Evidences of Unit Roots and Co-integration
in the Time Series for
US GNP, MI and CPI
by
Masanao Aoki

University of California, Los Angeles
USA

UCLA Working Paper #439
March 1987



Evidences of Unit Roots and Co-integration

in the Time Series for

US GNP, MI and CPI

by
Masanao Aoki *

University of California, Los Angeles
USA

Abstract

This paper describes the dynamic factor (state space) models constructed for some US
time series and test if the MI and CPI series are co-integrated in the sense of Granger and meas-
ure how much random walk component is present in the GNP series.

Dynamic factor (state space) models are constructed for the US MI and CPI monthly
time series with a common dynamic factor that explains significant movements in those two
series. Discovery of such a common factor is equivalent to the notion of co-integration ad-
vanced by Granger. To this end, a recently developed method of Aoki is used to (i) first con-
struct a low order dynamics for trend components and (ii) then the residuals are treated as weak-
ly stationary to which another model is fitted. This procedure results in a recursive dynamic
model in which short-run dynamics affects but is not affected by the longer-run trend dynamics.
This decomposition differs from the random detrending advanced by Kitagawn or Harvey be-
cause the latters produce block-diagonal dynamic matrices rather than block-triangular, i.e., the
trend dynamics and shorter-run cyclical dynamics are not allowed to interact.
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When the procedure is applied to the bivariate monthly series of the US MI and CPI from
January 1975 on, consisting of 117 data points, one dynamic factor is discovered common to
both series, so that 1.13 CPI - MI is co-integrated. The US GNP quarterly series exhibit the
strongest evidence for the unit roots among the three series examined. Here the issue is how to
define the random walk components. The paper proposes a measure different from that used by
Nelson and Plosser and Cochrane. The real GNP series from 1974 seems to contain less than 6%

of the random walk components.



1. Introduction

There now exists a growing body of literature on finding and measuring unit roots or ran-
dom walk components in nonstationary time series and on testing if some of them are co-
integrated. for example, a recent special issue of Oxford Bulletin of Economics and Statistics,
(1987), is devoted entirely to econometric modeling with cointegrated variables.

In particular, several studies are available on the quarterly US real GNP time series data.
These studies aim at testing the presence of random walk components or measuring their pro-
portion. Perron-Phillips (1986) report mixed results depending on the series they used. They at-
tribute their divergent findings possibly to the low power of the unit root test when the number
of samples is small. Nelson-Plosser series contain only 62 observations. Walsh (1986) and
King, Plosser, Stock and Watson (1987) examined other macroeconomic series.

The findings on the percentages of random walks in the US GNP fall into two classes:
Nelson and Plosser (1982) and Campbell and Mankiw (1986) found large components, while
Watson (1986) and Clark (1986) and Cochrane (1986) found small percentages of random walk
components. All of them used slightly differently specified models. Cochrane attributes these
divergent results to certain errors in neglecting sums of large numbers of small correlation
coefficients. Some studies fit a pure random walk model y, = py,_; + u,, where the disturbance
term is mean zero and uncorrelated across time and the hypotheses that p = 1 is tested. Others
allow for more structured residuals such as u; being AR (p) or rather rarely as ARMA (p, 9).
According to Cochrane those using low values of p and q found larger random walk component
than those with higher values of p.

Stock and Watson (1986) arbitrarily detrend the series by extracting a 1.5% annual trend
growth before testing for the presence of unit roots. This paper employs a two-step state space
modeling procedure which conforms to a canonical or standard representation of time series
with unit roots, recently developed by Aoki (1987) to re-examine the issue of percentages of
random walks in the US real GNP and the existence of co-integration in the US M1 and CPI
series, by first determining dynamics for random trends and then modeling the residuals by
another state space model. This procedure produces a recursive dynamic structure and is superi-
or to prior detrending and separate modeling of the residuals which produce block diagonal
dynamic structure with no interactions from the cyclical component dynamics to the trend
dynamics.

Use of state space models is also advantageous because it uses a finite number of param-
eters when data processes have rational spectral density functions, thus avoiding one source of
error of neglecting an infinite number of small correlations which Cochrane attributes as a
source of discrepancy of the findings in the literature. The dichotomous classification of Nelson
and Plosser is to posit either 1) y, has no determinstic trend, more specifically that y, —y,_; is
weakly stationary, or 2) y, contains a linear deterministic trend bt. This dichotomy is by no
means the only possible one. Rather than the dichotomy of deterministic v.s. random trends, it
is more useful to decompose y, into y,, +y,, where y;, has unit roots while yo, is weakly sta-

tionary.



2, Two-Step Modeling Procedure

The singular value decomposition of the Hankel matrix, which results from evaluating
the covariance matrix of a finite sequence of future realizations and past data stacked in a cer-
tain way, is the basis of the two-step modeling procedure. Let d,}; be Kp x 1 composed of
diy1s .- .5 dr,x stacked in that order and let d,” be Kp x 1 constructed by stacking d,, d,_;,
d, 5, . . .,d;_g. in that order, where p is the dimension of the data vector. Let Hy = Ed,},d,”".

When {d,} is nonstationary containing unit roots, then the singular values of H,
0, 20,2 ... are such that 0, / 6; and/or 03 / G; are very small. (The reasons for this are dis-
cussed later in the Appendix.) This fact allows one to construct low (usually one- or two-) di-
mensional random trend dynamic model by extending the procedure described in Aoki (1983,
1987) and applied in Aoki and Havenner (1986) to directly construct a model of this nonstation-
ary series

d =H1, +u,,
where u, is the (usually highly correlated) residual vector sequence.
When 1, is scalar-valued, A is one. When 1, is vector-valued, the eigenvalues of A have
magnitude one. To simplify exposition suppose that 1T, is scalar and rewrite the model as
Ta=PL+gu,, and d,=hTt +u 1)

where Ipl =1.

Next, apply the modeling procedure to {u; } to produce

x‘ +1 = Ax L4 + Be T

u=Cx,+e¢ 2)

where (2) is minimal dimensional in the sense that (2) is obervable and A is invertable. See
Lindquist and Picci (1979) or Aoki (1987, Chapter 5) for more detail.

Jointly {d, } is modeled as
Tr41 T g’
Xt +1 = Xt * B |%
T
d=(h c) [xi]”" 3
where



p g'c
Here e, = d, — d;,_ is the weak innovation vector of d;. Choose the initial condition T, and x
to be independent of €. In the Appendix we show that a unique symmetric, positive definite

7t = cov X exists if and only if the eigenvalues of F all have magnitude less than one. Similarly
from (1) and (2)

T,,1=aT, +g’D,g.

where
a=(p-g’h)*, T,=Et?, and D,=Edd,’

Even when d, is a pure random walk (then D, linearly grows with time), the above equations
converge ifa < 1.

Model representation (3) is used in empirical works because it conforms to one of the
standard representation of time series with unit roots. See Aoki (1987, p. 39).

3. Percentage of Random Walk

Cochrane (1986) proposed the ratio of the limit of var(y, —y,_) / k as k goes to infinity
over var(y, —y,_;) as a measure for random walk components in {y,}. We point out an undesir-
able feature of this measure, and propose an alternative. To simplify exposition we assume y, to
be scalar-valued, even though vector-valued y, can be analyzed almost as easily as the scalar-
valued ones. His measure can over or understate the content of random walks as we show
below. We approach the time series modeling from the state space viewpoint assuming that y,
has a rational spectral density function. This allows us to use a finite parametrization of the
model and avoid approximation of infinite sums by finite sums which Cochrane attributes as a
source of disagreement of empirical findings.

In the pure random walk model

Y =Y +d;

where d; is mean zero and uncorrelated with Ed? =g, the ratio of var(y; — ;) / k over
var(y; — ¥;-1) is one.

Consider next a model

Yt =Yp-1+4;
where d, is a covariance stationary process,
d,=A(L)e;, 4)



AL)=ZgL!, a9=1, Zaf<e, (5)

and ¢, is an i.i.d mean zero white noise with variance A. When d, has a rational spectral densi-
ty, it has a finite-dimensional state space representation

Xr41 = Fx; + gey,

d,=h'x, +e, (6)

with some finite-dimensional vector x,. The parameter g; in (5) is the impulse response of (6),
i.e., a@; can be represented as

J
aj=h’Fi7lg, j21, ap=1 )

This finite parameter representation is more useful than (5) because no infinite sequence need be
used. For example

jElaj=h'(I—F)'1g, and Zilaf=1+h"X h

where
X=FXF'+gg’. (8)

The constraint on a’s imply that the eigenvalues of F all lie inside the unit disk. The Lyapunov
equation (8) has a positive definite solution if and only if F is asymptotically stable because X
is symmetric and positive definite. (Bellman (1960, Chapter 12) or Aoki (1987, p. 251)). Since

var(y, = y,x)=var(d; +d;_1+ ...+ d;_41) -
k-1
=kpo+2Z (k-Du

where

Ko =var d, ,
and 7

W =E d,y,d;,
the limit of var(y, —y;_) / k is g+ 2Z ;. Clearly

P«o=(§aj2) 0'3,

and the limit of var(y, —y,;) / k is given by (X a; )? 62. A simple way of seeing this is to use
the spectral decomposition theorem. (See Whittle (1963) or Aoki (1987, p. 69) for example.)
The sequence {d, } has the spectral density function

SE)=Z pz~!



=W(z) W(liz) o
where W (z) is the transfer function of the system (6), i.e., W(z) =1 + h'(z — F)lg. There-
fore, noting (7), we have
S()=[1+h'd -F)'g)%c?

=(Zj04a)? 0.
Cochrane’s ratio is thus equal to
2
[Bro0e; ) 12002

This ratio can be greater or less than one. For example, suppose a; =0 for j 22. (This
corresponds to F =0 in (3).) Then (1 + al)2 /(1+aji ) is greater than 1 if @, > 0 but less than 1
if a; <0. This defect calls for an alternative measure. The reason that the ratio may become
greater than one is that the denominator becomes less than the numerator if the correlation
between the pure random components and weakly stationary components are negative. For ex-
ample,

Ve~ Yi-1=6€ +a 6,

=(+aye —ale —e.y).
Here the random component and the weakly stationary component is negatively correlated when
a;> 0.

We propose a measure 0 as

var A
6= Y 1

var Ay,, +var Ay,

after y, is decomposed into y,, + y2, where yy, is the pure random component. The notation A
stands for the first difference and Ay, is defined to be Ay, — E (Ay,, |Ayy,) where E denotes
orthogonal projection.

The value of var Ay y i is the same as the limit of var (y, —y,_x) / k as k goes to infinity
and can be identified as A (1)°G2 when d, is given by (1). To see this, rewrite the model (4) as
d,=e +h'(zl ~F)ge,

=A(l)e, —(z — 1) k'l —F) 'l —-F) ' ge,
Then

AQ)

p— —h'(edd =FY I —-F)" ge,

I =

In the above equation, we can identify the pure random walk component,



Ay ; =A(1) e

and a weakly stationary component as

Yu ==h'(d ~F)y'I -F) ge,.

var Ay,, can be calculated as follows. First, note that the component y,, has a represen-

tation

Yo =h's,

R A
where

y=U-F)'g.
Second

Ay, =h'(s; = 5;_1)

= h'Fst_l - h'\|!€t_1.

Since s, and e, are uncorrelated for all z 2 0 by construction (s is chosen to be independent of
€)s

var Ay, =var Ay, = h’FSF’h + (h'y)? o2

where
S =FSF’ +yy'c2,
or
S=62Z
where
Z =FZF' + yV'
Thus,
0= [1+h'd —F)lgP?
[(1+h’d -F) ' g2+ (h'y)?+ h'FSF’h
where |

h'FZF'h =(h'F ©h'F)( -F OF)! (y ©y).



Random walk components of a more general model can be similarly examined. Before
we proceed to it, we remark that the measure suggested by Nelson and Plosser (1982) also have
some undesirable features. To demonstrate, consider their model

Ye=u +v;

(1-L)u,=AL) e
and
v, =B(L) ;.

In the above, we set the deterministic drift term to zero since it contributes nothing to the
variances. Note that the term (1 — L) u, is the same as d, analyzed above, and hence

var Ay, =A(1)? o7,

because v, has no random walk component. Here, Ay,, =(1 —=L)B(L) §,. The term v, has its
own state space representation

Si41 = Fs;, + 88,
v, = h's; +9;.

Noting that

Vi =V;_1=h'Fs;_1+ 8, +(h’g - 1) §,_,,
we can write

var Ay, =[(h’g - 1>+ 116+ h’F X F'h o%,
where

S =X of,
and

X =FXF’ +yg’,

assuming that §; and e, are uncorrelated for simplicity. Then

0= AD?
A +{[1+(h'g — 1?1+ h'FXF'h}p

where

n=of/c2



This shows that  alone is not a good measure because its effect on var Ay,, is affected
by the system parameters #, g and F, and J does not uniquely specify the random walk com-
ponents. Only in the extreme cases, such as F =0, h’g = 1, u alone suffices to specify the vari-
ance ratios of components of y(0 =4/ (4 + 1) then).

4. Example: Logarithm of the real US GNP

When a mean zero time series is modeled as
Yer1 =N U )

where u, is a mean-zero independent process, then (9) describes a pure random walk process.
More often, however, the series {u,} is correlated. As an example, the quarterly US GNP series
from the first quarter 1947 to the second quarter in 1986 is fitted by a state space model.

State space models may be thought of as a generalized and flexible way for handling
serially correlated residuals after a major portion of the trend effects are captured by a univariate
model of the form

Xe41 = PX; + bldy,

Y =CX + Uy, (10)

where the residuals are highly correlated.

Here Ey2=.129 and Eu?=.5x10"2 With K =2, 6,/6;,=.15x 10 The system
parameters are: p =.979, b =2.87 and ¢ = .356. Figure 1 plots the u, series. The first order au-
tocorrelation coefficient of u, is about .60.

The series {u,} is then further modeled by
X41 = AX; + Be,
u, =Hx, +e,.

For example, with dim x, = 4, the 4 x 4 Hankel matrices constructed from {u,} with K = 6 and 7
are used. With K =7, the matrix A has eigenvalues X, =.968, A,=.472 and
A34=.0181j .803. The residuals {e,} has covariance .11 x 10™ with excellent residual
characteristics. For example, the first order autocorrelation coefficient is 1.9 X 107* and the
second is 1.9 x 1072,

For this model 0 = .0554 is obtained. With K =6 and n =4 the ratio is 6 =.044. After
several sensitivity analysis, the models with K =6 or 7 and n = 4 seem to have the smallest A.
From these, we conclude that the random walk component is about 6% or less.



5. Are M1 and CPI Cointegrated?

When /n CPI is modeled as a univariate series by the state space method, the model is

y, = 228%, + U,

{x,+1 = 978, + 4.69u,

where {u,} is correlated. For example, p; = .78

The univariate M1 is modeled by itself as
.xt+1 = .9721, + 5.31ut
¥, =.198x, + u,

where

P1= 71,

When jointly modeled as a bivariate series by a first order model, the residuals are shown by
Figure 2. A second order state model, however, produces much smaller residuals shown in Fig-
ure 3. The plot also makes clear that M1 and CPI are closely related, co-integrated, as it turns
out. The second-order random trend is modeled as

fin=

m 4
cpi|, =

r

977
-.004

-

197
227

-.030
953

-

.020
-.017

o

3.05
fi+ 13977

fr+u

where the residuals are then modeled by

Xe41 =

U =

A single factor model for the trend is

r

943
066

\

(0069
0073

L

-.125)

-.075

42.30
% |-917.07

.00203

977 -030 .032 009
-.004 953 012 012
0 0 943 -125

0 0 .066 -.075

.00191] X te

The joint model has the dynamic matrix

1.56
-35.96 | %

34.29
49.55 | &



X401 = .97Tx, + (1418 3.174) u,,

m 197
cpi |, = |227 [ B e

Thus, the series are co-integrated with the ratio .227 / .197 = 1.15 because m, — 1.15 cpi, elim-
inates x, leaving only the linear combination of u, which is weakly stationary. The two factor
models has two factors

F 141 =981f 4, +(=33.07 33.67) u,
and
fore1 = .948f 5, + (36.13 32.11) u,.

m .195 262

epi |, = | 220 | F1et {210 |2+
Here the first factor has the ratio 1.17 and the second .80. These two factors are uncorrelated
except through the u, disturbances. :

and

The two factors in the two-factor model are uncorrelated with the same magnitude;
V.9788 = V.9769.

Since the contribution of f,, to the trends is about 10% or less of that of f ;,, one could ignore
f 2. If fo is retained, then the two-dimensional vector y, = (m, , cpi,)’ is co-intgrated if lagged
variables are allowed, i.¢., ;43 — 1.93y;,1 — .931,, is a functions of u,3, ¥ and y; alone and
thus weakly stationary. Where 1.93 is the trace of the dynamic matrix and .931 its determinant.

6. Concluding Remarks

This paper shows that the state space modeling procedure in Aoki (1987) can be extend-
ed to a two-step procedure to deal with nonstationary time series which is superior to prior de-
trending of individual series as used by Kitagawa in Akaike (1985). This two-step procedure
has been applied first to the US real GNP series after a new measure of the random walk com-
ponents in nonstationary series is proposed. This new measure corrects some undesirable
features of some previously proposed measures. The two-step procedure is then applied to the
US MI and CPI to obtain the vector of co-integration. These two series are shown to have two-
dimensional random trends rather than a scalar trend.
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Appendix 1

Convergence of the Iterative Procedure

The matrix Riccati equation
R=ATA +(M-ATC") (A - CnCY (M -ARC’Y (1)
may be solved iteratively
My =ATA + M —AT,C") (Ao -Cm,CY ' (M -AT,CY.
Let
Z, =M,y —T.
Then {Z,} is generated according to
Z, 1 =AZ,A’—AZ,C’ (Ao - CrCY' (M —ARC’Y ()

(M =ARC’) (A, -CnC"YICZ,A’

+(M ~ATC") (Ag - CTC) 1 CZ,C" (Ag—CTCY (M —ATCY +. ..

to the first order of smallness in some norm measure of Z,. Here we used an approximate ex-
pression

X -Y)yl=x1l+xlyx14. ..
when the indicated inverses exist. Taking the vec of (2) and noting that
(A+B)QA +B)=A QA +B ©A+A OB +B OB
we can rewrite (2) as
vecZ,, = (F OF)vecZ, (3)
where
F =A -BC
because (M — ATC") (A, — CrC’)lis equal to B.
Eq (3) shows that Z, — 0 as n — oo if and only if all the eigenvalues of the matrix F are

less than one in magnitude, i.e., if F is asymptotically stable. This stability condition fails if
IA] = 1 is an uncontrollable eigenvalue for the pair (A, M).

To see this, it is more convenient to examine the eigenvalues of F' =A" — C’B’. Sup-
pose that A’z =Az and M’z =0 for IAl =1. Then

13



F'=A’"-C’A'M’-CrA’)

=( +C’AICm)A’-C'AM,
Rewrite the right side of the Riccati equation as
ATA’+ (M —ATC’Y (Ag—CRCY ' (M —ARC’Y

=¥'n¥ + D +¥'nC’A"ICnY
where
¥=A-MA;'C, Q=C'A;'C,
and
D =MAM™,
From which we note that
¥ lm-D)¥l =(n'Q) =n( -Qm)”
ie.,
I+CACr=( -0m)L.

Express the symplectic matrix associated with the Riccati equation as (o2 l<I>2 where

I -0 ¥ 0
Then & satisfies
1 I
(DZ T = d)l r K

Then K is related to I" of the Shur decomposition of the symplectic matrix

orf)-op)r
1% 1|B
by KU = UT and & = VU ™!, From the above follows
I -Qm)t=K¥7,
ie.,
[+CAICr=K¥L.

Therefore
F'=K¥'A -C'A'M’

14



=K +K¥IC'M’-C'AM1.
Let z be as assumed above. Then
F'z =Kz =)z,
ie., gheFuncontroIlable eigenvalue for the pair (A, M) is inherited by the Kalman filter dynamic
matrix r .

Otherwise, |A(F)| <1 and the iterative procedure converges.

15



Appendix 2
State space model of a mixed data generating process.

This appendix shows analytically how the proposed modeling procedure works when ap-
plied directly to a time series which is a mixture of random walk and a weakly stationary series.

Suppose that y, has two components

Ye=Y1utYx
where y, is a random walk
Yusr=Yu+tm
and y,, is weakly stationary. The weakly stationary component is modeled then by

y2t =Cx‘ +W,.

For simplicity assume that n, and w, are uncorrelated and that x, is scalar. From the model
dynamics

Yas1 —Yau =c(P—Dx, +(bc — Dwy + wyyy,
we see that
Var(yaes - ya) =cXp - 2 x4 [(bc - 1)’ + 1] o
where
n=>b%2/(1-p?

and

y% =02 +cn.

The covariances have the structure

Ye = Ye4k Yt =)’12t + Czpk_l» k21,

where
62 =y2 /[1+b%2/ (1 -p?),
and where

ylz,_k =y12, —k0'2, 0'2=varn,.

16



The Hankel matrix

Ye+1
H=E | : D¢ Ye-1- - - Yokl
Ye+k
can be written as a sum of two rank one matrices

H = (o] ulu'l +§u2v’

where
;= cX(1-p%) /1 (1-p?)
’ 1— 2 -
u = \’—I-T‘-)%?(lppz...pl( b,
£="K 6g
up=—=(1...1)
2=
v,zglk_(n,n—cz,n-202,---,T\-(K—l)oz)
where
n=varyy
and
02 =K [m*-no* (K-1) + *0(K)]
where

KoK)=3K, i2=K(K+1) (2K+1) /6.

To illustrate the procedure for building a state space model for this mixed process, we
assume that the random walk component is small in the sense that £/c; is a small parameter H,
which is of the order n and we drop terms E‘,z/of and higher in our later developments where

2
Elo =—I-(—(L"—92—K)—)ﬁ2{1—p2(1(—1)}+o4¢(1<)

Y ek1-p
For later use also define two constants
-2 — oK -
a=uv=N-L o 1-p n_olpK(K 1)
1-p 1-p 2

and

17



Y _nK
b=uu;= 1 2‘} 1-p | —li-lg—->0
1-p*")K | 1-p (1+p*)K

We assume that lal and || are less than one since a is of the order M, a is expected to be
much smaller than b.

First, we obtain the singular value decomposition of the Hankel matrix
H=UZV’
by calculating the eigenvalues and the eigenvectors for HH’ and H’H. We have
HH’ [uquyl =uus) E

e €12
T & Enl

Ej1=0f+01abE, & =ofb +0yak,

En=0at+bE%, En=oabt+E2
The matrix U is given by

U =[uq,uy]X

where

44

where
EX =XX?

22 = diag. (A, M),
and the eigenvalues are

A, =62 (1+2abp) +0&)
and

Ay = ofu(1 -a?) (1 - 5% +0E>).
The matrix X is of the form

xp g
x= [l *1 X2 ]

where

and

18



Iy= Mo, +0 (.
€21

The matrix U is orthogonal, i.e.,

NI
I=X"1, 11X

The matrix X is given as
1 b /V1-b2
X= [0 1/V1-b2 ]
Proceeding analogously, define © by
H'Hu; v] =[u; vl e

o n 6
T [0 O
911 = 0'12 + O'lab a, 912 = 0'12 a+ Glbg,

01 =0b€+a éz, 02 =0,abE + §2.

The matrix V is then given by

where

V=[u, vliY
where
QY =Y1?
The normalization V'V =1 gives Y to be
1 —a /‘/—1_—_ai
= [0 1/V1-a? }
Since
HA =poy uquy +Euyv’,
we obtain
A =THUHAVI™,
and from
H =co, u, + -\/-§[-<= v’
we compute
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¢=HVI™
The model has two factors, x,, and x,,, which evolve with time according to

[ 2

1/4
a

X1t41 = PX 1y +\/Eb [1

9 _ 2 V4
Yl B e ~
X4 =GR Y Xy +Xo + 826 =X + 826

and because a is of the order N which is typically smaller than b.

1/4
¥ = +apNoy /K ) xy, + (0 w/ K)* [l—a ] Xy te

1-b2
=exy + (0 /K21 -a®) 1 (1 =-bH] Y xy + ¢ (1)
where
%‘;- =n\/1 -8 &-1)+ % OK).

At one extreme point i = 0, the procedure recovers the state space model for y, and y,;. Note
that if the y,, component is absent, then H = §u%v’, HA =Eu,v’ and H® = OKV’ U =u,, and
V =v,, and Z=E&. From these, one calculates EAU'HAVE ™ =1 and H°VE™#=VE/K asa
and c, i.e., we recover a random walk model

X 41 =X +be;

Y = \‘E‘,/Kx, +e,

Yes1=Y t+ \j 'Ig(" be,

=y, +U.

or

For small i, the model has the triangular dynamics of the canonical representation in Aoki
(1987, p. 39)

X2r41 1 h X2
[x11+1 ]= [0 P] |:xlt ]+e,, and y; =cpXy FCo¥u + &

where ¢, and c, are as in (1).
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The ratio of the singular value is

VA I =p V(1 -a?) (1-bY)

which is typically of the order 1073 or less for small K. The ratio 0, / 6; of the real GNP series
is 2.4 x 10~ when K = 2. This indicates that 7 is of the order 107,
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residuals of ln rgnp by m2.1 for 1982 constant dollar data
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Figure 1

Residuals of ln GNP at 1982 constant
dollar by a scalar dynamics (K = 2, n = 1)
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residuals of ln ml cpi by mcpil-2
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Figure 2

Residuals of ln Ml and ln CPI by 2-dim
trend dynamics. (K =1, n = 2)



residuals of 1n ml cpi by mepil.l
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Ficure 3

Residuals of ln of M1 and CPI by a scalar
model (k = 1, n = 1).



