends is described. Then a new measure of random walk components in time series
having unit root components is proposed to correct some undesirable features of those
used in the literature. The quarterly US real GNP from 1947.1 to 1986.2 is found to con-
tain less than 10% of random walk component. '
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1. Introduction

Recently, modeling of nonstationary time series without removing deterministic
trends has gained favors among time series modelers as a way of preserving information
on longer-run dynamic structure in time series. A growing body of literature now exists
both on finding and measuring contents of unit root or random walk components in a
given set of time series, and on finding a co-integrating vector for them, i.e., a vector v
such that v’y, becomes weakly stationary even when y, is not.

This paper presents a two-step procedure for constructing state space (dynamic
factor) models of a set of nonstationary time series by extending the procedure in Aoki
(1983, 1987). The procedure will determine co-integrating factors, when some of the
components of the vector-valued time series contain common trends. The singular value
decomposition of the covariance matrix between a finite segment of the future realization
and the past data of the time series is the basis of the recently developed method by Aoki
and applied in Aoki and Havenner (1986). This matrix is a Hankel matrix in structure
when the vectors are stacked as shown below:

H, =EQ@L1 y7)
where the stacked vectors are constructed as
+ 7 _ ’ ... ’
Yir1 =Dt Yes2 Yeex')

and

)’t—' = D’t')’z—l’ T )’:—K+1’]

When applied to a weakly stationary process, the method constructs a dynamic
factor model

and
¥, =Cx,+e,,

where all the eigenvalues of the matrix A-BC lie strictly inside the unit disk in the com-
plex plane by construction, and e, is weakly stationary innovation vector of the data, i.e.,
serially uncorrelated, e, =y,—~E (y, | y,_1), where E denotes orthogonal projection, Aoki

(1987, chapter 9).

Relative magnitudes of the first few (counting from the largest) singular values are
used, among other things, in selecting the dimension of the state vector of the model, n.
In no case the dimension should be so large as to render the model non-minimal dimen-
sional, i.e., the model should be observable and the dynamic matrix invertible, or the
mode! should be both observable and controllable. See Aoki (1987, Chapter 5).



When y, series contain random walk components, the ratios of the second largest
to the largest singular values and the third largest to the first are usually very small, of the
order of 10~3 or less, when the maximum lag length K is small, 2 or 3, for example. This
fact suggests a two-step modeling procedure discussed next.

2. Two-step Procedure

Build a small (one or two-dimensional) model which capture common random
trends of the components of the data series as above, even though {y,} is not weakly sta-

tionary,
Tre1 = PT + 8'Up,
and »
Yo =ht +u. (1)

The variable T, is the common trend term if it is a scalar. When it is two-dimensional,
for example, then there are two dynamic factors that explain common trends of all the
components of the data vector. Since the residuals are highly correlated, unlike the
modeling situations for weakly stationary series, 4, is not innovation vector. The singu-
lar value decomposition for the Hankel matrix constructed from the residuals is used next
to build

X41 = Ax, + Be, @)
and
u, =Cx, +e,

where e, is the innovation vector for ¥, in the wide sense. When jointly written, one sees
that (1) and (2) display a recursive dynamic structure between the trend and cyclical
dynamics. This structure has been shown in Aoki (1987, p.39) as a standard representa-
tion of dynamic systems containing some eigenvalues of unit magnitude. This represen-
tation is better than that in which each component of the data vector series is separately
detrended (either by deterministic transformation such as taking differences of the loga-
rithms or by some random detrending schemes such as Kitagawa’s procedure, see Akaike
(1985), because the interactions between the longer-run dynamics and shorter-run
dynamics are not allowed in the latter representation.

Rewrite (1) as
T+1 ™ 6": +8'y,

where p is equal to p—g’h. If I ﬁk A4 converges, where )\, is the covariance matrix
k=0



of the data vector, then the covariance matrix of 1, is well-defined. *

Similarly, rewrite (2) as
x,,1 = (A=BC )x,+Bu,

Then, the covariance matrix ®=covx, is well defined, and subscript t is dropped from 7
because x process is weakly stationary, if all the eigenvalues of A-BC lie strictly inside
the unit disk. Let F = A—BC . The matrix F is the dynamic matrix in the Kalman filter
(2). To see the importance of this condition, consider solving the Riccati equation for the
matrix 1t

n=ATA +B (M ~-CnC’ )8, .

where cove, = g~ C IIC’and B =(M — A I1C’) (cov ¢, )"! by an iterative procedure.
Supposing that 7t exists, denote 7, ~7 by z; . Then

vecz, .1 = (F ®F )vecz,

Therefore, the equation converges as k is increased if and only if all the eigenvalues of F
lie inside the unit disk as claimed.

Eq (1) shows that any vector v which is in the null space of h’ is a co-integrating
vector since V'y, = v'u, which is weakly stationary.

The above consideration shows that the proposed two-step procedure will con-
struct state space models even when the data vector contain unit root components, ie.,
even when p in (1) is one, provided p is less than one in magnitude. A sufficient condi-
tion is that the unit root is a controllable eigenvalue of the model. See Aoki (1986) on
detained demonstration of this claim.

3. How to Measure Random Walk Components

The findings on the percentages of random walks in the US GNP fall into two
classes: Nelson and Plosser (1982) and Campbell and Mankiw (1986) found large com-
ponents, while Watson (1986), Clark (1986) and Cochrane (1986) found small percen-
tages of random walk components. Some studies fit a model y, = p y;1 + %, where the
disturbance term is mean zero and modeled by AR (p), rather rarely as ARMA (p, q) or
using the Wold decomposition. Cochrane attributes these divergent results to certain er-
rors in neglecting sums of large numbers of small correlation coefficients. According to
Cochrane those using low values of p and ¢ found larger random walk component than

* For example, if A, = A, + ka2, then Tk p* converges if the magnitude of ;3 is less than one.



those with higher values of p.

This section shows that the measured used by Nelson and Plosser, and Cochrane’s
have some undersirable properties and proposes an alternative measure for the random
walk components. The state space representation of Aoki (1987) used in this paper also
avoids a source of errors emphasized by Cochrane.

Cochrane (1986) proposed the ratio
k= lim [var(y, =y, )/ k}!/var(y, —y,1) 3)

k —eo

as a measure of random walk components in {y,}. The numerator approaches the vari-
ance of the random walk o2 in the decomposition of y, =y, +yy Where
Y1 = Y1-1 =€, and ¢, is i.i.d., since the variance of the random walk components grow
linearly with lag k.

This ratio can be larger than one if Ay,;, and Ay,, are negatively correlated
where A denotes first difference. This seems undesirable. Even when the limit stays
below 1, this limit then overstates the random walk component. As an example consider

Ye = Yi-1=€ t a6

=(l+a,e, —a e, —e_1), 4)

where ¢, is i.i.d. with mean zero and variance 0,2. As the second line above suggests, the
random walk component is y;, =[(1+a)]/(1-L)]e, and y,, =-a; e, is a weakly
stationary component y. The limit of the numerator of (3) is equal to (1 +a 1)2 oez while
the denominator is equal to (1 + a12)cez. The ratio is x=(1 + 01)2 /(1+ a12) >1 if
a;>0.

To remedy this undesirable feature, we first decompose y, as y,, +y,, where yy,
is a pure random walk component and y,, is weakly stationary and define
8=varAy, /[varAy,, +var Ay,]
where
varAy,, =limvar(y, =y, )/ k
and
Ayy=Ayy—E Byy | Ayy)

where E denotes the orthogonal projection. In the example (4), var Ay, =(1+a 1)293
and var Ay, =a 262 and hence 6 =(1 + a)?/(1+ a,)?+a} <1. This ratio remains
less than 1 even when a, > 0.



More generally, consider y, — y,_y =d, where d, = A(L)e,, ¢, is mean zero, i.i.d.,
and

AL)=Iz,aL), ay=1, Ifal<e. )
Clearly var Ay, =vard, = Zjajz < oo, By writing A(L) as A(1) +A(L)—A(1), we can
identify y,, by Ay, =A(1)e, and Ay, =[A(L) - A(Dle,.
From now on we consider only y, with rational spectral density functions. Let
W =vard, and W, = E(d,d,_;). Then
S()=Z2gyz =g+ 25z

is the spectral density function of d, because b_; =} when d, is scalar-valued. Because
d, has a rational spectral density function, it has a finite parametrization (Kronecker’s
lemma)

X1 =Fx, +gey,

d, =h'x, +e,
with some vector x,, which is the minimal realization of d;. (See Aoki (1987) or Lind-

quist and Picci (1979)). Cochrane evaluates S (1) by the infinite sum Hg + 2?;1,.

By the spectral decomiposition theorem (Whittle (1963, p. 26) or Aoki (1987, p.
69)),

S@)=WE)W'(1/z2)c?

where W(z)=1 + h’(zl - F)'g. Thus
S(1)=W(1)%,

sincea; =c’Fi1g, j 2 1,ie., W(1) = A(1). Writing d, as
d, =W(l)e, +h'l(dd —FY' - -F)Ige,

C =W(l)e, —(z - 1DH(2)e,

where H(z)=h'(zd - FY'ld - F)"lge,, we see that Ay, =Ay, +Ay, Wwhere
Ayy, = W(l)e, is the pure random walk component and y,, =—H (z)e,. The component
¥y, has a state space representation

Se41 = Fs, + Ve,



Yu =h's +e,
where
y=>U-F)'g.
Hence
Ay =c’Fs,_y+(c'y—1)e,
where s, and e, are chosen to be uncorrelated. Thus
0=W(Q)2/ W)+ (h'y—1)2+ h’FSF’h]

where S =FSF’+yy or using vecS=(-F ®F) ! (y ®y), we can write
h'FSF’'h =(c’F ®h'F)( -F ®F ) (y ®y).
Here, the indicated inverse exists, because the constraint Zj a j2 < e implies that

L;F igg"(F’Y < oo which in turn implies that all eigenvalues of F lie strictly inside the
unit disk. (Alternatively this sum can be expressed as the positive definite solution of

X =FXF’ + gg’, which exists if and only if | —F ®F is invertible.)
Nelson and Plosser (1982) suggests the ratio oe2 / 052 in the model y, = u, +v,,
where Au, =pu+A(L)e,, and v, = B(L)5,. Here
Ay, =A(L)e, +Au,

=A()e, +(1=L)BL)5, +[A(L)-A(D)]e, .
If v, is weakly stationary, Ay, = A(l)e,. Letd, = A(L)e, as before. Now
Ay, =c’'dx,_y+h'Fs;_y+8 +(c’b - 1)d,_; — h'ye,;
where A(z)=1+h"(zl —~F)'g and B(z)=1+c’(e/ - ¢)"'b. The ratio nu=cf/c?
appears in 0 as
0=A)2/ fAQ2+[1+(c’b — D+ Ry +c'®c +h'Shy

where ®=F ®F’+yy and S = ¢ S ¢’ +bb’. The same ratio p gives rise to different 0
depending on particular A(*) and B (). The same objection was raised by Cochrane as
well.

Finally consider a more general vector-valued y, with scalar unit root component,
i.e., y, has a single trend term. This is a special case considered in Aoki (1987), p. 39)
and has a standard representation *



T4 1 g’C) [ g’ T,
xgl= 10 F ||y |t |B|E =B Oy ¥ 6)

The transfer functionis [/ +hg’/(z -1)][I +C(zl - F y1B], so that Y; = Y1 has the
transfer function

Oz)=((z -1L +hg")(I +C @ -F)'B).
The random walk component is then Ay, = ©(1)e, and
yo =1 +c( —F) B -hg'C(zl ~F)Y'(I -F)'B

=] +[(I ~hg")C —-CF](z -F)'B
which has the state space representation
fie1=Ff,+U —F)'Be,, yp =[U -hg')c —cF1f, +e,.

Thus
var Ay, =tr[{I =v(I =FY'B}A{l —=v(I —F)'B}' + VF ®F V']
where
v=( -hg")C -CF ,
and
O=F OF' +( -F)'BAB'(I-F)!, A=cove,.
Here

VF ®F'V' =(VF ®VF)(I -F ®F)Y U -F)'B ®( -F)'B]vecA.

Example: The US quarterly real GNP from the first quarter 1947 has been
modeled by (6). In total 158 data points are used. After fitting one-dimensional trend
dynamics, several models have been tied to model the residual series. Denote the ratio
by 6(K, n) to indicate the model with X number of lags and the n dimensional state vec-

* The fact that the same e, appears in both equations is no restriction. The covariance matrix, with disturbances &,
in the first equation and 7, in the second, can be factored as

cov [%]: [’}]A(H' N

where A= cov e, where H = [gB’] See Aoki (1987, p.67)



tor is used. It is found that ,96’4 =4.4%, 03 4=5.5%. Thus we conclude about 10% of the

random walk components are contained in the US real GNP fluctuations from 1947 to
1986.

4. Examples

Two examples of this procedure, one on the univariate quarterly real US GNP
from the first quarter of 1947 to the second quarter of 1986, and the second on the bivari-
ate monthly series for the US M1 and CPI from January 1974 to January 1986 are
described in a separate paper. Figure 1 plots the residual series of the GNP and Figure 2
shows those for the M1 and CPI.

S. Conclusions

The two-step procedure of this paper improved on the separate detrending of indi-
vidual series. The method fails only when there is a unit root which is not controllable.
When this happens, it indicateds that the dimension of the common trend vector is too
large. By reducing it, the minimal state space representation (3) is achieved.

As in the individual detrending scheme of Kitagawa, there is room for some trade-
off between smoother trends v.s. more complex short run dynamics. If the lag length X
in the first step is chosen large covering one year or more of the data span, say, then the
trend dynamics tends to become complex, leaving smoother residuals, while a small K
and scalar dynamics for the trend leaves more complex residual dynamics. A large K in
the first step also reduces the ratio of the largest to the second largest singular values.
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residuals of 1ln rgnp by m2.1 for 1982 constant dollar data
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Figure 1

Residuals of ln GNP at 1982 comstant
dollar by a scalar dynamics (K = 2, n = 1)



residuals of ln ml cpi by mcpil-2
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Figure 2

Residuals of ln M1l and ln CPI by 2-dim
trend dynamics. (K =1, n = 2)



