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ABSTRACT

Contingent valuation methods have been shown to be extremely useful for
eliciting information about demands for non-market goods. This paper examines
the implications of a survey which collects valuation information with a
"payment card" vehicle and compares these to the range of results which would
have been generated if (i.) coarser intervals had been specified on the
payment card, or (ii.) a "referendum" format had been used instead. The true
payment card data are used in both a.) a naive ordinary least squares
procedure employing interval midpoints as proxies for the true dependent
variable, and b.) a maximum likelihood (ML) procedure which explicitly
accommodates the intervals. The ML procedure is also used to compare
different degrees of interval coarseness. The artificial referendum data are
simulated by Monte Carlo experiments. Our empirical example is the valuation
of a recreational fisheries enhancement program. We examine the different
implications to be drawn from these data, depending upon the estimation method
used and upon the quality of the valuation data. In addition to the purely
econometric issues which are the focus of this paper, we are also able to
offer some insights on the social value of this enhancement program.

* We thank Michael Hanemann, John Loomis, and Jane Murdoch for helpful
comments and suggestions.



NON-MARKET RESOURCE VALUATION: ASSESSMENT OF VALUE ELICITATION
BY "PAYMENT CARD" VERSUS "REFERENDUM" METHODS.

by

T.A. Cameron and D.D. Huppert

1. Introduction

Contingent valuation methods have now been recognized as extremely
useful devices for eliciting demands for non-market goods (see Cummings,
Brookshire, and Schulze, 1986, and Mitchell and Carson, 1987, references cited
therein). These methods use hypothetical market scenarios posed to individual
respondents to discern their likely behavior under different conditions.

While we would prefer to elicit a respondent’s exact willingness-to-pay, WIP
(or willingness-to-accept, WIA), for an increase (decrease) in consumption of
a public good, it has been argued that respondeits find it very difficult to
name a specific sum. To avoid non-response, researchers have found it more
fruitful to pose the valuation questions differently.

For telephone or in-person surveys, one alternative is called
"sequential bidding." If a respondent indicates a willingness to pay the
initial amount offered, a larger amount is proposed. The bidding continues
until the interviewer reaches an amount that the respondent will not pay.
However, it has been argued that the starting point (i.e. whether it lies
above or below actual valuation), can influence the outcome. "Referendum,” or
"closed ended contingent valuation" (CECV) surveys are therefore often
preferred for telephone or in-person interviews. In this format, the
respondent is offered just one randomly assigned amount and their yes/no

response is recorded. The valuation information in these responses is much



more diffuse, so a large number of responses is required to identify the
approximate valuation. However, much less stress is placed upon the
respondent since the pricing scenario mimics the take-it-or-leave-it market
decisions made daily by most of us. Consequently, a higher completed response
rate can probably be expected.

In mail surveys, however, an alternative format is feasible. Rather
than sequential bidding, the survey questionnaire can be designed to include
an ordered set of threshold values, called a "payment card."” The respondent
is then asked simply to peruse the range of values and to circle the highest
(lowest) amount they would be willing to pay (accept). As with oral
sequential bidding, it can then be inferred that the respondent's true "point”
valuation lies somewhere in the interval between the circled value and the
next highest (lowest) option. As with CECV methods, payment cards conserve
respondent effort relative to oral sequential bidding. Even a fairly detailed
set of thresholds can be visually scanned quite quickly.

Of course, the ideal estimation procedure would involve regression of
"point" valuations on a range of economic or sociodemographic variables
collected along with the valuation information. Neoclassical microeconomic
theory should suggest appropriate candidate functional forms for this
underlying "inverse" demand function. Without these point valuations, a
simplistic alternative for utilizing the information that the true value lies
somewhere in a known interval would be to assign the midpoint of the relevant
interval as a proxy for the mean of the variable over that interval and to
employ ordinary least squares (OLS) regression using these midpoints as the
dependent variable.

There is, however, a considerable statistical literature on the efficient

maximum likelihood (ML) estimation of regression models where the dependent



variable is only measured on intervals of a continuous scale (see Hasselblad,
Stead, and Galke (1980), Burridge (1982), Stewart (1983), and Cameron
(1987a)). These more-sophisticated methods are appropriate in this context.
One task of this paper is to assess the distortion introduced into contingent
valuation estimates due to the inappropriate application of OLS regression
methods to payment card interval midpoints.

Other objectives include comparison of the efficiency of payment card
estimates of valuation functions with the results which would have been
obtained (a.) if coarser intervals had been offered, or (b.) if the
respondents had been posed closed-ended contingent valuation questions
instead. In the latter case, we will assume that any one of the payment card
values might have been assigned as the single CECV threshold, so Monte Carlo
methods are necessary to identify the range of parameter estimates and fitted
valuations which might have been attained under CECV metﬁods.

Section 2 of this paper outlines the procedure for maximum lik=lihood
estimation of the "payment card" regression model Section 3 describes maximum
likelihood estimation of "referendum" (CECV) models. Section 4 briefly
summarizes the dataset. Section 5 addresses the specification of the
valuation (WTP) function. Section 6 compares "naive” tesults from OLS
estimation using interval midpoints with those from the more-appropriate ML
interval estimation method. Section 7 explores the potential consequences had
the questionnaires been designed with coarser payment card intervals. The
design of the Monte Carlo exercises is explained in Section 8 and the actual
interval estimates are compared to the range of CECV estimates which might
have been obtained had a single-value referendum question format been used
instead. Section 9 concludes, offering both caveats for the interpretation of

the current work and directions for further research.



2. Maximum Likglihood Estimation with "Payment Card" Data

Since previous empirical studies (Cameron and James, 1986, 1987) have
indicated that the distribution of valuations is frequently skewed, we will
propose tﬁat a lognormal conditional distribution for valuations should serve
as a useful first approximation. 'if the respondent’s true valuation, Y,, is
known to lie within the interval (tli,tui), then log Y, will lie between log t,,
and log t . It is generally assumed that E(log Y,|x,) is some function
g(xi,ﬂ), for which a linear form is convenient. If log Y, = xi'ﬁ +u, and u,
is distributed normally with mean 0 and standard deviation o, then we can

standardize the range of values log Y, occupies and state that:

(1) Pr(Yi € (tli,tui)) -

Pr( (log t,, - x,"B)/0 < z, < (log t, + X,"B)/0 )

where z, is the standard normal random variable. Let z,, and z signify the

1
lower and upper limits, respectively. The log-likelihood function for a

sample of n independent observations is then:
(2) log L =1} log [ ®(z,) - &(z;)) 1.

where & is the cumulative standard normal density function. Appendix 1
details the formulas for the gradients and the Hessian matrix associated with
this likelihood function.1 In this study, we use the computer package GQOPT
(Goldfeld and Quandt) to maximize the necessary likelihood functions with
respect to the unknown parameters, S and o. However, for this interval data

model, researchers who have access to the LIMDEP computer package (Greene,

1 These formulas can substantially reduce computational costs for the
optimization of the log-likelihood function.



1986) will probably find that the "GROUPED DATA" procedure described there can
be used to determine these parameters.

Once the optimal values of B and o have been attained, it is a simple
matter to reconstruct fitted values of the transformed variable log Y. The
conditional mean of log Y for any given vector of x variables will be x 'B.
However, if we wish to retransform back to the estimated conditional
distribution for the variable Y, exp(xi'ﬁ) will be the median of the
distribution of Y rather than the mean.? These quantities are a valid measure
of the central tendency of the unobserved dependent variable Y. However, we
may also wish to compute the mean of the Y variable, which is obtained by
scaling this quantity by an estimated constant equal to exp(az/2). Either the
fitted medians or the fitted means can then be used to compute the weighted

average of fitted valuations across the sample.

3. aximum Likelihood Estimation with Referendum Data
Assume again that the respondent’s true valuation is Y,, and that log Y,

= x,'f + u,, where u is distributed normally with mean 0 and variance o.

i
Suppose we are considering a WIP scenario: the respondent is offered a single

threshold value t ; if he is willing to bay this amount, we record I, =1 (if

not, I = 0). Then we can presume that:

(3) Pr(Ii = 1) = Pr (log Yi > log ti) - Pr(ui > log t, - xi'ﬂ)
- Pr(ui/a > (log t, - xi'ﬁ)/a)

=1-& ((log t, - xi'ﬂ)/a).

The log-likelihood function is then:

2 We are grateful to Michael Hanemann for reminding us of this point. For a
description of the lognormal distribution, see Hastings and Peacock (1974, p.

84).



(&) log L=Y { I, log [1 - & ((log t,)/0 - x,'B/0)]

+ (1 - 1) log [® ((log t,)/0 - x,'B/o)]).

The presence of log t, allows o to be identified so that the underlying
valuation function, xi'ﬁ, can be recovered. (Note that if log t, = 0 for all
i, we have the conventional maximum likelihood probit model.) A full
description of the elements of the gradient and the Hessian has been relegated
to Appendix 2. We know of no packaged computer program which can estimate
this model directly, but it has been shown elsewhere (Cameron and James, 1987)
that conventional probit algorithm parameter estimates for appropriate
specifications can be transformed to yield point estimates for B and o, and
standard errors for these coefficients can be computed readily by Taylor’'s
series approximation.

Again, if we desire the fitted median valuation Y for a given x vector,
we will use the fitted values of B to compute exp(x,’B); if the mean of Y is

preferred as a measure of central tendency, we must use exp(xi'ﬂ)exp(a2/2).

N

4. The Data

Our data are drawn from the NOAA National Marine Fishefies Service
"Saltwater Recreational Fishing Survey," of California’s San Francisco Bay
Area. Detailed summaries of the responses, as well as a copy of the
questionnaire, have been relegated to extensive supplementary documentation
(Thompson and Huppert, 1987). Only a brief summary of the pertinent responses
will be provided here.

The crucial valuation question examined in this paper was worded as
follows: "What is the MOST you would be willing to pay each year to support
hatcheries and habitat restoration that would result in a doubling of current

salmon and striped bass catch rates in the San Francisco Bay and ocean area if



without these efforts your expected catch in this area would remain at current
levels? (Circle the amount)." The listed values were $0, $5, $10, $15, $20,
$25, §$50, $75, $100, $150, $200, $250, $300, $350, $400, $450, §$500, $550,
$600, and "$750 or more." Respondents who circled $0 were also asked: "Did
you circle $0 because you feel this change has no value to you?" 1If a
respondent replies "no" to this question, we assume that this answer indicates
that they value the change by more than $0 but by less than §5.

Descriptive statistics for the usable portion of the sample are given in
Table I. Note that we do not attempt to compensate for the measurement error
inherent in the income (INC) variable because of its categories; this issue is
beyond the scope of this study. The pair of dummy variables (STRIP and BTRIP)
distinguishes between anglers who sought to catch only one particular species
and anglers who sought either species, without preference. Ability was rated
on a subjective 5-point scale, with 1 being "novice" and 5 being "expert."
These categories were aggregated into "below intermediate," "intermediate,"
and "better than intermediate." The two lowest categories was taken as the
base case and the pair of dummy variables (ABIL2 and ABIL3) capture the higher
skill levels. 1If the respondent indicated that they owned or operated a boat
that could be used for saltwater fishing, the dummy variable OWNBOAT takes on
a value of 1.

We will maintain the hypothesis that current catch rates will influence
respondent’s basic valuation of the fishery, and should therefore be expected
to affect their valuation of a doubling of the catch rates. The survey was
conducted by mail, and asked for retrospective information on each
respondent’s actual catch for their third-last, second-last, and most recent
fishing trips (if at least one trip was taken over the last twelve months).

We are focusing in this study on fishing trips for which the target species



was exclusively salmon, exclusively striped bass, or either salmon or striped
bass. The catch data are in the form of "catch per trip," and are summarized
by the variaBles C1SAL, C2SB, C3SAL, and C3SB, described in Table I. Observed
catch may not be fully exogenous (due to the fact that respondents’ fishing
abilities and choice of site may affect both their average catch and their
valuation), but we control to a considerable extent for differing abilities
with the subjective ABIL2 and ABIL3 dummy variables. Neither do observed
average catch rates for the last three fishing trips by a particular
individuals necessarily provide a good estimate of their expected catch. We
would anticipate that this expected catch has a greater impact upon the demand

for fishing days than do recent actual catch rates.

5. Relation of the Valuation (WTP) Function to the Inverse Demand Function

In order to use the econometric models described in sections 2 and 3, we
must first decide upon plausible theoretically consistent specifications for
the presumed underlying valuation function. This function has the general
form Y, = g(xi,ﬂ), where g(xi,ﬁ) = xi'ﬁ in the simple case. It is the task of
the investigator to decide upon which of the available variables (or which |
transformations of these variables) belong in the vector Xx,.

To remain loyal to the neoclassical economic theory of constrained
utility maximization, we would prefer to employ a specification for g(x,,8)
which is consistent with a form for the valuation function which can be
interpreted as an inverse Hicksian-compensated demand function (derived from
some utility function which has desirable properties). In Cameron (1987b),
however, it has been argued that earlier analyses of contingent valuation data
(especially referendum data) have placed too much emphasis upon the underlying
utility function (see in particular Hanemann, 1984). Since it is not

necessary at any time actually to estimate the utility function, we need not



be limited to the awkward functional forms for the inverse demand function
which correspond to convenient (tractable) linear-in-parameters specifications
for the "utility difference" function.

In many cases, almost any specification for an inverse demand function
for which sufficient variables are available (either ad hoc or utility-
theoretic) can be estimated directly, regardless of whether the data are
collected by payment card or by referendum survey. Unfortunately, our
valuation question does not elicit information on the height of the inverse
demand curve itself.® To be consistent with the way the question is worded in
the survey, we must consider the estimated value, either exp(xi'ﬁ) or
exp(xi'ﬁ)exp(02/2), to be a measure of the increase in total surplus due to
whatever vertical shift in the demand function is to be expected from a
doubling of current overall salmon and striped bass catch rates.®

It is important to consider carefully the implied bivariate relationship
btetween anglers’ willingness to pay (WIP) for fishing days (before and after a
doubling of the catch rate) versus number of days spent fishing (i.e. holding
all other explanatory variables constant). If we were to assume that this
change in value depended linearly upon the number of fishing days, we would be
imposing a parallel upward shift of the "demand" curve as a result of doubling
the fish stock . Only then would the change in the area between the curves be

proportional to a change in number of days at which it is calculated.

3 We could conceivably attempt to utilize information on travel costs to
identify the position of the current demand curve, but this procedure is
fraught with difficulties arising from the ambiguity in assigning actual time
costs faced by anglers. This task is held over for subsequent analyses.

“ Note that this is expressly not a doubling of the number of fishing days,
the "quantity” of the good for which demand is being modeled, but a doubling
of one of the factors which is argued to "shift" this demand curve.



10

Instead, we employ a log-linear transformation of this area as our implicit
dependent variable. This allows the shift to be non-parallel.

It is important to keep in mind that the fisheries enhancement program
being proposed must really be interpreted as an increase in the stock of fish
available for catching. The question is posed in terms of catch rates
overall, not in terms of the individual’s catch rate. There is only a loose
correlation between fish stocks and individual catch rates (and in many
instances, the individual'’s catch is currently zero). Hence, in this study,
we do not pursue translation of "WIP for a doubling of overall catch rates"
into "WTP for an additional fish"--a measure which has been sought in other

> The ultimate objective in a project like this one is a measure of

studies.
the social value of the enhancement project (i.e. the social value of having
twice as many fish out there). This figure could presumably be compared to
the project’s overall cost to assess its advisability.

Unfortunately, as is frequently the case in empirical applications, we
do not have enough observations or sufficiently accurate proxy variables to
support a fully utility-theoretic specification which also controls for
observable sociodemographic heterogeneity among the households. Preliminary
OLS regression models using the midpoints of each of the valuation intervals
were used to determine the most likely set of explanatory variables as well as

to assess whether linear or log-linear specifications might be appropriate.

Among simple forms, it seems that a log-linear specification is most

5 In auxiliary experiments, we have segregated respondents according to their
target species. For each of these groups, we have transformed the midpoint of
the valuation interval by dividing through by the respondent’'s average catch,

if catch was non-zero. This makes the very strong assumption that if overall

catch rates double, so will this respondent’s catch. This procedure generates
a new dependent variable: value of increasing expected catch by one fish. 1In
these models, however, this value still depends significantly on the number of
fish caught.
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appropriate and that the variables TRPS, log(INC), STRIP and BTIRIP, ABIL2 and
ABIL3, OWNBOAT, and the set of catch-per-trip variables are the most
appropriate (first-round) explanatory variables in ad hoc specifications.
Note that, initially, we retain the full set of each group of related
variables in a "full" model, despite the fact that some members of these sets
may have statistically insignificant coefficients. When we find that
alternative estimation techniques suggést that different subsets of these
variables make statistically significant contributions to explaining
valuation, we provide the full model and a "brief" model in each cése.

6. Comparison of OLS Midpoint Estimates and Maximum Likelihood Estimation
usin nterval Data

Using the midpoints of each payment card valuation interval in
conventional OLS estimation requires the assumption that the midpoint of each
interval is an adequate proxy for the conditional mean of the dependent
variable over that interval. Depending upon the coarseness of the grouping
interval, this assumption may or may not be tenable. Our first task,
therefore, is to compare the point estimates from the OLS midpoint method with
those from the maximum likelihood (ML) estimation procedure (described in
section 2) which explicitly accounts for the interval nature of the dependent
variable.

Table II gives parameter point estimates for the two different
estimation methods (for each of two specifications), along with the OLS t-

6

ratios and the ML asymptotic t-test statistics.” As anticipated (based on

earlier work by Cameron, 1987a), using the interval midpoints as proxies for

§ Normalized weights have been incorporated; these scale in the influence of
each observation to reflect population frequencies of the different types of
respondents according to a cross-tabulation of each group by county of origin
and by frequency of fishing trips over the last 12 months.



12

the true values of the dependent variable in a log-linear normal specification
results in moderate distortion of the point estimates.

Since the results for all of the models to be estimated here are
qualitatively similar, it is worthwhile to look briefly at the plausibility of
our parameter estimates. Examination of the OLS midpoint estimates shows that
the number of trips has a very small but significant effect on the log of WIP
for a doubling of catch rafes; This means that the "before" and "after"
demand curves diverge slightly as the number of days increases. The doubling
of the catch would also appear to be a "normal good" for which demand is
inelastic with respect to income.

Concerning the target species, éhe base case is trips upon which either
species was sought. If the angler sought only salmon on his last three trips,
WIP is lower by about 46% (in the "brief" model). If only striped bass were
sought, WIP is lower by about 58%. ' On the surface, it would appear that
anglers who care only about one ¢f these two species are only about half as
willing to pay for enhancement measures which would double the catch of both
species. Only the highest ability rating enters significantly. Anglers with
above-average ability haveFWTP about 56% higher. For serious anglers, it is
possible that the catch figures more prominently among the "bundle" of
utility-generating activities that make up a fishing day. Boat ownership
enters significantly,’contributing to a decrease of over 40% in WIP. This
would seem to imply that the easier it is for an angler to increase his number
of fishing trips, the less ﬁilling is he to pay for higher catch rates per
trip. This is plausible. |

Among the average catch rate variables, only the salmon catch rate (on
exclusively salmon-fishing trips) sigﬁificantly affects WIP. I1f, for a given

respondent, the average salmon catch rate on past salmon-fishing trips was
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higher by one fish, it would not be surprising that this individual would be
more satisfied with current catch rates and therefore less willing to pay for
a doubling of overall catch rates (by approximately 17%).

In contrast, we can compare the full models estimated by OLS and ML. Of
these two methods, the maximum likelihood method is unequivocally the superior
analytical technique, since (aside from the usual distributional assumptions)
it imputes no more information about the dependent variable than is actually
contained in the interval responses. In this example, while we do not know
the true underlying parameter values, the evidence from the full models
suggests that the OLS midpoint method overstates the income elasticity of
demand for the enhancement project. It also overstates the decrease in WIP
due to focus on a particular target species, overstates the effects of
ability, boat ownership, and the average catch on salmon-fishing trips.
Furthermore, the STRIP and OWNBOAT variables which appear to be statistically
significant determinants of WIP in the OLS model lose their apparent
significance when the more-valid ML interval technique is employed.7 The
maximized value of the log-likelihood function is provided for each estimation
method, but bear in mind that these values are not comparable since the models
are non-nested and have very different depeﬁdent variables.

As noted in sections 2 and 3, we can use either the median or the mean
of the fitted conditional distribution of valuations to represent the most
likely value of the unobserved dependent variable for each respondent. The
skewness of the lognormal probability density function will cause the median

to be smaller than the mean. While Table II describes the different point

7 While the differences for some coefficients appear negligible, bear in mind
that these are percent measures (in this log-linear specification); also, when
scaled up to population values, these small differences can become very large
in the aggregate.
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estimates generated by the two estimation methods, we might also be interested
in the implied derivatives of the valuation difference, Y, with respect to
each explanatory variable. Since the implicit dependent variable is in log
form, each estimated coefficient must be multiplied by the fitted value of Y,
to yield a derivative for each observation. Use of the median for this
quantity gives the results reported in Table III(a); the mean yields Table
III(b). We compute the value of each derivative for each respondent and then
compute the mean and standard deviation of these derivatives across the
sample.8

A few comments on the discrepancies between OLS and ML derivatives are
warranted. In the "full" models, OLS with midpoints appears to overstate
substantially the decrease in value when the respondent’s recent fishing trips
have targeted salmon exclusively. The effect of above-average ability is also
overstated by a large margin (about $7.00, on average, using medians, and by
much more when means are used), as is that of boat owiership (by about $8.00
using medians). These differences reflect both differences in the individual
point estimates and the differences in the fitted valuations which result when
a different B vector leads to a different fitted value for xi'ﬂ (used in
computing both the median or the mean).

In addition to assessing different methods for achieving the parameter
point estimates and the implied derivatives, it is useful to compute the
implications of the fitted model for the empirical question at hand, namely
the valuation of changes in the stock size. The lower portions of Tables
III(a) and III(b) prévide within-sample weighted averages for the marginal

distribution of median and mean valuations, respectively. Relative to the

8 These means are also weighted to reflect population frequencies of
respondent types.
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more-appropriate ML interval estimation method, therefore, it also seems that
the OLS midpoint technique substantially underestimates the marginal mean of
the distribution of fitted WIP values--by almost 20% in the case of either

medians or means. This large a difference could have a substantial influence

on policy decisions.

7. rison Actual Interval Results with thos Coarser Intervals

The finer the intervals listed on the payment card, the more difficult
it becomes for a respondent to decide exactly which interval contains their
actual willingness to pay. In this section, we consider the effects upon the
parameter point estimates and marginal mean valuations of imposing coarser and
coarser groupings. Throughout, we presume that if a respondent indicates a
particular interval when there are twenty to choose from, they would have
indicated the corresponding larger interval when these finer intervals are

aggregated. Two counterfactual interval specifications are explored.

a. Coarser Intervals

First, the existing intervals are collected in pairs, then triples, then
quadruples. This allows us to explore what would have been the consequences--
for the point estimates, the implied derivatives, and the mean fitted WIP--had
the payment card been designed with coarser and coarser intervals. Parameter
estimates for this experiment are contained in Table IV(a). Broader intervals
make it easier for the respondent to decide in which interval his true
valuation lies, but clearly, there is a tradeoff in terms of the loss of
information for estimation purposes. Cameron (1987a) demonstrates that as
_interval widths increase in a log-linear normal specification, it is
unfortunately not possible to systematically sign the bias introduced into the

parameter estimates--these biases oscillate. This tendency is observed as one
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scans across the columns of Table IV(a). Implied derivatives and means of the
fitted values of WIP using medians and mean appear in Tables IV(b) and IV(c)
respectively. Note that the implied derivatives seem to be quite sensitive to
the coarseness of the intervals. This point should be kept in mind in
designing payment card intervals. Even more disturbing is the apparent
tendency for the overall marginal mean of the fitted valuations to increase
systematically with interval width. For an unscrupulous researcher, it seems
that the apparent social value of the resource in question could in some cases

be increased by offering relatively coarser payment card intervals.

b. Fewer Upper Intervals

In the second counterfactual experiment, the existing intervals are
retained for the lower levels, but the open-ended upper interval changes from
>750 to >300, then to >200, then to >100. Table V(a) gives the point
estimates and -asymptotic t-statistics. The implied derivatives and the
marginal means of fitted WTP corresponding to these simulations, using medians
and means, appear in Tables V(b) and V(¢), respectively. The footnotes to
Table V(a) indicate how many observations are affected by the aggregation of
the upper intervals. These experiments show the considerable influence upon
the results of the study wielded by "extreme" responses. In particular, a
decision not to discriminate so finely among the upper intervals results in
considerable "damping" of the implied derivatives and of the overall marginal
mean of fitted WIP. Again, it seems that an unscrupulous researcher could
sometimes have a substantial effect upon the estimated total value of the

resource by tailoring the upper intervals appropriately.
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8. Comparison of ML Interval Estimates with Simulated Referendum Data

Valuation data in this survey were in actuality collected by means of
payment card, but it would be interesting to assess how well a referendum
format would have performed. With the referendum format, less "information”
is available, so we would expect that more observations would be necessary to
achieve the same level of accuracy in the estimation of the coefficients.
However, less effort (introspection) is required of the respondent, which has
the potential for increasing the completed response rate. In this section, we
take the payment card responses and use them to construct the "yes/no"
responses we would have expected if the valuation question had been posed in
the form of a single threshold value.®

Given the format of the payment card actually used, there are twenty
different "thresholds" we might have assigned for each respondent. Monte
Carlo techniques are therefore required to generate information concerning the
range of possible estimates that might have been achieved under the referendum
format. Since more thresholds are typically offered at thé lower end of the
value spectrum (to increase the resolution in the range where it is suspected
that a large proportion of the valuations lie), we opt to generate threshold
values from frequency distributions similar to the observed frequencies for
the valuations implied by our respondents.

Two alternative underlying distributions were assumed for the single
thresholds to be "offered" to each respondent in our simulations of the

referendum questions. The first distribution mimics the distribution of

8 fFach referendum threshold divides the range of possible valuations into two
vintervals." However, the referendum approach differs from the payment card
method in that these thresholds are varied across respondents. With the
payment card, everyone receives the same set of thresholds. The fact that the
referendum thresholds vary is what allows us to identify the location and
scale of the conditional distribution of valuations.
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observed lower bounds on the chosen intervals. The threshold assignments, for
keach Monte Carlo sample, were made as follows. We sorted (by size) all of the
lower bounds for the chosen payment card intervals and tabulated how many
times each bound occurred in our sample of 342 responses. We then generated
342 random integers on the range of 1 to 342 and assigned thresholds on this
basis. For example, the lower bound of $15 was chosen for sorted observations
105 through 153. If the random integer generated for a given respondent
happened to take on a value in this range, we assigned a referendum threshold
(ti) of $15 for that person. Next, if the lower bound of the interval that
individual actually chose was $25 (for example), we would infer that this
person would have responded "yes" (I, = 1) to the question of whether they
would be willing to pay $15.

The second distribution ﬁimics the observed distribution of upper bounds
on the chosen payment card intervals. The Monte Carlo assignment of
thresholds "drawn from" this distribution was analogous to the procedure for
the first distributional assumption.1C
Two hundred Monte Carlo samples were generated in each case. Starting

values for the maximum likelihood optimization algorithm were taken from the

ML interval estimates for the "brief" model.!! As for all the other ML models

10 ye initially assigned each of the twenty thresholds according to the
outcomes from a uniform random integer generator (on the range of 1 to 20).
This led to estimation problems, though, because by far the largest proportion
of respondents implied valuations among the lower intervals. This resulted in
a very large proportion of "no" responses in the Monte Carlo samples because
the occurrence of high-valued thresholds was drastically disproportionate
relative to the actual valuations in the sample. Some of the Monte Carlo
simulations failed to converge because of this.

11 The full model persisted in generating wildly implausible fitted values for
some observations for three of the Monte Carlo samples, due to the magnitudes
of the insignificant coefficients on the average catch rates. Deleting these
variables made the fitted model more robust to the referendum threshold
assignments, so we present results only for the "brief" model.
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estimated in this paper, we use the package of FORTRAN subroutines called
GQOPT. Rough optimization was achieved by the DFP procedure (using only first
derivatives). Fine-tuning of the estimates (to a convergence tolerance of
10%°) was accomplished by GRADX, a quadratic hill-climbing algorithm. The
first column of Table VI repeats the ML interval estimates from Table II.
Now, however, we include the asymptotic standard error estimates for each
parameter in addition to the asymptotic t-test statistics. 1In conventional
estimation, we use asymptotic standard errors for parameter estimates as a
proxy for the degree of dispersion that we might expect in repeated sampling
from the same population. Unfortunately, in most cases, we have only one
sample at our disposal. In Monte Carlo experiments, however, we generate a
large number of random samples. This enables us to actually calculate the
dispersion in the point estimates across different samples. While the
standard errors in the first column of Table VI are not directly comparable
with the calculated standard errors (across 200 Monte Carlo experiments)
reported in the second and third columns of the table, their differences give
us a good idea about the extent of the loss in statistical efficiency when we
move from a payment card question to a referendum question. Descriptive
statistics for the results of the 200 Monte Carlo experiments, for the two
threshold assignment schemes, make up the rest of Table VI.

The referendum slope estimates tend on average to overestimate the
"true" ML interval slope estimates, although this could still be an artifact
of the algorithm for the assignment of thresholds. We cannot state
conclusively whether the apparent bias in point estimates under the referendum
format is a robust result, although the two threshold assignment schemes we

have considered are probably the most logical arbitrary choices.
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The important lesson to be drawn from these Monte Carlo exercises is
that the degree of variation in some of the point estimates is very high. 1In
Table VI, we also provide "t-st#tistics" loosely constructed from the mean
point estimate divided by the standard deviation (across the 200 samples).

For all of the slope coefficients, a displacement of two standard deviations
can change the sign of the point estimate. This suggests that a very wide
range of point estimates (with vastly differing policy implications) can
result from referendum-style data collection. Large samples will be necessary
to minimize this "noise."

It is worthwhile to focus briefly on the range of possible implications
that might be drawn across the different sets of randomly assigned thresholds
in the Monte Carlo experiments. Tables VII(a) and VII(b) (using medians and
means, respectively) detail means and standard deviations across the 200
different artificial samples of both the average derivatives of valuation with
respect to each explanatory variable and the marginal mean fitted
willingness-to-pay. Because using means as fitted values for WTP yields
bigger numbers than using medians, the average derivatives summarized in Table
VII(b) are considerably higher thanvthose in Table VII(a).

In passing, we note that across these 200 samples, the average within-
sample prediction success rate for responses to the fabricated yes/no WIP
question were 77.30% and 76.59% for the "lower bound" and the "upper bound"
models respectively. (The standard deviations of prediction success were
3.886% and 4.550%.) Regarding fitted valuations, the lower panel of Table
ViI(a) shows that the mean of the 200 fitted marginal mean WIP estimates
(using medians) is $29.70 in the "lower bound" experiments, and $26.51 in the
"upper bound" experiments. These average values, fortunately, are no further

from the corresponding ML interval estimate ($31.22) than is the OLS midpoint
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method estimate ($26.03). When we use means to compute fitted WIP for each
sample, as in Table VII(b), the average values are of course somewhat

different.

9. ummay veats, and S stions for Further Research

The primary finding of the econometric exercises reported thus far is
that the implications of a contingent valuation study can be influenced to a
considerable extent by both (a.) the valuation’question format (payment card
or referendum; payment card interval widths), and (b.) the estimation
technique employed to fit the inverse Hicksian demand function. However, it
is important to qualify these findings.

First, we can’t know the actual values of the "true" underlying
population parameters for the relationships attested to by the real data
employed in this study--i.e. the true "data generating process." Therefore,
we are at a loss to compare our "best" ML interval estimates (for the actual
"payment card" elicitation method) with these true parameter; to assess the
sign or extent of the innate bias in the payment card format. Findings
reported in Cameron (1987a) suggest that there will be some bias and that its
sign will be indeterminate. Neither can we say whether the log-linear
specification we are estimating is the "true" functional relationship between
willingness to pay and the other variables. Evidence examined in Appendix 3
suggests that the log-linear specification may be too restrictive--a Box-Cox
transformation employed with the ML interval method (which fr;es up an
additional parameter) rejects the restriction imposed by the log-linear form.
To minimize the complexity of comparing the different estimation methods and
the different question formats, however, we have opted to adhere to the log-
linear model and its relatively easier interpretation. One would certainly

expect the sorts of discrepancies due to inappropriate estimation methods (or
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different interval specifications) to carry through for a variety of
specifications of the relationship between WIP and the vector of x variables.

We have already emphasized that the method for assigning single
thresholds to each respondent may contribute to the apparent bias in the point
estimates. Nevertheless, in real referendum surveys, the thresholds are
typically assigned randomly, with greater frequencies for the lower-valued
thresholds. Ex ante, there does not seem to be a standard assignment
algorithm to apply. Our arbitrary decisions are as plausible as any which
would be made in practice. The bias in the referendum mean values of the
Monte Carlo point estimates (relative to the ML interval estimates from the
payment card data) is nevertheless fairly small. Certainly, the typical
extent of the bias evidenced by the artificial referendum data is not much
worse than that generated by reliance on the inappropriate OLS midpoint method
with payment card data. This is somewhat heartening. Still, more work
remains to be done on this topic. The current paper utilizes real data--a
purely Monte Carlo study may be necessary to answer some of the questions
which remain unresolved because we cann;t know the true data generating
process for our sample.

This study generates information which will be of use to the designers
of contingent valuation surveys and those responsible for deciding upon sample
sizes. Users of contingent valuation survey data need a careful study of the
relative rates of questionnaire completion across different "vehicles" before
we can assess which format will be appropriate in specific situations. If
respondents can "take in" the entire payment card at a glance and decide
easily which interval brackets their true value (without bias), then our
results would seem to point strongly in favor of the payment card vehicle,

given the substantial loss of information with the referendum approach.
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However, we cannot know the extent to which the presentation of the
information in the payment card will bias the results, or whether the
intervals are too finely specified (i.e. intervals which are too narrow
present the respondent with the same dilemma as do "open-ended" coﬁtingent
valuation questions). : .

In sum, we have gained some valuable insights into the perils for
contingent valuation studies of using inappropriate estimation methods (the
OLS midpoint technique) with payment card data. Section 7, especially,
focused on the dependence of interval estimates upon the number of intervals
specified. We have also established that while referendum data collection
methods may yield widely varying point estimates in samples as small as this
one, it seems to be the case that on average, the point estimates are only
slightly biased. This is a good argument for collecting the largest possible
sample if the referendum question format is to be used. Overall, then, the
policy implications of a contingent valuation study have the potential to be

highly sensitive to the design of the qucstionnaire.



Table I
Descriptive Statistics

(n = 342)
Variable Description Unweighted Weighted®
Mean Mean
(std. dev.) (std. dev.)
MIDPT midpoint of interval 48.66 57.98
(80.49) (132.96)
log (MIDPT) log (midpoint 3.165 3.115
of interval) (1.273) (1.371)
TRPS # salmon and striped 5.591 4.416
bass fishing trips (6.835) (5.449)
in past 12 mo.
log(INC) log($'000 hhld income 3.647 3.602
using midpoint of (0.6447) (0.6544)
reported interval)
STRIP = 1 if all trips 0.4298 0.4188

were salmon
fishing trips

~ BTRIP = 1 if all trips 0.3743 0.3338
were striped bass
fishing trips

ABIL2 = 1 if interrmadiate 0.4035 0.4272
fishing ability
("3" on 1-5)
N
ABIL3 = 1 if advanced 0.3363 0.2813

fishing ability
("4“’ "g" on 1_5)

OWNBOAT = 1 if respondent 0.4035 0.3317

owns & boat
bcisaL catch/trip of salmon 0.7544 0.7341

on excl. salmon trips (1.191) (1.046)

C2SB catch/trip of bass 0.4771 0.4446
on excl. bass trips (1.080) (0.9844)

C38B catch/trip of bass 0.06433 0.06861
on salmon/bass trips (0.4966) (0.5023)

C3SAL catch/trip of salmon 0.06775 0.08253
on salmon/bass trips (0.3538) (0.3767)

@ weights were derived from cross-tabulations of home county by frequency
of trip for both the original sample and the estimation sample.

Deletion criteria were: number of trips unknown; income unknown;

ability unknown; boat ownership unknown; total number of saltwater
angling trips in the last 12 months unknown.



b simple averages; values can be zero of no trips of the specified

type were taken. Since data are retrospective over last three trips, we
cannot simply use STRIP and BTRIP to compute actual per-trip catch--some
anglers will have reported mixed trip types.

25



Table II
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Comparison of OLS Midpoint Estimates and ML Interval Estimates

ML Interval

Variable OLS Midpoint
Estimates Estimates
constant 2.180 2.251 2.452 2.530 b
‘ (4.812)a (4.434) (7.626) (8.736)
TRPS 0.02902 0.02908 0.02951 0.02862
(1.971) (1.989) (2.864) (2.861)
log(INC) 0.3591 0.3425 0.2759 0.2531
(3.275) (3.196) (3.531) (3.306)
STRIP -0.5248 -0.4559 -0.1199 -
(-2.598) (-2.465) (-0.8484)
BTRIP -0.6984 -0.5816 -0.5128 -0.4495
(-3.135) (-2.985) (-3.252) (-3.631)
ABIL2 0.2155 - 0.1446 -
(1.212) (1.132)
ABIL3 0.7120 0.5609 0.3622 0.2781
(3.447) (3.301) (2.481) (2.308)
OWNBOAT -0.4757 -0.4412 -0.1360 -
(-3.0462) (-2.871) (-1.180)
C1SAL -0.1986 -0.1690 -0.1372 -0.1497
(-2.3734) (-2.11D) (-2.285) (-2.688)
C2SB -0.004381 - 0.01755 -
(-0.05366) (0.3105)
C3SB -0.06630 - -0.05635 -
(-0.4586) (-0.5615)
C3SAL ) -0.1910 - 0.07988 -
(-0.9155) (0.5409)
o 0.8947 1.286 0.8679 0.8724
(23.22) (23.25)
max log L -1631.60 -1632.77 -653.47 -655.62

8 ¢.ratios from OLS regression output (SHAZAM)

b asymptotic t-test statistics from GQOPT output (GRADX)



Table 11I(a)

Contrasting the Implications of the Log-linear Model Estimates
by OLS and by the ML Interval Method: MEDIANS

OLS Estimates - . ML Method

Variable Full Model Brief Model Full Model Brief Model

mean OWTP/3x (with standard deviations):

TRPS $ 0.7615>  § 0.7571 $ 0.9250 $ 0.8936
(0.5142) (0.4909) (0.3718) (0.3271)

log(INC)2 9.423 8.916 8.647 7.901
(6.363) (5.781) (3.475) (2.892)

STRIP -13.77 -11.87 -3.758 -
(9.298) (7.695) (1.510)

BTRIP -18.33 -15.14 -16.07 -14.03
(12.38) (9.816) (6.459) (5.137)

ABIL2 5.656 - 4.533 -
(3.819) (1.822)

ABIL3 18.68 14.60 11.35 8.680
(12.62) (9.467) (4.562) (3.178)

OWNBOAT -12.48 -11.49 -4.264 -
(8.428) (7.447) (1.714)

C1SAL -5.210 -4.400 -4.299 4,674
(3.518) (2.853) (1.728) (1.711)

C2SB -0.1150 - 0.5501 -
(0.07763) - (0.2211)

C3SB -1.740 - -1.766 -
(1.175) (0.7097)

C3SAL -5.012 - 2.503 -
(3.385) (1.006)

mean WTP (with standard deviation):

$§ 26.24 $ 26.03 $ 31.39 $§ 31.22
(17.72) (16.88) (12.60) (11.47)

8 derivatives with respect to log(INC), not INC itself

b point estimate of parameter times exponentiated fitted value
from log-linear specification, weighted average across all
observations
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Table III(b)

Contrasting the Implications of the Log-linear Model Estimates
by OLS and by the ML Interval Method: MEANS

OLS Estimates ML Method

Variable Full Model Brief Model Full Model Brief Model

mean OWTP/dx (with standard deviation):

TRPS $ 1.136° $ 1.731 $ 1.348 $ 1.307
(0.7673) (1.122) (0.5418) (0.4786)

log(INC)@ 14.06 20.38 12.60 11.56
(9.495) (13.22) (5.064) (4.231)

STRIP -20.55 -27.14 -5.477 -
(13.87) (17.59) _ (2.201)

BTRIP -27.35 -34.61 -23.42 -20.53
(18.47) (22.44) (9.413) (7.516)

ABIL2 8.440 - 6.606 -
(5.699) (2.655)

ABIL3 27.87 33.38 16.54 12.70
(18.83) (21.64) (6.648) (4.650)

OWNBOAT -18.62 -26.27 -6.214 -
(12.58) (17.02) (2.498)

C1SAL -7.774 -10.06 -6.265 -6.838
(5.250) (6.523) \ (2.518) (2.503)

C2SB -0.1716 - 0.8017 -
(0.1158) (0.3222)

C3SB -2.596 - -2.574 -
(1.753) (1.034)

C3SAL -7.479 - 3.648 -
(5.051) (1.466)

mean WTP (with standard deviation):

$ 39.16 $ 59.51. $ 45.75 $ 45.68
(26.44) (38.59) (18.36) (16.78)

8 gerivatives with respect to log(INC), not INC itself

b point estimate of parameter times exponentiated fitted value

from log-linear specification, times exp(0?/2); weighted
average across all observations
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Table IV(a)

Comparison of ML Interval Estimates for Originai Intervals
versus Coarser intervals ("Brief"” Model Only)

Variable original? double? triple® quadrupled
intervals intervals intervals intervals
point estimates (asymptotic t-statistics):
constant 2.530 2.740 3,695 3.808
(8.736) (9.392) (14.81) (16.81)
TRPS 0.02862 0.02933 0.02101 0.01183
- (2.861) (2.943) (2.544) (1.788)
log(INC) v 0.2531 0,2165 0.08494 0.1157
‘ (3.306) (2.807) (1.319) (2.023)
BTRIP -0.4495 -0.4332 -0.5321 -0.2982
» (-3.631) (-3.471) (-4.936) (-3.117)
ABIL3 0.2781 0.2385 0.1413 0.2518
(2.308) (1.975) (1.388) (2.818)
C1SAL -0.1497 -0.1446 -0.1780 -0.1966
(-2.688) (-2.607) (-3.748) (-4.225)
o 0.8724 0.8504 0.6268 0.3889
(23.25) (22.32) (17.93) (9.647)
a

10-15, 15-20, 20-
200-250, 250-300,
550-600, 600-750,

Intervals: $0-10,
300-400, 400-500,

Intervals: $0-15,
>600

Intervals: $0-20,

reproduced to facilitate comparison. Intervals: $0-5, 5-10,

25, 25-50, 50-75, 75-100, 100-150, 150-200,
300-350, 350-400, 400-450, 450-500, 500-550,
>750.

10-20, 20-50, 50-100, 100-200, 200-300,
500-600, >600.

15-50, 50-150, 150-300, 300-450, 450-600,

20-100, 100-300, 300-500, >500.
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Table IV(b)

Contrasting the Implications of ML estimates
for Original Intervals versus Coarser intervals
("Brief" Model Only): MEDIANS

Variable original® double triple quadruple
intervals intervals intervals intervals

mean dWTP/3x (with standard deviations):

TRPS $ 0.8936 $ 0.9842  $ 0.9947 $ 0.7375
(0.3271) (0.3377) (0.2672) (0.1793)
log(INC) 7.901 7.266 4.022 7.213
(2.892) (2.493) (1.080) (1.754)
BTRIP -14.03 -14.54 -25.20 -18.59
(5.137) (4.988) (6.768) (4.520)
ABIL3 8.680 8.005 6.691 15.69
(3.178) (2.746) (1.798) . (3.816)
C1SAL -4.674 -4 .851 -8.428 -12.75
(1.711) (1.664) (2.264)  (2.979)

mean WTP (with standard deviations):

$ 31.22 $ 33.56 $ 47.35 $ 62.32
(12.60) (11.51) (12.72) (15.16)

8 jntervals as in Table IV(a)



31

Table IV(c)

Contrasting the Implications of ML estimates
for Original Intervals versus Coarser intervals
("Brief" Model Only): MEANS

Variable original? double triple quadruple
intervals intervals intervals intervals

mean 8WTP/3dx (with standard deviations):

TRPS $ 1.307 $ 1.413 $1.211 §$ 0.7954
(0.4786) (0.4848) (0.3252) (0.1934)
log(INC) 11.56 -~ 10.43 4.895 7.780
. (4.231) (3.579) (1.314) (1.892)
BTRIP -20.53 -20.87 -30.67 -20.05
(7.516) (7.161) (8.237) (4.875)
ABIL3 12.70 11.49 8.143 16.92
(4.650) (3.942) (2.188) (4.116)
C1SAL -6.838 -6.964 -10.26 -13.75
(2.503) (2.389) (2.755) (3.213)

mean WTP (with standard deviations):

$ 45.68 $ 48.18 $ 57.63 $ 67.22
(18.43) (16.52) (15.48) (16.35)

@ {ntervals as in Table IV(a)
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Table V(a)

Comparison of ML Interval Estimates for Original Intervals
versus Fewer Upper Intervals("Brief" Model Only)

Variable original®  highest highest highest
intervals interval b interval interval
( > 750 ) ¢ > 300 )P (> 200)° (>100)¢

point estimates (asymptotic t-statistics):

constant 2.530 2.570 2.844 2.769
(8.736) (9.010) (10.84) (11.92)
TRPS 0.02862 0.03027 0.0295 0.01702
(2.861) (3.073) (2.283) (1.913)
log(INC) 0.2531 0.2420 0.1357 0.1264
(3.306) (3.209) (1.935) (2.037)
BTRIP -0.4495 -0.4703 -0.2630 -0.1939
(-3.631) (-3.858) (-2.277) (-1.879)
ABIL3 0.2781 0.2487 0.1046 0.08299
(2.308) (2.095) (0.9393) (0.8462)
C1SAL -0.1497 -0.1486 -0.07144 -0.02003
(-2.688) (-2.712) (-1.376) (-0.4424)
o 0.8724 0.8580 0.7820 0.6814
(23.25) (23.19) (22.51) (21.52)

8 reproduced to facilitate comparison. Intervals: $0-5, 5-10,
10-15, 15-20, 20-25, 25-50, 50-75, 75-100, 100-150, 150-200,
200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550,
550-600, 600-750, >750. Highest interval has one observation.

b Highest interval now contains 2 observations.
€ Highest interval now contains 12 observations.

d Highest interval now contains 46 observations.



Table V(b)

Contrasting the Implications for ML Interval Estimates
for Original Intervals versus Fewer Upper Intervals
("Brief" Model Only): MEDIANS

Variable original? highest highest highest
intervals interval interval interval
(> 750 ) ( > 300 ) (> 200 ) ( > 100 )

mean 8WTP/3x (standard deviation):

TRPS §0.8936  §0.9375  § 0.5864  $ 0.4411
(0.3271) (3.430) (0.1166) (0.07153)
log (INC) 7.901 7.495 3.799 3.274
(2.892) (2.740) (0.7553) (0.5309)
BTRIP -14.03 -14.57 -7.363 -5.025
(5.137) (5.330) (1.464) (0.8148)
ABIL3 8.680 7.703 2.929 2.150
(3.178) (2.818) (0.5823) (0.3487)
C1SAL -4.674 -4.601 -2.000 -0.5192
(1.711) (1.683) (0.3976) (0.08420)

mean WTP (with standard deviations):

$ 31.22 $ 30.97 $ 27.99 $ 25.91
(12.60) (11.33) (5.565) (4.202)

4 intervals as in Table V(a).
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Table V(c)

Contrasting the Implications for ML Interval Estimates
for Original Intervals versus Fewer Upper Intervals
("Brief" Model Only): MEANS

Variable original?® highest highest highest
intervals interval interval interval
( > 750 ) (>300) (>200) ( > 100 )

mean 3WTP/8x (standard deviation):

TRPS $ 1.307 $ 1.355 $ 0.7961 $ 0.5564
(0.4786) (4.956) (0.1583) (0.09022)
log(INC) 11.56 10.83 5.158 4.130
(4.231) (3.959) (1.0253) (0.6696)
BTRIP -20.53 -21.05 -9.996 -6.338
(7.516) (7.702) (1.988) (1.028)
ABIL3 12.70 11.13 3.977 2.712
(4.650) (4.072) (0.7906) (0.4398)
C1SAL -6.838 -6.648 -2.715 -0.6549
(2.503) (2.432) (0.5398) (0.1062)

mean WTP (with standard deviations):

$ 45.68 $ 44.75 $ 38.00 $ 32.68
(18.43) (16.37) (7.555) (5.300)

8 intervals as in Table V(a). <



Table VI

ML Interval Estimates versus Simulated Referendum Data
(200 Monte Carlo Samples; Referendum Threshold Frequencies
Matching Payment Card Lower Bound Frequencies)

Variable ML Interval? . Monte Carlo Referendum

"lower bound” "upper bound"

constant 2.530 2.269 1.969
(0.2896)P 0.7793)°€ (0.7671)
(8.736) (2.911)¢ (2.567)
TRPS 0.02862 0.03569 0.03144
(0.0100) (0.02087) (0.01836)
(2.861) (1.711) (1.712)
log(INC) 0.2531 0.2652 ©0.3246
(0.07656) (0.1950) (0.1939)
(3.306) (1.360) . (1.674)
BTRIP -0.4495 -0.5217 -0.4763
(0.1238) (0.3184) (0.2734)
(-3.631) (-1.639) (-1.742)
ABIL3 0.2781 0.4211 0.4791
(0.1205) (0.2978) (0.2602)
(2.308) (1.414) (1.842)
C1SAL -0.1497 -0.2008 -0.2454
(0.05569) (0.1394) (0.1412)
(-2.688) (-1.441) (-1.737)
o 0.8724 1.195 1.231
(0.03752) (0.2666) (0.2396)
(23.25) (4.481) (5.135)
max log L € -655.62 -150.70 -160.90
(14.88) (17.17)

8 reproduced to facilitate comparison

b asymptotic standard errors and asymptotic t-test statistics

(GQOPT output, GRADX routine)

standard deviation of point estimates across 200 Monte Carlo
simulations

analogy to t-value computed using standard deviation of Monte
Carlo point estimates across 200 samples.

maximized values of the log-likelihood functions are of course
not comparable, since the models are non-nested. Conceptually,
it is of course easier to predict residence of an observation in
the wider "intervals" defined by the referendum format.
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Table VII(a)
Distribution of Implications Drawn from Referendum Data
(Means and standard deviations, 200 Monte Carlo samples): MEDIANS

"lower bound" "upper bound"

Mean 3WTP/3x (with standard deviations, across 200 samples):

TRPS $ 1.104 $ 0.8583
(0.8077) (0.5934)
log(INC) 8.038 8.770
(6.642) (5.650)
BTRIP -16.30 -13.05
(12.38) (8.474)
ABIL3 12.87 13.00
(9.965) (8.055)
C1SAL -6.259 -6.671
‘ (4.994) (4.397)

Mean WTP (with standard deviations, across 200 samples):

§ 29.70 $ 26.51
(4.968) (3.805)
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_ Table VII(b)
Distribution of Implications Drawn from Referendum Data

(Means and standard deviations, 200 Monte Carlo samples): MEANS

"lower bound" *upper bound"

Mean 3WTP/dx (with standard deviations, across 200 samples):

TRPS $ 2.946 $ 2.200
(4.624) (2.433)

log(INC) 19.38 20.98
(30.19) (18.49)

BTRIP -42.80 -32.32
(64.40) (30.22)

ABIL3 34.22 33.10
(53.76) (32.34)

C1SAL -17.14 -17.32
(26.52) (18.18)

Mean WTP (with standard deviations, across 200 samples):

$ 70.66 $ 62.60
(55.04) (31.96)
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APPENDIX 1: DERIVATIVES FOR THE "PAYMENT CARD" MODEL

To simplify the formulas for the gradient vector and the Hessian matrix,

it is useful to define the following abbreviations:

P =%(z,) - Q(zli)

p, = ¢(z,,) - ¢(z))

Q =z, #(z,) - 2z, ¢(z;)
q, = z,,% #(z;,) - z,% é(z,)
R, = z,° 8(z,) - z,° #(z,)
P, = P,/B;

w, = Q/P,
The elements of the gradient vector are given by:

dlogL/dB, = Y - p.x, /0 r=1,...,p

dlogL/8c =} - w, /0
and the elements of the Hessian are:

3’logl/8p 86, = ¥ [p,(1-p) 1%, %, /o r,s=1,...,p
8%logL/3B 30 = Y lp, + q,/P, - P, 1%, /0 r=1,...,p

8%logL/8o® =3 [2 w, + R/P, - v?]/0*
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APPENDIX 2: DERIVATIVES FOR THE "REFERENDUM" MODEL

Using the notation established in the text, we first define the following
simplifying abbreviations (z denotes the standard normal random variable in

this appendix):

Zi el (ti - xi'p)/ o

®; = ¥(zy) ¢4 = ¢(zy) ¢'y = &' (2y) = 24 é(z4)
Ry = ®iyX4g 4" S; = XipXig ¢4

Ty = %4425 ¢'4 Uy = %,z 6%

AR LA N

The gradient vector for this model is then given by:

dlog L/3B, = (/o) Y ( [I, - (1 - ®)] %, ¢,/ [® (1 -&)])
r=1,...,p

dlog L/do = (1/0) ¥ ( [I, - (1 - ®)) z, ¢, / [® (1 -&)])

The elements of the Hessian matrix can be simplified if we define the

function:

G(P,Q) = Y | Ij(Py[®; - 1] - Q) + (1 - I)(Pg®d; - Q)

2 2
[®; - 1] o2,

Then:
8%10gL/3B,38,~ (1/0) G(R,S) r,s =1,...,p
8210gL/3B 80 = (-1/0) 8logl/dB, + (1/0%) G(T,U) r =1,...,p

8210gL/302 = (-1/0) 8logL/dc + (1/0%) G(V,W)

Use of these analytic derivatives instead of numerical approximations can

reduce computational costs considerably.
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APPENDIX 3: ML INTERVAL RESULTS WITH BOX-COX TRANSFORMATION

Although a log-linear specification is adopted in the body of this paper
(since our emphasis is primarily upon the different estimates achieved by the
payment card versus the referendum value elicitation methods), we did explore
alternative transformations of the underlying continuous dependent variable.
Specifically, we have experimented with a Box-Cox transformation:

(YiA - /X =- xi'ﬂ (with the transformation parameter A estimated
simultaneously with the B vector and ¢ by ML). The results for this
specification, by the ML interval method, are displayed in Table A.3.1

Frequently, the estimated Box-Cox transformation parameter A will lie
between zero and unityl Here, however, it is a small negative number, on the
order of -0.23. (A plot of the Box-Cox transformation with this parameter
value is more sharply curved than a logarithmic transformation; larger values
are therefore shrunk even more severely than would be suggested by a log
transformation.) While the A is indeed statistically significantly different
from zero (which would imply a log transformation), we elect to utilize the
log transformation primarily because of its simplicity. Of course, since the
Box-Cox model has an additional parametér free to be determined by the
evidence in the sample, these estimates reflect closer conformity to the
relationship between the variables implied by the data. These estimates can
therefore be considered "superior" to any of those appearing in the body of
the paper, as far as ad hoc models are concerned.

In the body of the paper, we took care to distinguish between the fitted
conditional median values for WIP and the fitted conditional mean WTP
estimates. In the simple log-linear specification, the latter could be .
obtained from the former by transforming by exp(az/2). In the Box-Cox

example, the correction is not this simple. Specifically, the fitted value of
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xi'ﬂ gives the mean of the transformed variable, YN o (YA - 1)/). The mean
of Y itself will be given by the expectatioﬁ of a function, [A Y + 1]‘”*%
of the N(xi'ﬁ, 02) random variable,'Y“’. Since this integral seems
prohibitively difficult to evaluate, we will report only the "de-transformed"

value of the mean of'Y“).

Recall that the marginal mean of fitted WIP values (medians) in the
"brief" log-linear ML interval mddel was $31.22 (with a standard deviation of
$11.47). 1In the "brief" Box-Cox model, the corresponding marginal mean is
$28.78 (with a standard deviation of 9.908). These differences are relatively
modest. From a policy-making point of view, they may or may not be

"significant."



Table A.3.1

ML Interval Estimates with
Box-Cox Transformed Dependent Variable

Interval Mean Interval Mean
Variable Estimates Implied Estimates Implied
Derivatives Derivatives
(asy.t-ratio) (std.dev.) (asy.t-ratio) (std.dev.)
constant 1.898 - 1.936 -
(9.473)% (9.931)
TRPS 0.01230 0.7933 0.01190 0.7718
(2.255) (0.3853)b (2.287) (0.3484)
log(INC) 0.1152 7.428 0.1030 . 6.684
(2.580) (3.607) (2.462) (3.017)
STRIP -0.03511 -2.264 - -
(-0.5680) (1.100)
BTRIP -0.2096 -13.52 -0.1770 -11.48
(-2.396) (6.565) (-2.489) (5.182)
ABIL2 0.06689 4.314 - -
(1.170) (2.095)
ABIL3 0.1493 9.631 0.1086 7.046
(2.020) (4.677) (1.848) (3.180)
OWNBOAT -0.04757 -3.068 - -
(-0.9217) (1.490)
C1SAL -0.05436 -3.506 -0.05517 -3.580
(-1.826) (1.703) (-1.937) (1.616)
C2SB 0.01399 0.9022 - -
(0.5636) (0.4382)
C3SB -0.01798  -1.160 - -
(-0.4151) (0.5631)
C3SAL 0.02672 1.723 - -
(0.4199) (0.8368)
c 0.3720 - 0.3677 -
(3.932) (3.949)
b -0.2329 - -0.2374 -
(-3.306) (-3.383)
max log L -647.69 -649 .53

2 asymptotic t-test statistics from GQOPT

b standard deviation of fitted derivatives over sample



