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ABSTRACT

This paper provides new diagnostics for evaluating the appropriateness
of distributional assumptions in econometric models of duration. The
exposition is in terms of the Weibull distribution, but the method is
applicable more generally. The diagnostics developed are score tests of the
null hypothesis of Weibull distributed durations (conditional on covariates)
against alternatives which are based on expansions of various orders in a
system of orthogonal functions. The statistics essentially test whether
moment restrictions implied by the null specification are satisfied by the
data. The paper also shows that recently developed diagnostics for
uncorrected heterogeneity essentially amount to testing whether a particular
moment relationship implied by the null is satisfied.



INTRODUCTION

This paper provides new diagnostics for evaluating the appropriateness
of distributional assumptions in econometric models of duration. The
exposition is in terms of the Weibull distribution, but the method is
applicable more generally. The Weibull and exponential distributions are
popular assumptions in the economic literature modelling duration of
unemployment [Burdett et al (1984, 1985), Flinn and Heckman (1982), Katz
(1985), Lancaster (1979), Sharma (1986)], duration of strikes and work
stoppages [Horvath (1968), Newby and Winterton (1983), Kennan (1985 a,b)]
and the duration of other social processes. The diagnostic statistics

developed for the Weibull distribution specialize in a straightforward

~ manner for the exponential distribution.

The diagnostics developed are score tests of the null hypothesis of
Weibull distributed durations (conditional on covariates) against
alternatives which are based on expansions of various orders in a system of
orthogonal functions. The statistics essentially test whether moment
restrictions implied by the null specification are satisfied by the data.
These kinds of specification tests have been recently studied by Newey
(1985) and Tauchen (1984).

Chesher (1984) developed a score test for neglected heterogeneity when
the variance of the heterogeneity is small. He also showed that this score
test was equivalent to the Information Matrix test proposed by White (1982).
Lancaster (1985), following Cox (1983) and Chesher (1984), developed a score
test for neglected heterogeneity in the context of the Weibull duration
model. Sharma (1986) presented another score test for detecting neglected

heterogeneity in the Weibull model. This paper shows that the approaches



taken by Lancaster (1985), Kiefer (1985) and Sharma (1986) are essentially
equivalent, and more importantly that the test they propose amounts to
testing whether a particular moment relationship implied by the null is

satisfied. In this sense the previous approaches are a special case of the

method adopted here.



SECTION 11

Suppose the data available to an econometrician is (ti, Xi’ Si),

i=1,2,...,N where t, is the duration of a particular event, Xi is a (row)

i
vector of covariates associated with the duration ti’ and Gi is an indicator
variable depending on whether the duration is censored or not. An
econometric duration model attempts to find the effect of covariates on the
duration of an event, and also whether there is any duration dependence.
Further, the econometrician would like to know whether conditional on
covariates the distribution of ti can be reasonably approximated by some
simple distribution.

Most duration models are specified in terms of the hazard function,
which is merely a convenient transformation of the density function.1 The

hazard function of a distribution with density function f(t) and

distribution function F(t) is

$(t) Limit prob (¢t < T < t + At) 1
At - 0 At prob (T > t)
f(t f(t
) . (1)
1 - F(t) F(t)
where F(t) = 1 - F(t) is called the survivor function. The density and
survivor functions can be written in terms of the hazard function as
t
f(t) = ¥(t) exp { 'I ¥(u) du }
0
— (2)

t
F(t) = exp { - j Y(u) du }
0

1see Cox (1962).



When we have covariates the conditional. hazard function can be written

as

x(t,x) = ¥(t) . $(x) — (3)

The choice of ¢(t) depends on the data. A natural assumption for ¢(x) is
exp (xB), where B is a column vector of coefficients, because it guarantees
the non-negativity of =(t,x). Other specific forms for ¢(X) can be used,2
but most suffer from the disadvantage that the set of g values have to be
restricted to ensure non-negativity of the hazard and, also because such
restrictions add to the complexity of computation.

Consider the hazard model

n(t,X) = ¥(t) exp (xB) (4)

This specialization of (3) is called the proportional hazard model and is a
widely used framework for specifying duration models.3 The exposition in
this paper uses the Weibull distribution as the null case, implying

1

P(t) = at®’ (5)

The Weibull distribution is a reasonably flexible assumption allowing for
both positive and negative duration dependence. The Weibull distribution
and its specialization the exponential distribution are popular assumptions
in econometric duration models. [See for example Burdett et al (1980, 1984,
1985), Flinn and Heckman (1982), Newby and Winterton (1983), Katz 1985),

Kennan (1985a,b), Lancaster (1979), Sharma (1986)]) However, it should be

2see Feigl and Zelen (1965), Zippan and Armitage (1966), Greenberg et
al (1974).

3The proportional hazard framework was proposed by Cox (1972). A
review of the framework is provided by Breslow (1975), Holford (1976) and
Kay (1977).



emphasized that the method of developing diagnostics presented here can be
used for arbitrary null distributions.
The hazard, density and survivor function conditional on covariates are

written as

e.X) = at® ! exp (XB)
f(t,X) = at®! exp {XB) exp { -t% exp (X8)) — (6)
F(t,X) = exp (X8 - t% exp (X8))

Suppose the data comprise of Nl complete spells and N2 right censored
durations. Under the assumption that the observations are independent the

loglikelihood function is

N
1
{*1
1 = 131 {In a + (a-1) lnti + Xiﬁ - ti exp (Xiﬁ))
N, )
+ = -t X,
I { j exP ( Jﬂ)}
Ny N
1 = 2 (lna+ (a-l) lnt; + X8 + T ( - t? exp (X.8))
1=1 j=1 i j
3
N a
1 = 1§1 [ 6i {In @ + (a-1) lnti + Xiﬂ} - | ti exp (Xiﬂ)} ]

— ()

where 51 - { if spell is complete

if spell is censored

Estimates for the parameters [a B']’ are obtained by maximizing (7). Let
X = [xl,...,xm] be a lxm vector with the first term being one and the rest
representing (m-1) covariates. Let v = [a B']’' be a (m+l)xl vector of
parameters, where g 1is a mxl vector X. The first and second derivatives

of 1 with respect to parameter vector <« are



51 61 1
E; - i - izl [ 61 { = + lnti } - {ti (1nti) exp (Xiﬂ)}]
N
61 [ a
—= z §. X.. - t., exp (X.B) X, }
58, 11 i 1 i i il
I |
51 N
-— z [ §. X -t exp (X.,8) X ]
sﬂm i=1 im i H
— (8)
521 ) s21 541
§vy' 6’ 602 sabp’
5§21 521
sabp 6868’
) — (9
where
2 N
&1 - % 5. (-2 ) - (¢ (nt)?  exp (X.B) )
2 i 2 i i i
Sa i=1 a
521 - g -t (Int.) exp (X.8) . X
Sasp’ o1 i it TS S (!
2 N
671 (» '
-8/98_ﬂ'_ - ifl - ti exp (Xiﬁ) . Xi Xi

A

The maximum likelihood equations %% = 0 can be solved for vy , the

maximum likelihood parameter estimates, using the Newton-Raphson method.4

4The loglikelihood function is concave in vy = [a B']’ over its entire
domain. Hence, the Newton-Raphson method leads to a global maximum, see

Sharma (1986).
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Let I(y) = E [ - 3%3%, ] be the information matrix. For the central
limit theorem to apply to the score %% , we require certain restrictions

on covariate vectors Xi and the censoring mechanism. The relative

information from any observation i , should approach the zero matrix as

N - » . Also, the censoring times must not converge too rapidly to zero, as
N - @ . Given these conditions, the asymptotic distribution of the score
§L i{s multivariate (m+l) normal with mean zero and variance I(y), whereas

S

that of 7 is multivariate (m+l) normal with mean vector <y and variance
1-1(1). In both asymptotic results, I(y) can be replaced by the

2
observed information matrix I(y) = | - 355%7



SECTION III

In this section, diagnostics for assessing the appropriateness of the
Weibull specification are developed. The statistics are Lagrange multiplier
or score tests5 of the null hypothesis of Weibull distributed durations
(conditional on regressors) against alternatives in a family of
approximations to arbitrary distributions of non-negative random variables.
The alternatives considered are defined using expansions of various orders
in a system of orthogonal functions (which are generalizations of Laguerre
polynomials).6 First, the system of orthogonal functions used is defined,
then the class of alternative hypotheses is developed and lastly the
diagnostic statistics are derived.

We define a system (sequence) of functions (fn(n), n=20,1,2,...} to be
orthogonal on the interval a <t <b , with respect to the weight function

w(t), if

b
I . fn(t) fm(t) w(t) dt = O —_— (10)
for n»m; nm=20,1,2,.....

The system of functions we consider are defined by

N a.r
n (-t7)
Ln(t) - rfo [ n-r ] ———;?———— — (1)

5see Breusch and Pagan (1980), and Engle (1982).

6see Szego (1975), Chihara (1978).



where o > 0 1is a parameter.7 The weighting function is
a-1 o
w(t) =at exp (-t ) — (12)

The following theorem is basic to the development and interpretation of the

diagnostic statistics proposed.
THEQOREM: The family of functions {Ln(t)} defined in (11) is orthogonal on

the interval O < t < o , with respect to the Weibull weighting function

defined in (12), that is

a-1 a
IZ Ln(t) Lm(t) at exp (-t7) dt = 6mn
1 if m=n (13)
where amn = {
0 if m»n
Proof: see Appendix A.
The first five functions in the family (Ln(t)} are
L0 () = 1
L (&) = 1- t% (14)
1 [ 2a a
L2 () = 2 | t -4t + 2 ]
Ly (t) = % Ce3 y 9e2% | 18c% 4 6 ]
L, () - - 1663% +72¢2% © 96t® + 24]

The family of alternatives to the Weibull defined below is one in which
the Weibull distribution is nested and one which allows a number of
interesting departures from the Weibull. Let p(t) be the density of a non-

negative random variable (eg. duration of a particular event). Since the

7Note that for a = 1, the system {Ln (t)) reduces to the Laguerre
polynomials.
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density is unknown, we assume p(t) belongs to (or can be approximated) by

the family

p(t) = cxtm-1 exp (-ta) [ 1+ 2 o, L, (v) ] — (15)

o1 43

where Lj(t) is the jth member in the orthogonal family of functions (Ln(t)}.
The Weibull distribution is nested in the family since

p(t) = ata-l exp (-ta) when the ej are zero for all j. Hence, testing the
null hypothesis that the distribution is Weibull reduces to testing whether
ej = 0 for all j.

The testing of ej = 0 has a simple interpretation. Multiplying both

sides of (15) by Lk(t) and integrating gives
E[L()] = J: L(t) p(t) dt

a-1 exp (-ta) dt

- I: Lk(t) Lo(t) at

@

+ 3 e Im (t) L, (£) at
=1 3 Jo L ]

a-1 exp (-t%) dt

- ek — (16)
For example, testing 63 = 0 essentially amounts to asking whether the data
satisfies the following moment condition

E[ -t ®+9t2 .18t +6]=0

an

Hence, the score tests analyzed here are essentially specification tests
based on moment conditions like (17). This class of specification tests,
called M-tests, have been studied recently by Newey (1985) and Tauchen

(1984).
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In practice p(t) can be approximated by

p(t) = at®! exp (-t% (146l () + ... +6L ()]

(18)

which represents a truncation of (15). 1t is possible that for the unknown

;= 0, 3=2,..., n there are 6, for k > n which are

significantly different from zero. Clearly, this is not a practical problem

density that 8

because if a distribution agrees with the Weibull in the first four or five
moments it can be reasonably assumed to be Weibull without any great loss.8
We now derive the diagnostic statistics. It should be emphasized here
that the hypothesis being tested is examined conditional on estimated values
of the parameters v = [a B']’. The question addressed is whether
conditional on the best estimates (by the maximum likelihood criterion),
there is any evidence of misspecification.9 In what follows it should be
understood that a and S are the maximum likelihood estimates of the
parameters estimated under the null. The null hypothesis is that the

duration distribution (conditional on regressors) is specified by
£(6:X) = at® ! exp x8) exp (-t%™) = ™l ep (it —— a9
where n = exp (X8).

Using the transformation 2% = nta we see that z has a standard Weibull

density
p(z) = az® ' exp (-z%) —— (20)
The class of alternatives is defined by

p*(z) = az® 1 exp (-2%) [1 + 8L, (2) + O,L, (2) +...+ 6 L (2)] —— (21)

8For larger sample size the researcher may want to consider a larger
class of alternatives by increasing n in (15).

9see Kiefer (1985).



12

The above density cannot be directly used since 2z contains unknown

l/a

parameters. Changing variables, (using the transformation 2z = g t)
defines the class of alternatives as
pr(e,X) = at® g exp (ene®) [1+ 6L (0% + 8,1, (n7/%0)
1/a
+...+ enLn (n7/7t) — (22)

Consider the case when all the observed durations are complete. [The
case when there are complete and censored observations is considered in
Appendix B}. Using (22), N'1 times the loglikelihood function under

independent sampling is

N

1 = 2 5 1n P’ (£,X) — (23)
N i i
{=1
1 N L
- In a+N'(@-1 X In(t) -N~ T X}
i=1 f=1
N x, 8 N
.t s ¢ e 8l 2 1n c,
i=1 i=1
1 1

[e] a
vhere C, = [1+ 6L (5 t) +...+8L (n t)]

The null hypothesis is that conditional on X, the duration
distribution is Weibull. This is equivalent to asking whether Gj =0,

j =1,2,...,n. The score vector under the null is given by
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- - \ 1 -
§1 51 1 a
¢ ~ |8, | T | N E L (gt
1 i=1
1
N ad
51 1 a
- = Z L, (n; t,)
692 N im1 2 i1
| |
1
N —_
51 1 a
56 N I (ny &)
- n | i i=1 )
(24)
51 .th : .
Notice that 6. is just the sample mean of the j function in
h| 6 =0
the orthogonal system of functions {Ln (t)). Also, note that the test of
61 = 0 1is not meaningful because
N X B
L - xt 2 oa-g et — (25)
1 i=1

is identically zero when evaluated at the maximum likelihood estimates of a
and B.
Consider first the testing of the simple hypothesis 92 = 0. The

Lagrange multiplier statistic is given by

&)

Z — (26
(2) Vo (26)
In (26), V,,,, an estimate of the variance of P , 1s given by
(2) 892
N
1 = .2
Vo T 2 5 Tt tad 27
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e R

where L21 - L2 (n. t) and the bar denotes the sample mean. The proposed

diagnostic is a score test where the variance of the score is not directly

based on the information matrix. From standard score theory, Z (2) has an

asymptotic distribution which is xz (1), and the calculated value of 2(2)

is compared with the appropriate significance points of the distribution.
In order to test 82 - 93 - ... = Sn = 0 we use the score vector

defined in (24) and an estimate of its variance, the (n-1) x (n-1) matrix

V(n)’ whose (j,k) term is given by
1 N - -

The statistic used is Z(n)’ defined by
51 -1 5l
w= 8] [ [&] 2%)

which has an asymptotic x2 (n-1) distribution.

Z
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SECTION IV

In this section we consider score tests for heterogeneity.
Heterogeneity is defined as unmeasured and measured exogenous variables that
vary across individuals in a particular sample. In duration models not
correcting for heterogeneity across observed units in a sample can lead to
biased estimates of duration dependence and coefficients of the included
covariates, and hence have serious consequences for the interpretation of
econometric results.

Suppose that the individual characteristics in the 1lxm covariate vector
X do not sufficiently control for heterogeneity or that the presence of
"unobservables" does not justify the assumption of homogeneity for the
sample under consideration. In thé Weibull model the actual hazard function
is

x - ata-l exp (X8 + v) — (30)

where v 1is an unobserved random variable whose distribution is not known.

There are three possible interpretations of u.lo We assume that vector X

contains a constant term and therefore X8 can be written as ﬂl +

WD) hen xS (X, X5,...,X ) and gD (B, By...-.By). Ve can

interpret v as heterogeneity with respect to the parameter ﬂl. The other
two interpretations arise out of the effects of measurement errors in the

1)

vector X or duration t.
Let the distribution of v across the observed units be given by the
density q(r). The duration density of t, given X gand v is

f(e,X,v) = at:m-1 exp (X8 + v) exp {-ta exp (X8 + v)) —_— (31)

10see Lancaster (1985).
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while the duration demnsity conditional on X alone, and which is the
density relevant for data analysis is

f(t; X) = J” f (t; X, v) q (v) dv. — (32)

Note if v was a degenerate random variable (i.e., there was no
uncorrected heterogeneity), (32) would be identical to (19).

In the simple linear regression model, omitted regressors create a
problem only if the left-out variables are correlated with those included.
However, in the duration models we are considering, this no longer holds.
To see this formally, assume that v 1is distributed independently of X and

t. The survivor function conditional on X and v is
F(t;X,v) = exp (-t% exp (XB + v)) — (33)

and that conditional on X alone is

F (t;X) = Jm exp (-ta exp (X + v)) q(v) dv —_— (34)

The hazard function of the survivor function in (34) can be derived as

r (t;X) = - iIn F (t,X)

d
3t (35)

ata'l exﬂ Im e’ . ¢ (v;x,t) dv

exp (-t exp (X8 + v)) qv)

Im exp (-t% exp (X8 + v)) q(V)dv

where ¢ (v;x,t) =

is the density of v, conditional on duration greater than t.

1f there are no omitted regressors and v 1is known, we get from (30)
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In n(t;X,v) = lna + (a - 1) Int + X8 + v — (36)
§ln n(t;X,v) _
6xj ﬁj (37)

If xj is the natural logarithm of some economic variable, ﬁj can be
interpreted as an elasticity with respect to that variable. With omitted

covariate we have, from (35) that

In #(t,X) = lma+ (a - 1) Int + X8 + InE (e | £ > ©) —— (38)
61n6;(t,X) B, [1 - t% exp (X8) Var (e’ | € > t)] — (39
j J

This implies that the impact of included economic variables on the hazard
rate, besides being diminished is also dependent on the duration t. Hence,
the estimates of the coefficients of the included covariates can be biased
even though the excluded variables are uncorrelated with them. Note if
there is no heterogeneity with respect to v, (39) reduces to (37).

The standard practice in recent econometric work has been to assume
that f£(t;X,v) and q(v) belong to some simple parametric families of
distributions. The choice of the mixing distribution q(v) is generally
arbitrary, being justified in terms of analytical or computational
convenience. Since the estimates of the parameters of duration models maybe
sensitive to choice of the mixing distribution it is important to have
diagnostics which point out the extent of heterogeneity.11 Further, since
q(v) is generally unknown, we need a statistic which does not require any
particular specification of q(v).

Given a constant term in vector X, without loss of generality, we can

assume E(v) = 0. Also, let the variance of v be 02. The null hypothesis

11see Heckman and Singer (1985).
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is that there is no heterogeneity which is equivalent to testing whether

02 = 0. Using the integrated hazard

e (t;X) = Jm n(s,X,v = 0) ds (40)
- 00
we write the density function as
£(t:X,v) = =n(t,X,0) e’ exp [-e(t;X) ] (41)

Assuming that the heterogeneity in the data is small, Kiefer (1984) and
Sharma (1986) use a second order Taylor series around v = 0 to approximate
f(t;X,v).

£(t;X,v) = £(t,X,0) + v [ §£(¢;X,0) ]

sv

v=0

2 [ 62f (t;X,v) ]
2
Sv

(42)

+
nﬂt

v=0
Integrating above equation with respect to v and using E(v) = 0 gives

the approximate density

2 2
£(t;X) = f£(t;X,0) + = [ $E(t3X,v) ]

2 2
Sv =0 43)
= f*x (t;X)
It is easy to show that
2.,
[ i—£££¢§4£l ] - £(:X,0) [1 - 3 e(t;X)e” + €2 (£:X) e2¥] —— (44)
Sv
y=0
Substituting in (43) we get
02 v 2 2
fx(t;X) = £(t;X,0) [ 1+ 7 {1 -3c¢ce +¢€¢ e ) ] — (45)

The proposed diagnostic for heterogeneity is a score statistic for the
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hypothesis that 02 = 0, based on the approximate density £*(t,X) given in
(43). Consider the case when all the durations are complete. (The censored
case is considered in Appendix C). Defining 1* to be the loglikelihood

based on f*(t;X), the score for a2 is

2

£1% 1 N 1 -3 ei + €

Wl 2 g4 2 2

o - o

1l + 2 (1 -3 € + € )}
where € - e(ti, Xi). — (46)
The mean score under the null is
N
1 2
S = N ifl (1 -3 € + € ) (47)

The diagnostic is a standard test of the hypothesis that E(S) = 0
against E(S) > 0. The test statistic is

S

JVar(S)

which under the null has an asymptotic distribution which is standard

z - (48)

normal.

Lancaster (1985), following Cox (1983) and Chesher (1984) developed
another test for neglected heterogeneity. We show that the approach taken
by Lancaster and that by Kiefer (1984) and Sharma (1986) lead to the same
statistic under the null. Lancaster writes the hazard function conditional

on heterogeneity term u as

F (£;X,u) = exp (-€.u) (49)

where E(u) = 1 and variance of u is 02. The unconditional hazard

function is

Fr(t;X) = E, lexp (-e.w)] = [ exp (-e u) . q(u) du.
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Approximating exp (-¢.u) by a second-order Taylor expansion around u =1

we obtain

2
Fx(t;X) = E, [ eV (u-1)e e+ (u- 1)2 e € % ]
2
= exp (-¢€) [ 1+ 02 %— ]

- 2 2
= F (t;X,u=1) [ l1+o0 ;—] —— (51)

The density based on the "approximate" distribution in (51) is

2
fx(t;X) = f£(t,X,u=1) [1 + ‘2’— (e2 - 2¢) ] — (52)

Lancaster considers testing for neglected heterogeneity by a score test of

o2 = 0 in the family defined in (52).

The score for 02, based on N completed durations12 is
2
s1x 1 N [~ 2]
— = 3z Z — (53)
2 2 ., 2
éo i=1 1+ 2 ( 2 2¢.)
2 1 i
where 1* 1is the loglikelihood based on the density in (52). The mean
score under the null is
N
*
82 - 5 = [ci-Zei] —— (s4)
§o i-1

Since the integrated hazard ¢ has a unit exponential distribution, the
scores derived in (47) and (54) are essentially the same.
We now show that in the Weibull model the above tests of neglected

heterogeneity are equivalent to testing 62 = 0 in the family defined by

12The censored case is discussed in Appendix C.
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(22). The score element for testing 6, = 0 is

2
1
N -_—
§1 1 a
= = = p> L, (n, t))
692 N =1 2 ii
N
1 1 20 2 a
- N z E[ti i 4ti r)i+2]
i=1
N
1 2
= 5N .E [ € - 4 ei + 2 ] (55)
i=1

where € = t: n; = ti exp (Xiﬂ) is the integrated hazard in the Weibull
model. Apgain since ¢ has a unit exponential distribution it is easy to
see that (47), (54) and (55) are essentially testing the same moment

restriction.
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SECTION V

In this section we give another interpretation to the statistics
developed in sections III and IV. Let 1 = 1n £(t;X) be the loglikelihood

function of a duration distribution (cdnditional on covariates X)

]
depending on scalar parameter S and let 1j - é—% . Then, by repeatedly
68
differentiating both sides of
J exp (1) dt =1 — (56)
we get the sequence of identities
E[1,+12] = 0 (57)
2 1
3
E | 13 + 31112 + 11 ] = 0 — (58)
and so on.
If f(t,X) is the Weibull duration distribution conditional on
covariates defined by
fe:X) = at® !l X exp ( -t%XP ) —_— (59)

(where the first element of X 1is one with corresponding coefficient ﬂo.)

A]
and 1j - ﬁ—% , then the moment restriction implied by (57) is
6ﬁo
2
E[1-3e+¢ ]1=0 (60)
and that implied by (58) is
E[17¢+6 ¢ -e]=0 (61)

The moment restriction (60) is essentially the same as that for testing

82 = 0. Also, since E(e) =1 and E(ez) = 2 , it is easy to see that
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asking whether the data satisfies the restriction implied by (61) is the

same as testing 93 = 0 in the family defined by (22).

The above analysis makes clear that the tests developed in section 111

have an interpretation as M-tests in the sense defined by Newey (1985).
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SECTION VI

The data used to illustrate the use of the statistics developed is from
the Denver Income Maintenance Experiment (DIME). The purpose of this
experiment was to measure the effect of a negative income tax on labor
supply. The families enrolled in DIME were followed for forty-eight months
and met the following criteria
(1) race: head of family had to be white, black or hispanic
(ii) family type: a two-head family or a single head, with at least one
dependent.

(iii) family income: pre-experiment earnings in (1970-71 dollars) were
under $9,000 for a family of four with one head, or under $11,000 for
a two-head family.

(iv) head of family: age 18 to 58 years and capable of gainful
employment.

The data were used to construct histories of labor market status
(number, timing and sequence of all change in labor market status) using
Current Population Survey definitions. The unit of observation was the
length of a spell of employment or unemployment. Complete and censored
spells were differentiated and for each spell a number of individual
characteristics and labor market variables relating to the person
experiencing the spell were recorded.13

We consider spells of employment and unemployment (non-employment)
which were initiated during the period of participation in the sample. For

each individual, one spell the first is included. If the spell concludes by

13Lundberg (1981) has discussed the construction of the data on labor
market spells. Also see Burdett et al (1984) and Sharma (1986).



a transition to the other state it is called complete, else it is called
(right) censored. Table 1 gives summary statistics of the data used. The
covariates used in the analysis to correct for heterogeneity are race,
education and age. The hazard function specification and estimation was
detailed in Section I1I.

Maximum likelihood estimates of the employment hazard function under
the Weibull assumption are given in Table 2. The Weibull specification for
the full sample cannot be rejected at the 5% significance level using test
statistics 2(2) and 2(3). However, Z(a) does reject the Weibull
specification at the same level of significance. The hazard estimates by
race category are reported in the last three columns of Table 2. The
Weibull specification is clearly acceptable for the white sample and does a
reasonable job for the Black sample. However, for the Hispanic sample
although Z and Z

(2) (3)
breakdown of the Weibull specification for the Hispanic sample occurs in the

do not reject the null, Z(a) decisively does so. The

fourth moment. This brings out the importance (especially in large samples)
of examining a wider class of alternatives by considering a larger number of
terms of the system of orthogonal functions when defining the family in
which the null is embedded. It should be mentioned here that density
approximations based on orthogonal functions have the appeal that under the
null higher order terms are uncorrelated with lower order terms, and hence
neglecting higher order terms required for an exact specification of the
class of alternatives may not lead to serious problems in estimating lower
order terms.

Table 3 and 4 gives estimates for the unemployment hazard under the

Weibull and Exponential assumptions respectively. The Exponential

specification is rejected for the full sample and the White sample. It is
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TABLE 1

S TICS

EMPLOYMENT SPELLS INITIATED DURING PERIOD OF PARTICIPATION IN
SAMPLE. ONE SPELL PER INDIVIDUAL, THE FIRST, IS INCLUDED.

Full Sample (N Complete Spells (N
t - 9 -
Standard Standard

Variable Mean Deviation Mean Deviation
Duration (weeks) 52.40 60.26 37.47 40.95
Age (Years) 29.37 10.02 27.68 9.32
Education (grade

completed 11.09 2.13 11.16 2.13
Black (proportion) . 0.337 ceen 0.334
Hispanic 0.324 e 0.353

UNEMPLOYMENT SPELLS INITIATED DURING PERIOD OF PARTICIPATION IN
SAMPLE. ONE SPELL PER INDIVIDUAL, THE FIRST, IS INCLUDED.

Full Sample (N Complete Spells (N
QObservations = 348) Observations = 256)
Standard Standard
Variable Mean Deviation Mean _Deviation
Duration (weeks) 14.2 17.1 11.4 12.5
Age (Year in 1970) 29.3 9.96 28.8 9.31
Education (grade
completed 11.0 2.16 11.0 2.21
Black (proportion) 0.327 e 0.313

Hispanic 0.348 cees 0.328
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TABLE 2

HAZARD FUNCTION ESTIMATES AND TEST STATISTICS.
EMPLOYMENT DURATIONS.
(WEIBULL DISTRIBUTION).

COEFFICIENT/(ASYMPTOTIC STANDARD ERROR)

FULL SAMPLE BLACK HISPANIC WHITE
VARIABLE (N=519) (N=175) (N=168) (N=176)
ALPHA 0.758 0.835 0.743 0.708
(0.034) (0.062) (0.056) (0.059)
CONST -1.366 -1.289 -0.108 -2.126
(0.069) (1.089) (1.199) (1.303)
AGE -0.107 -0.070 -0.164 -0.059
(0.040) (0.073) (0.066) (0.077)
AGESQ/100 0.117 0.052 0.201 0.055
(0.060) (0.112) (0.097) 0.114)
EDUCATION -0.021 -0.061 -0.025 -0.005
(0.030) (0.058) (0.049) (0.054)
BLACK 0.398
(0.141)
CHICANO 0.289
(0.146)
LOGLIKELIHOOD¢t -1684.94 -554.,87 -576.18 -551.73
CHI - SQUARED 32.92 11.75 11.11 4.00

STATISTICt% (0.000004) (0.0083) (0.0111) (0.26)
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TABLE 2 - CONTINUED
SPECIFICATION TEST STATISTICS
FULL SAMPLE BLACK HISPANIC WHITE
(N=519) (N=175) (N=168) (N=176)

STATISTIC / (PROB [xz(k-l) > z(k))]

2(2) 3.62 1.45 2.99 0.444
(0.057) (0.228) (0.084) (0.505)

Z(3) 4.49 1.46 3.26 1.257
(0.106) (0.478) (0.196) (0.533)

Z(a) 15.28 5.90 15.05 1.768
(0.0016) (0.117) (0.0018) (0.622)

t A chi-squared (likelihood-ratio) test for the hypothesis that the "race-
specific" model is better than the "full sample” mgdel takes the value 4.32,
which does not fall in the critical region of a x (9) distribution.

+t Likelihood ratio test for the hypothesis that all the coefficients of the
covariates, except that of the constant, are zero. In brackets is the
probability that a chi-square variate with appropriate degrees of freedom is
greater than the likelihood ratio statistic (degrees of freedom are 5 for full
sample and 3 for race specific samples).
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TABLE 3

HAZARD FUNCTION ESTIMATES AND TEST STATISTICS.
UNEMPLOYMENT DURATIONS.
(WEIBULL DISTRIBUTION).

COEFFICIENT/(ASYMPTOTIC STANDARD ERROR)

FULL SAMPLE BLACK HISPANIC WHITE
VARIABLE (N=348) (N=114) (N=121) (N=113)
ALPHA 0.938 0.917 1.040 0.918
(0.044) (0.076) (0.088) (0.073)
CONST -3.487 -2.932 -5.830 -4.621
(0.794) (1.112) (1.481) (1.580)
AGE 0.087 0.075 0.128 0.129
(0.045) (0.075) (0.079) (0.086)
AGESQ/100 -0.145 -0.126 -0.188 -0.210
.(0.069) (0.114) (0.119) (0.130)
EDUCATION -0.005 -0.094 0.082 0.045
(0.034) (0.057) (0.061) (0.065)
BLACK -0.705
(0.156)
CHICANO -0.376
(0.158)
LOGLIKELIHOOD% -996.79 -341.57 -327.44 -323.73
CHI-SQUARED 27.26 2.94 5.86 4.86

STATISTICH (0.000051)  (0.40) (0.12) (0.18)
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TABLE 3 - CONTINUED
SPECIFICATION TEST STATISTICS
FULL SAMPLE BLACK HISPANIC WHITE
(N=348) (N=114) (N=121) (N=113)

STATISTIC / (PROB [xz(k-l) > Z(k))]

2(2) 6.84 2.21 2.02 3.01
(0.0089) (0.137) (0.155) (0.083)

2(3) 6.84 2.45 2.20 3.12
(0.0327) (0.294) (0.332) (0.210)

Z(a) 12.36 3.22 4.08 4.35
(0.0062) (0.359) (0.253) (0.226)

t+ A chi-squared (likelihood-ratio) test for the hypothesis that the "race-
specific” model is better than the "full sample" mgdel takes the value 8.10,
which does not fall in the critical region of a x (9) distribution.

tt Likelihood ratio statistic for the hypothesis that all the coefficients of
the covariates, except that of the constant, are zero. In brackets is the
probability that a chi-square variate with appropriate degrees of freedom is
greater than the likelihood ratio statistic (degrees of freedom are 5 for full
sample and 3 for race specific samples).
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TABLE &

HAZARD FUNCTION ESTIMATES AND TEST STATISTICS.
UNEMPLOYMENT DURATIONS.

(EXPONENTIAL DISTRIBUTION).

COEFFICIENT/(ASYMPTOTIC STANDARD ERROR)

FULL SAMPLE BLACK HISPANIC WHITE
VARIABLE (N=348) (N=114) (N=121) (N=113)
CONST -3.673 -3.079 -5.652 -5.087
(0.784) (1.085) (1.429) (1.535)
AGE 0.088 0.070 0.126 0.139
(0.045) (0.074) (0.079) (0.086)
AGESQ/100 -0.147 -0.119 -0.184 -0.227
(0.069) (0.112) (0.118) (0.131)
EDUCATION -0.004 -0.099 0.080 0.053
(0.034) (0.056) (0.061) (0.065)
BLACK -0.745
(0.153)
HISPANIC -0.382
(0.158)
LOGLIKELIHOOD{ -997.75 ~-342.16 -327.55 -324.34
CHI-SQUARED 30.58 3.12 5.68 5.84
STATISTICt¢ (0.000011) (0.37) (0.13) (0.12)
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BLE 4 - CO
SPECIFICATION TEST STATISTICS
FULL SAMPLE BLACK HISPANIC WHITE
(N=348) (N=114) (N=121) (N=113)

STATISTIC / (PROB [xz(k-l) > Z(k))]

2(2) 10.17 3.48 1.40 6.79
(0.0014) (0.062) (0.237) (0.0092)

2(3) 11.68 3.82 2.24 7.24
(0.0029) (0.148) (0.148) (0.0268)

Z(A) 13.69 3.97 4.33 7.25
(0.0034) (0.265) (0.228) (0.0643)

+ A chi-squared (likelihood-ratio) test for the hypothesis that the "race-
specific” model is better than the "full sample” model takes the value 7.4,
which does not fall in the critical region of a x (9) distribution.

tt Likelihood ratio statistic for the hypothesis that all the coefficients of
the covariates, except that of the constant, are zero. In brackets is the
probability that a chi-square variate with appropriate degrees of freedom is
greater than the likelihood ratio statistic (degrees of freedom are 5 for full
sample and 3 for race specific samples).
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acceptable for the Black and Hispanic sample. Further, a comparison of the
diagnostics in Table 3 and Table 4 shows that the Weibull distribution which
is more "flexible" than the Exponential provides a better fit for the data, in
all the three race categories.

We now show that a visual check of our distributional assumptions using
generalized residual plots, reinforces the conclusions obtained by using the
diagnostic statistics. The definition of generalized residuals used here is

that given by Cox and Snell (1968). Consider the general model
Yi - gi(xiy ﬂ) ei) i= 1, 2,..., n —— (62)

where Y = (Yi) is a vector random variable, Xi an observed characteristic
. th .
vector for the i observation, B a vector of unknown parameters and

€ = (e a vector of independent and identically distributed unobserved

i)
random variables. Let B be the Maximum Likelihood estimate of g. If the

equation

Yi = gi X,, 3’ 21) — (63)

i
has a unique solution for 21, namely
¢ = by (¥, X, B) — (64)

then 21

specified in (62). The generalized residuals from a fitted model essentially

is called the generalized residual corresponding to Yi and model

mean a set of transformations of the observations that have a know simple
distribution (at least in large samples) when the assumed model is correct,
but a different distribution when it is not.

Consider the hazard function «(t,X,8) where X 1is a vector of co-
variates and B8 a vector of unknown parameters, of an arbitrary distribution.

Define the integrated hazard as
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t
e(t,X) = f n(s,X,8) ds — (65)
0

It is easy to see that ¢(t,X) has a unit Exponential distribution since
-e(t,X) = b
e = Prob [t > t] = Prob [e(t,X) > e(t,x)] — (66)

Hence, minus the logarithm of the survivor function should plot on a 45°

line through the origin. In the case of the Weibull distribution under

proportional hazard specification, the generalized residuals are defined by
t A

f(t,X) = I & %1 exp (X8) ds - & exp (XB8) — (67)
0

In general we have both complete and censored durations. Let t and t
be independent random variables where t is the duration of an event and t

a censoring time. The observed duration is

9 - min [E, £ ——— (68)

With censoring we can only calculate e(Eo, X) which does pot have a unit
Exponential distribution. In the case of right censored observations we can
use the Kaplan-Meier procedure14 to estimate the survivor function of

e(E,X) from e(Eo,X) data and this is distributed unit exponential when the

model is right. Consider the ordered sequence of e(tg, Xi), i=1,2,...,N.

For each e(tg, Xi) corresponding to an uncensored observation we estimate
the hazard function at the value of e(tg, Xi) as the ratio of the number of
residuals with value equal to the particular e(tg, Xi) and the number of

residuals greater than or equal to it. Let this ratio for the jth ordered

uncensored residual be m,. Then, the Kaplan-Meier estimate of the survivor

b

14see Kaplan and Meier (1958), Cox and Oakes (1984) and Chesher and
Lancaster (1985).
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function of the residual at value a is

n (- m) — (69)
3=1 ]

and minus the logarithm of the survivor function is given by

a a
- 1In(1-m) = = m — (70)
3-1 S S

The plot of minus the logarithm of the residual survivor function should
give a 45° line through the origin in large samples, when the model is
right.

Figures 1 to 8 depict the plots for the employment durations when the
distribution is assumed Weibull. As the diagnostics brought out, the plots
show that the Weibull does a reasonable job for the White and Black sample

but not very well for the Hispanic sample and the full sample.
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CON N

The diagnostics for assessing the appropriateness of the distributional
specification were based on the idea that if the empirical distribution
function (conditional on covariates) is n"close"” to that of the Weibull, then
it should satisfy the restrictions on moments implied by the Weibull
distribution. The diagnostics are easy to compute and provide information
on goodness of fit in addition to that provided by likelihood ratio tests.
In the case of a bad fit the analyst’s strategy should be to include other
covariates which he/she thinks may influence the durations being examined.
Alternatively, estimation under other distributional assumptions maybe done.
It should be mentioned that diagnostics of this nature do not provide
evidence of any particular kind of misspecification. Rather they indicate
whether the estimated model is appropriate or not.

It was shown that two ways of developing diagnostics for uncorrected
heterogeneity based on approximations to the distribution of the
heterogeneity component lead to essentially the same statistics. Further,
these diagnostics for heterogeneity were equivalent to testing whether a
particular moment restriction implied by the null was satisfied. Unlike the
linear regression model where omitted regressors create a problem only if
the left out variables are correlated with those included, in the duratioh
models we are considering, omitting regressors, even if they are
uncorrelated with those included, can lead to biased estimates of the
coefficients of the (included) covariates, Consequently, it maybe important
to look at (heterogeneity) diagnostics even in the absence of tightly

specified alternatives.
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APPENDIX A
PROOF OF THEOREM:
Consider for |a| <1,
-1 a ta
(1 - a) exp { NS UErY) }
© a k k
- a-at 2 & 2
k=0 ) (1 - a)
© a. k @© k+m
- 3 (-E') ak = [ ] a®
k=0 m=0 k

k=0 m=0 k
@® n a k
- 3 P [ E ] (-E') an
n=0 k=0 '
[ ]
- 3 L (t) a° — (1)
n
n=0

Let G(t,a) = (1 - a) " exp {(ia_ta)

- fo L (t) a" S——
n

Then, for |aj] <1 and |b] <1, we have

G(t,a) G(t,b) = [(1'8)(1'b)]-1 exp { -t* [ ?T%;j + (l?b) ] }

Therefore,
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Jm G(t,a) G(t,b) a t® 1 exp (-t%) dt
0

] i 1-ab
- (et r a t®h exp {"a ['(“1-a)?1-b> ] } o
0 — (&)

1.
(1 - ab)

Now the product in (3) is also equal to

€0

G(t,a) G(t,b) = [ T L (t) a" ] [ T L (0 b™ ]

n=0 O m=0
- = £ L (&) L (¢) a b" —_— (5)

Integrating (5) we get

Im G(t,a) G(t,b) at® ! exp (-t%) dt
0

@

o
- = b [ Iw L (£) L (t) at® ! exp (-t%) dt ]. a" "
n=0 m=0 0
— (6)
(Fubini's theorem justifies interchange of the- integral and summations).
Also, from (4) we have

1 @

fm G(t,a) G(t,b) at® ! exp (-t?) dt = =T &" D" — ("N
0 n=0

Comparing coefficients of a” b® in (6) and (7) we get
P 4

j: L (t) L, (©) at® ! exp (-t%) dt = 5

m,n = 0,1,2,...

the desired result.
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APPENDIX B

In this appendix we consider the case when some of the duration spells

are censored. Suppose the data (ti' Xi, Si} i=1,2,...,N comprises of
complete and right censored spells. Then, N.1 times the loglikelihood

function can be written as

{Inpy (xp + - §,) 1n ?{ (tgy ] —— (D)

In the above equation, Px(t) is the survivor function corresponding to the

approximate density p*(t), and is given by

P* (t) = Im p*(u) du
t

jm a ua-l n exp ( -n u* ) du
t

1
+ 92 Im L2 (na u) a \.tm-1 n exp {-n ua} du
t
1 _
+...+ 8 Im L (na u) a ua'l n exp (-9 ua) du
n jJ.mn
« N
- exp (-nt)+ I 8 f-j (n,t) — (2)
j=2
where
1
a a
tj (n,t) = jm I..j (n u) au exp {-nu) du — (3)
t

For example,
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L2 (n,t) = % Jm [nzuza - 4qua + 2] aua'l n exp (-qua) du
t
- Lram® -2 ram® e amd @)
where
r (a,b) = Im ua-l e-u du is the incomplete gamma function.1
(5)
Similarly, we get
t, (1) = 5 T (40t + 5T (3ne%) - 3T @20 + T Aynt
t, (n,t) = Lt % - 210 w4nt® + 3T (3,0t
4 'I! 24 "’ 3 1" "’
4T @2t™ +T 1,9t — (6)

Consider testing 62 = 0. Differentiating (1) and evaluating under the

null, gives
1
N
§1 -1 [
- N z (n ty)
892 =1 i 2 1%

a
+ (1 - 61) exp (n, t,) L2 ("i’ti) ]

— (7)
The Lagrange multiplier statistic is

o - L)

(2) — (8)
V(2)

1see Abramovitz and Stegun (1972), pg. 260.
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where V is an estimate of the variance of calculated in a manner

L
(2) 58,
analogous to that in equation (27).
For higher order tests, a statistic similar to Z(n) in (29) is
calculated. Note that the calculation of ﬁj(n,t) is quite straight

forward. The incomplete gamma function can be expressed as

r (a,b) = T (a) Prob (x2(2a) > 2b) (9
and since most computer packages (e.g., SAS) calculate gamma functions and

chi-square integrals the required calculations for above derived statistics

are easy.
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APPENDIX C

The loglikelihood function based on complete and right censored

durations can be written as
N

1* = 121 [ 6;1n £} (£,X) + (1-6,) InF} (tg.X) ] — ()

where F*(t,X) 1is the survivor function corresponding to the density
f*x(t,X). We know the survivor function corresponding to the density in (52)

is

2
P (6,X) = F(tXuel) [1+% 2 (¢.X) ] — ()

and it is easy to show that the survivor function corresponding to the

density in (45) is

(4

2
F* (t,X) = F (t,X,v=0) [1 + 5 { 2 (£,%) - € (£,X) }] — (3)
Using (2), the score for 02 under the null is

S = 3% z [

2
- 2€)+ Q- 6,) €; 1] — (4)
im1 i i’ 1

2
1 (&g

and using (3) the score for 02 under the null is

s-l-g[su-a vy 4 (1 -6, (€ —_
2N i1 i ci ei ) ( < i) (ei “ ei)] ( )

The diagnostic statistics when censored observations are present are

based on the scores defined in (4) and (5).
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