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1. INTRODUCTION

This paper describes a dynamic equilibrium model of straight-time and over-time shift
work, one that is intended to be consistent with the models of shift work used earlier by
Lucas [1970], Sargent and Wallace [1974], and Sargent [1978]. Those earlier papers did
not describe an equilibrium, but instead were devoted to analyzing one side of a market in
which a firm confronts a given real wage process and an exogenously given wage premium
schedule for shift work. One purpose of the present paper is to describe an equilibrium
setting in which the premium schedule emerges from the interaction of technology and
preferences. In addition to endogenizing the premium schedule, our model building efforts
aim to explain several features of the second moments of U.S. postwar time series of
aggregates, as summarized by a vector autoregression. We are interested in interpreting
the observed patterns of response to innovations in measures of straight time employment,
overtime employment, capital, and consumption. In particular, we want to interpret how
overtime employment appears to adjust more rapidly than straight time employment.
Simultaneously, we also seek to interpret the observations on real wage movements, labor
productivity, and the capital labor ratio stressed by Lucas [1970].1’2 We also use our
model to interpret some of Trejo’s [1986] recent empirical findings on the irrelevance of the

overtime provisions of the Fair Labor Standards Act.

Our model is a linear-quadratic stochastic optimal growth model, a descendent of ear-
lier models of Brock and Mirman [1972], Kydland and Prescott [1982] and Hansen [1985].
The model is in the tradition of “real business cycle models” since the time series generated
by this model display fluctuations in response to an exogenous technology shock. One key
substantive modification relative to those earlier models is that our model incorporates a
version of Lucas’s work-shift structure. Another modification is that we use a version of
the multivariate signal extraction problem to model formally the vector autoregression of
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the data available to econometricians, which we assume to be corrupted by measurement
errors. Measurement errors and productivity shocks interact in an intricate way to gener-
ate both the innovations and the predictable part of the vector autoregression computed

by the econometrician.

Our linear-quadratic optimal stochastic growth model is itself parameterized profli-
gately. However, we use a device of Kydland and Prescott [1982] to induce a mapping
which makes the many parameters of the linear-quadratic model a functioh of a much
smaller number of interpretable parameters. This smaller set of parameters describ.es the
preferences and technology of a parsimoniously parametrized nonlinear stochastic optimal
growth model. We view the underlying nonlinear model as an instrument for deriving the
associated linear-quadratic model, the latter model being the one whose statistical prop-
erties we shall describe precisely. If the parameters of the underlying nonlinear model are
to be interpretable, the linear-quadratic model has to a be good approximation to it, in
a sense that we shall make precise. We propose and implement (in the appendix) some

measures of the quality of this approximation.

2. THE MODELING STRATEGY

We have created a model with a small number of economically interpretable parameters
describing preferences, technology and measurement error processes. Although the number
of interpretable parameters is small, the model restricts a very large number of second
moments of the observed processes. The model is created in six steps. First, a nonlinear,
recursive social planning problem is described, the solution of which is the competitive
equilibrium for a stochastic growth model. Second, a quadratic approximation around the
stationary state of an associated nonstochastic model is taken, and used to construct a
linear-quadratic social planning problem. The objective function of the quadratic problem
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has many parameters, but they are each functions of a much smaller number of parameters
in the original problem. Third, the linear-quadratic social planning problem is solved for
an optimal linear feedback law. Fourth, linear approximations are formed expressing each
observable (output, consumption, wage rates, etc.,) of interest as a linear function of
the state variables. The second, third and fourth steps combined give a “linear systems
theory” representation for the observables. Fifth, this linear systems model is augmented
by a linear model for measurement errors in the observables. Sixth, a Wold-moving average
representation is obtained for the error-ridden observables of the model. This Wold-moving

average representation determines the population vector autoregression for the observables.

These steps are motivated by our desire to build a model with a small number of inter-
pretable parameters that restrict a large number of second moments of observables. Our
focusing on second moments, and our wish for tractibility explain our contentment with
a linear model. Our desire for a model with a small number of interpretable parameters
explains our choosing to begin with something other than a linear-quadratic model. There
are approximations at two steps of the construction described above, at the second and
fourth steps. In the appendix, we describe some ways of measuring the errors induced by
these approximations. It is necessary that each of these approximation errors be small if
interpretations of our results in terms of the parameters of the original nonlinear-quadratic

model are to be valid.?

This modeling strategy interprets the population moments of the observables in terms
of two sorts of parameters: (a) parameters describing the technology and preferences that
determine the behavior of the economic agents in the model, and (b) parameters describing

the second moments of errors in the measurements available to the econometrician.
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3. AN EQUILIBRIUM MODEL OF SHIFT PREMIA

The artificial economy is populated by a continuum of identical households on the unit

interval. Each household has preferences given by the utility function
Ulet,2:) = log ¢t + Alogty, (1)

where A > 0, ¢; is consumption at date ¢, and £; is leisure at date t. The endowment
of leisure is unity in each period, which constrains the choice of £; to satisfy 0 < £; < 1.
The choice of £; is further restricted by the following specification of work-shifts. Let
1> hy + hg > hy > 0. Here hy is the length of a “straight-time shift,” while hg is the
length of an “overtime shift.” The shift lengths h; and hy are taken as given. At each date
t, the household’s consumption set is restricted along the leisure axis so that only three
selections of leisure are feasible: ¢; = 1, residing in a state of unemployment; £ = 1 — hj,

working straight time; and £; = 1 — hy — hg, working straight time plus the overtime shift.5

Following Richard Rogerson [1984] and Gary Hansen [1985], we convexify the consump-
tion set by adding employment lotteries to the commodity space. In particular, we suppose
that during period t the representative household chooses a probability my; of working hy
hours, a probability mo; of working k1 + hg hours, and a probability 1 —my; — 7o, of working
zero hours. The household’s expected utility is then®

7yt [log et + A log(1 — hy)]
+ moq [log ¢t + A log(1l — hy — hyp))
+ (1 — 7y — mot) [log c; + A log1].

Rearranging the above expression shows that expected utility is

log ¢t + 1 A log(l — hy) + 7o A log(1 — hy — h3). (2)

Ex post mg; is the fraction of people working (hy + h2) hours, which we denote ny;.

This is the fraction of individuals who work overtime. Similarly, 71 + mg; is the fraction
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of people who work during the first k; hours in period . We denote this fraction as nyz. *

With this notation, the preference function (2) of the representative agent can be written

log ¢t — aj(n1s — nat) — agna (3)

where

a; = —Alog(1l — hy) and  ap = —Alog(l — hy — hg). (4)

In addition to the continuum of households, there is a single firm with access to a

technology described by

ct+z <y (5)
d 1-6
Y = ztkf{hl [nu - E(nlt - n1t—1)2]
+h 1‘9} d
TR R >0,0<6<1 (6)
kip1 = (1 — )kt + x4 1>6>0 (1)
241 = P2t + €441 1>p>0 (8)

In (6), 2 is a technology shock governed by a first order autoregression (8), where ¢; is dis-
tributed identically and independently across time according to a log-normal distribution
with mean 1 — p and variance a?. This implies that the unconditional mean of z is one.
In (7), z; is a gross investment rate, and k; is the capital stock. The right side of (6) is a
Cobb-Douglas production function, where effective units of straight time labor are given
by ny — (%) (n1: — n1s—1)2. The term %(nlt —nys—1)? is subtracted from ny; in order to
model costs of rapidly adjusting straight time employment. We have included this term
with d > 0 since otherwise (if d = 0) the model has the property that ng; is a constant
multiple of ny;. This implies that the ratio of ny; to ng; does not vary over the cycle. This,
however, is not consistent with findings from U.S. time series data (see section 4). The
right side of (6) expresses output at ¢ as the sum of output obtained from the straight time

1-46
shift , (hlztkg [nlt -~ %(nlt - nlt_l)z] ), and output obtained from the overtime shift,
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(hzztkto n%t_ 0). We have assumed that it is costly to adjust straight time employment, but
not to adjust overtime employment. This assumption is reasonable given that overtime.
workers are selected from among those working straight time, so that the adjustment costs
related to their employment have already been borne. The right side of equation (6) is a
version of the production function used by Lucas [1970], Sargent and Wallace {1974] and
Sargent [1978], which is obtained by integrating an instantaneous production function over
the “day.” [Note the way the shift lengths k; and kg appear in (6)].

The social planning problem is to choose a contingency plan for (ct» z¢sn1esnat) to
8

maximize

[o o]
Eo ) _ B [logc; — ay(n1e — nat) ~ agna] (9)
t=0

subject to (4), (5), (6) (7) and (8). This is a recursive problem that can in principle be
solved using discounted dynamic programming. The state for this problem is the vec-
tor (1,2, kt,n1:—1) = Xi. The solution of the problem is a time-invariant decision rule

expressing (c¢, Tt, 11z, No¢) as a function of the state (1, 2, k¢, n1¢—1)-

We use the preceding social planning problem as an instrument for deriving a linear-
quadratic model. We use the method of Kydland and Prescott {1982] to derive the linear-
quadratic model by proceeding as follows. First, form a nonstochastic version of the above
problem, by replacing z; in (6) for all ¢ with its unconditional expectation Ez. Obtain
the first order conditions for this problem and solve for the stationary point. Second,
substitute the constraints (5) and (6) into the one-period return function (3), and take the
first two terms of a Taylor series expansion about the stationary point as an approximation
to the return function. Let the controls be denoted u; = (ni¢,nat, z¢). Then the second

order Taylor series approximation about the stationary state yields the approximation

log ¢; — aj(nys — ngt) — agnz
~ Xiq X; + urug + 2uiwX; (10)
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where g, r, and w are matrices determined by the Taylor series. Note that this procedure
determines the matrices ¢, r, and w as functions of the parameters (A4, hy, hg,0,d). The

transition law of the state is linear and is given by

1 10 0 0 1 00 0},
ze1] _ |0 p 0 0 2 0 0O
k1| = |0 0 1-6) 0 ke |T]o o 1f|n
nis 00 0 0 {n1—1 (1 00 t
[0
+ (1) €t or
0
Xi+1=aXe 4+ b ug+ get (11)

Given the preceding definitions of (¢, r,w, a, b, g), we study the social planning problem,

to maximize

o0
E Z ik {X{th + ujrus + 2u2th} (12)
t=0

subject to (11). This is a discounted optimal regulator problem whose solution is the
time-invariant decision rule

Uug = —th. (13)

where f = (b'Pb+ r)"1(a'Pb + w) and P is the unique limit of iterations on the matrix

Ricatti equation
Piy1=q+d' Pia— (a'Pb + w')(r + V' Pb) "} (' Pra + w),

as t — oo, starting from Py = [0]. Substituting (13) into (11) gives the “closed loop
system”

Xer1 = (@ — bf) Xt + g€t (14)

Given X; and u; = — fX;, the values of a variety of other variables can be determined.
Equations (6) and (5) can be used to solve for y; and c; as functions of the elements of
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(X%, u¢). The straight time wage rate, wy;, is obtained as h’l'1 times the derivative with
respect to ny; of the right side of (6). The overtime wage rate wy;, is obtained as hy 1
times the derivative with respect to ng, of the right side of (6).? The variable manhours is
then obtained via |

h; = hlnlt + hznzt (15(1)
while average hourly earnings is obtained by
@ = (hqwyenye + howaenat) /by (15b)

Average productivity is given by

Pre = yt/ht. (16)

The preceding paragraph describes how to obtain the variables (y;, ¢;, w1z, wor, We, he, pre)
as nonlinear functions of the state vector X;. In order to reap the benefit of linear sys-
tems theory, it is convenient to replace these nonlinear functions with linear ones. We

can accomplish this by taking linear approximations about the steady state of each of the

functions described in the preceding paragraph. Doing this gives the approxima,tion10

[~ 9
Yt
Ct

Wit
wot =H Xt (17)
h¢
W
| Pre

Our model for the observable time series is formed by combining (13), (14) and (17).

That is, our model is

Xiv1=(a—bf)Xs + g € (14)
e

ct
wi¢
Wat
he | _

@ | = Cc X; (18)
pre
L
not
| Tt




" _
where C = [_ f] . Let Yt’ denote the vector (y;, ¢¢, w1, wot, h¢, Wy, Pre, nyg, N, ). Then

the model can be represented as

Xi+1 = (a—bf) X + g€t (14)

Y, =C X, (18)

Letting L be the lag operator, (18) and (14) imply the following model for the observ-

ables

Y, =ClI- (a—bf)L g & (19)

or

Y; = w(l)e (20)

where w(L) = C[I — (a — bf)L] lg. Since € is a scalar white noise, (20) expresses the
(10 x 1) vector stochastic process Y; as a (10 x 1) vector (w(L) is 10 x 1) of distributed
lags of the single white noise ¢;. Representation (19) or (20) implies that the stochastic
process for Y; is singular — the spectral density of {Y;} is of rank one at all frequencies.
This implies that each variable within Y; can be expressed as an ezact (R2 = 1) linear
function of past, present and future values of any other variable within Y;. This strong

implication is untenable.

The implication that Y; is a process whose spectral density is of rank one can be avoided
if we assume that all or most components of Y; are measured with error. Specifically, we

posit that the measured data Y™ are linked to the true variables Y; by the model
Y, =Y+ v (21)

where
vg = Dy + ¢ (22)
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Here D is a matrix of parameters governing the serial correlation of the measurement
errors v;, and n; is a vector white noise satisfying

(0] s#0
Efltﬂi—s = { ‘

R s=0

where R is a positive definite matrix. We also assume that #; is orthogonal to €s for all ¢

and s.

Combining (19), (21), and (22) yields the following model for the observables
Y™ = C[I - (a—bf)L] g & + (I - DL) " 'n,, | (23)

which is in the form of a one-unobservable index model.!! From (23) one can obtain the

Wold representation for Y], which is of the form

Y," = v(L)a; (24)

where a; is a (10 X 1) vector white noise with
a =Y - B [YYm, Y,
(oo} . o0
'y(L) = Z'Yijs Y% =1, Z trqjﬁ;’ < +o00.

7=0 71=0
Operating on both sides of (24) with the inverse of (L) gives the vector autoregression
for Y,”

L)Y = ay, (24')

where a; is the innovation in the vector ¥;”. For the economy under study, empirical

estimates of vector autoregressions and “innovation accountings” (see Sims [1980]) converge
to the corresponding objects in representation (24) or (24’), as the sample size grows. The
second moments of the Y" process are characterized by representation (24) in a form

convenient for linear prediction.

Sargent [1986] describes recursive calculations for obtaining the parameters of Ea;a} =
S and (L) as a function of the parameters {02, (a—bf), R, D}. These calculations define
11



a mapping from the economically interpretable parameters underlying {052, (a—bf),R,D}

to the parameters of (y(L), S) that describe the second moments of the observable data.

The next section of this paper describes some of the second moments of series for ny;
and ng; synthesized from U.S. time series, as described by a vector autoregression. The

succeeding section describes an illustrative equilibrium for our model.

4. SOME EVIDENCE

In this section we describe the evolution of some empirical counterparts to the variables
n1; and ng; as implied by a vector autoregression. In the next section, we will actually
compute an example equilibrium for our artificial economy which delivers time series for ny;
and no; whose stochastic behavior can be compared to those summarized by the empirical

vector autoregression.

We synthesized time series for ny; and ng; by using data from the Department of
Commerce’s Current Population Survey on total hours at work for all industries (THRS;)
and average weekly hours for all industries (AVHRSt).12 We interpret THRS; as measuring
nithy + nothg, and AVHRS; as measuring (ny¢hy + nathg)/n1:. Consequently, we estimate

nq: as
THRS;

= e t=47,1;...;85,2
"1t = AVHRS; ’

Then for given estimates for h; and hy, we can obtain ng; from

n1:(AVRS; — k)
he

noy = , t=47,1;...;85,2.

We estimated le and made up a value for ilz. To obtain an estimate of h;, we noted that
average weekly hours worked by production workers averaged 40 hours over the period 56,1
to 85,3, while average weekly over-time hours of production averaged 3 hours. In other
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words, hy + %ﬁfzg averaged to 40 while n_znrfz averaged to 3, leading us to set le, at 37.

The data we are using are silent about fzz; we arbitrarily set ﬁz at 10.

Figure 1 plots the time series for nj; and ng;. The figure reveals that ng; fluctuates
more that ny;. This greater smoothness in ny; than ny; lead Sargent [1978] to the inter-
pretation that adjustment costs for straight-time employment exceed those for over-time
employment. We can summarize this differential smoothness in a different way by in-
specting representations associated with a vector autoregression. Figures 2 and 3 show
the response of ny;,ny; and k; to an innovation in y;. To produce these plots, a vector
autoregression was estimated for a vector Y;, consisting of real GNP, ny;, ng; and k;.13
Next, a Wold moving average representation (MAR), which can be viewed as estimating a
version of eq. (24) for this system, was formed by inverting the estimated autoregressive
representation. The components of the innovations in the Wold MAR are contempora-
neously correlated. We use the method suggested by Sims (1980) to transform the Wold
MAR to a MAR which is in terms of innovations that have orthogonal components. This
method is sensitive to the ordering of the four variables in the vector Y;. We placed y; first

in the ordering. We then calculated the response of the system to an innovation in y;.

Figures 2 and 3 show that the response of capital is most drawn out and the response of
overtime is the least. In addition, the response of overtime employment is more immediate
than the response of straight time employment. Our model interprets this last pattern by

setting d > 0.

5. AN EXAMPLE OF AN EQUILIBRIUM

This section describes some sample calculations designed to illustrate our model, and
some of its potential eventually to be a vehicle for interpreting data. We proceeded by
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making informed “guesses” at the values of the underlying parameters of the nonlinear
growth model, and the parameters of the measurement error processes. So far, we have
not adjusted these parameters in an effort to get a better match to the data. Later, we
plan to pursue such adjustments ruthlessly, by setting down a metric (e.g., one induced by
a likelihood function) and estimating parameters by finding values that make the metric
attain a minimum. The calculations described here are intended as a prolegomenon to

pursuing estimation, and as a way of indicating whether the model might match the data.

We set the parameters of the nonlinear growth model at the following values:14

hy =046  hy=0.13
§=036 d=15
A=2 p=0.95
B=099  §=0.025

o¢ = 0.0075

The associated linear-quadratic social planning problem has the following parameters:

—10.3595 -—-0.3394 1.0087
r=| —0.3394 —0.7224 0.4508
1.0087 0.4508 —1.3398

0 1.5767 0.0674 0
1.5767 —0.9043 —0.0099 0
0.0674 —0.0099 —0.0038 0

0 0 0 —9.2428

0.8287 0.3704 —2.7376
—0.2125 -0.0950 1.1007

W= 1-0.0091 —0.0041 0.0470
9.2428 0 0
Recall that the state is the vector X; = [1,z2,k¢,n1¢—1] while the controls are u; =

[n1¢, nog, T¢]. The optimal linear decision rule is given by the parameters of

—0.0452 -0.1229 0.0055 —0.8044
f=1]-0.0043 —0.2902 0.0112 0.0420
0.7807 —0.7681 0.0132 —0.5383
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The optimal closed loop system is given by

1.0000 0 0 0
(a—bf) = | 00500 09500 0O 0
~ | -0.7807 0.7681 0.9618 0.5383

0.0452 0.1229 —0.0055 0.8044
The eigenvalues of (a — bf) are equal to (1, 0.95, 0.9398, 0.8264). The stationary values
of the state variables described by the nonstochastic linear closed loop system X;;; =
(a — bf) X can be determined to be [1, 1, 8.4257, 0.6207]. These are the same as the
stationary values of the state variables of the original nonlinear nonstochastic growth

model.

These stationary values of the nonstochastic linear closed loop system determine the
unconditional means of the variables generated by the stochastic closed loop linear system

Xi = (a — bf)X;—1 + ge:. For some of the key variables of our system, these means are as

follows:
k 8.4257
ny 0.6207
no 0.1737
wy 1.6366
wy 2.5884

Note that the ratio of the mean of wy to the mean of w; is 1.58, which is to be compared
to the “time and a half” for overtime that we seek to explain. To us, it is encouraging that

we get close to “time and a half” with little coaxing.

Figure 4 displays the response functions of k; and 2; to an innovation ¢. That is,
Figure 4 displays the second and third rows of the operator [I — (a — b f)L]™1g, tracing
out the response of the state to an innovation ¢ in the technology stock. Figure 5 gives
the corresponding responses for z; again, and also ny; and ng;. Notice that the response
of k; to an innovation ¢; is the most drawn out, followed by ny;, while the response of no;
is the shortest lived. Compare this to responses in Figures 2 and 3. The relatively quicker
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response of ny; than nj; is a consequence of the adjustment cost specification, and the
relatively large value for d of 15. Compare the first and second rows of f, which indicate
that ny; is much more highly dependent on lagged ni; than is ny; (a coefficient of —0.8044
compared with .0420). This quicker response of ny; to an innovation ¢; makes ny less

highly positively serially correlated than ny;.

Figures 6, 7 and 8 display some of the results of simulating the system(19) above,

namely

Y =C[I-(a-bf)L] g &, (19)

where ¢ is a log-normally distributed white noise with mean zero and variance (0.0075)2.
Figure 6 plots realizations of y;,¢; and z;. Figure 7 plots realizations of straight time
and overtime employment ny; and ng;. Figure 7 can be compared to Figure 1 which is
constructed using actual data. Figure 8 plots realization of wy; and we;. Note how c;
appears to be a less volatile series than z;. Reflecting this, the coefficient of variation of
x; is 0.0632, while that of ¢; is 0.0134.1% The coefficient of variation of ny; is 0.0101 while
that of ng; is 0.0202, a reflection of the impulse response functions reported in Figure 5.
(At this point, the volatility of ny given the chosen parameter values is too small to be
consistent with the data described in section 4. Also, at this point, the amplitude of the
response of n; in Figure 5 is too large relative to the amplitude of the response of ng to

be consistent with the data.)

We now introduce measurement errors into our example. Let the vector of measured

series be

and assume the model (21)-(22). We set the matrix D describing the autoregression of
measurement errors v; equal to a matrix of zeros, except for the (1,1) element which we
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set equal to 0.95. Thus, the measurement error in each variable was assumed serially

independent, except for the error in measuring capital, which followed the process
vk = 0.950F | +n¥

We set the measurement error variances to be the following fractions of the variances of
the true variables:

Parameters of R matrix

measurement error variance as a

variable fraction of variance in true variables
k 0.15
ny 0.05
ng 0.05
y 0.01
c 0.07
z 0.07

Thus, we assumed that output is best measured, while ¢,z, and k are relatively poorly
measured. We assumed that the off-diagonal elements of the matrix R are all zero, so that

the meaurement errors are orthogonal.16

Having set the parameters of the multivariate signal extraction model described above,
we performed the calculations described in Sargent [1986] to compute the Wold represen-
tation (24), namely

Y™ = y(L)as, (24)
where a; is an innovation process for Y.

Figure 9 depicts a simulation of the error ridden series v, ¢ and zp". Tlﬁs is a

simulation of system (24), where the shocks a; are drawn from a multivariate normal

distribution with covariance matrix Eazal. (The covariance matrix Eazay is determined
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during the process of computing the Wold representation (24).) The standard deviations
of the innovations in Y™ (the square roots of the diagonal elements of Eata}) are given
by [0.0173, 0.0015, 0.0016, 0,0051, 0.0024, 0.0050]. Figure 10, 11 and 12 depict parts of
~(L) associated with responses to one-standard deviation innovations in measured output,

consumption, and investment, respectively.

Figures 10, 11 and 12 indicate that the best measured series — output — displays
the strongest feedback to other series. This stronger feedback is a consequence of the
assumed values of the measurement error (see Sargent [1986]). These figures indicate that
this model is one for which the data on Y™ would spuriously appear to conform to an

investment accelerator, for reasons described by Sargent [1986).

6. WAGES AS VALUES OF ALTERNATIVE BUNDLES
OF STATE CONTINGENT COMMODITIES AND THE
IRRELEVANCE OF THE FAIR LABOR STANDARDS ACT.

In the version of the model studied in section 5, time and a half for overtime is close to
being an equilibrium outcome. In point of fact, in the U.S., time and a half for overtime
is imposed on specified industries by the Fair Labor Standards Act (FLSA). Our interpre-
tation of time and a half for overtime as a competitive equilibrium outcome is interesting
only if it can be argued that the FLSA is redundant, in the sense that it imposes no re-
strictions on equilibrium allocations or shadow prices. Stephen Trejo [1986] has studied
the hypothesis that the FLSA is redundant in just this sense, and has implemented em-
pirical tests of the hypothesis which he interprets as containing some evidence against the

hypothesis.

In this secion, we reinterpret some of Trejo’s empirical findings in light of our model
and argue that more must be known about the particular state contingent bundle that
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the wage data are regarded as pricing before Trejo’s finding can be regarded as evidence
against the redundancy of the FLSA. This exercise highlights some hazards that occur
more generally in interpreting wage data, due to the alternative possible “bundles” of

state contingent payments which a given wage series can be interpreted as representing.

In our model, one decentralization and pricing scheme that can support the social
planning solution occurs when workers are paid a straight time real wage of wy; for the
first h; hours of work, and an overtime wage of wy; when they work an additional ho
hours. A worker who actually works overtime, thereby working hi+ hg hours, then receives
withy + wethe. Trejo notes that such a worker would be indifferent between this two-part
compensation scheme, and simply receiving a single daily wage rate of th = (wighy +
wothg)/(h1 + hg) per hour worked. Notice that:

N vt (h1 + o hz)
wy =
h]_ + h2

(25)

Trejo uses the definition of wgv in (25) to motivate a test of the hypothesis that the legal
imposition of wy;/wy; = 1.5 by the Fair Labor Standards Act is irrelevant. Trejo defines a

variable
V= ng _ hy+ %fhz
wie h1 + h2

(26)

where for Trejo wg/w; = 1.5. Notice that V can be computed solely from information

about the shift lengths h; and hy. He then represents (25) as
_ N
log w; =log w —log V. (27)

On the hypothesis that the legal restriction is irrelevant, (27) represents the relation be-
tween the straight time wage w; in an industry covered by the FLSA, and the single daily

wage w;N that could be paid by an uncovered industry.

Trejo proceeded to construct an empirical test as follows. For each worker ¢ in a
collection of N workers indexed by 7, by using (27) and information on the shift lengths of
19



hq and hy worked by worker 7 he constructed a measure of V, call it V;. He also had data
on the straight time wage rate received by worker ¢, wi; a vector of worker characteristics
X;; and a dummy variable d; which took on the value 1 only if a worker was covered by

FLSA and worked overtime, and zero otherwise. Trejo then computed the regression
log w* = X;B + aflog V;)d; + ¢; (28)

where ¢; is a least squares residual. Equation (28) is intended to nest an econometric
version of (27) as a special case. Here X;f is intended to capture wage differences across
individuals due to factors other than whether or not the industry is covered under the
FLSA. On the hypothesis that the restriction is irrelevant, Trejo expected « to be equal
to —1. In fact, he estimated a to be in the range of —.57 to —.32, depending on the year

to which the data corresponded.

The wage th defined in (25) is to be interpreted as the wage that would be paid only
to workers who actually work overtime. However, we can imagine another price system
which supports our equilibrium allocation and which leads to another concept of average
daily wage. In particular, suppose that all workers participate in the lottery and receive

the single wage

h _ wieha (71 + 7ae) + washoma
hy(mae + mae) + homo
or

wh = wythinye + worhong
t — -
hinye + hong

The numerator of wth is the expected daily wage of workers who participate in the lottery,
while the denominator is expected daily hours. All workers, not just those who actually

work overtime, can be regarded as receiving the daily wage rate wth.

In Trejo’s regressions, what difference would it make in interpretation if the observed
wage data in industries where time and a half is not paid to workers who work overtime
corresponded to a measure of concept w™ rather than concept w7 We use our model at
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the steady state values associated with the parameters described in section 5 to compute
how w? would be related to V (as defined by Trejo) at that steady state. The steady state
values of the various variables are
hy = .46, hy = .13, n, = .6219, ny = .1733,
wy = 1.6361, wg = 2.5920, w" = 1.7059,
wh jw; =V =113

From these values we compute a from the equation
log w; = alog V + log wh. - (29)

With the above values, we obtain a = —.35. Had we revised our definition of V' to be %
in (29), we would have obtained the value @ = —1 expected by Trejo. But, using Trejo’s

measure of V, we obtain a value of a in the upper end of the range of values actually

obtained by Trejo.17

Thus, on the view that the recorded wage data are wf, being payments for accepting
exposure to the lottery of engaging in overtime work, Trejo’s regressions contain little
evidence against the hypothesis that the FLSA restrictions are redundent when interpreted

in light of our model.

7. SUMMARY

This paper uses an idea of Rogerson [1984], as previously applied by Hansen [1985],
in order to interpret observations on employment and hours. We restrict the feasible
consumption set in a way designed to generate an equilibrium setting consistent with the
specialization of Lucas’ [1970] model used by Sargent and Wallace [1974] and Sargent
[1978]. We impose up front, as an assumption, constant and exogeneous shift lengths hq
and hg, and interpret this imposition in terms of a restriction on the feasible consumption
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set. Thus, although our model is one of general equilibrium, it is hardly general as a
specification.!® The economy moves along as though workers face lotteries across states of
unemployment, straight-time employment, and straight-time plus overtime employment.
For parameter values that were “made up,” simulations of the model generate shadow
prices for straight-time and overtime employment that exhibit a premium factor of about

1.58 for overtime.
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APPENDIX

Approximation Quality

Let V(X)) = X 'PX be the optimal value function for our linear-quadratic problem of

maximizing (12) subject to (11). Now consider

V1(X:) = max {log ¢; — aj(n1; — nat) — aznyy

+BE Vy(Xe41)} (A1)

where the maximization is over u; = (nyz,ng:, 2¢) and is subject to (5), (6), (7), and (8).
Let the right side of (A1) be attained by the decision rule u; = ¢(X;). The optimal linear
rule given by the solution, (13), of the approximating problem is u; = — f Xi. For various
values of X}, we form both ¢(X;) and —f X}, and then compute a measure of the distance
between the two decision rules. If the distance is large, we will regard the approximation
to be a bad one. If the distance is small, we regard the experiment as not putting the

approximation under suspicion.

To implement this procedure, we must choose a set of points, X3, in the state space at
which to compute —f X; and ¢(X;). To obtain a grid of points, we used a simulation of
500 points from the optimal closed loop system derived in section 5.19 This procedure has
the advantage of assigning weight to regions of the state space according to the probability

of visiting them.

To measure the distance between corresponding components of —f X; and é(X;) we
used four measures of distance. Letting d be the decision for a given decision variable
from rule —f X; and d’ be the decision from ¢(X;), we define for each decision variable

(n1,n2,z) the following functions:
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p1(d, ') = mpx |d(X) - (X)) (42)

pa(d, &) = mean |d(X) - &'(X)| (43)
ps(d, ') = max {100 x |d(X) — &'(X)|/d(X)} (44)
pald, &) = mean {100 x |d(X) - &(X)\/d(X)} (45)

The results from carrying out this exercise are summerized in the following table:

p1(d, d’)
p2(d, d')
p3(d,d')
pa(d,d)

ni
1.80 x 10~4
3.89 x 1075
2.85 x 1072
6.22 x 1073

Decision Variable

ng T
1.28 x 103 1.56 x 1073
2.74 x 10~% 3.74 x 1074
696 .720
155 172

The quality of the linear approximation in the fourth step of our model building process

can also be evaluated numerically. For artifical realizations of the random process ¢;, the

system X;11 = (¢ — bf)X; + get+1 can be computed. Then each of wyg, wa, D2, he, pry

can be computed as nonlinear functions of X3, as can the linear approximations to them.

The B2 between the realizations of these variables based on the nonlinear functions and

the realizations based on the linear approximations can be computed. With the variance

of ¢ specified in the text, this check gave an R2 extremely close to unity for our model.

Indeed, it was via these regressions that we estimated the parameter H in eq. (17).
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FOOTNOTES

For annual U.S. data, logarithmic least squares regressions of aggregate output on
manhours and capital yield constant or slightly increasing returns to manhours, and
slightly negative returns to capital. See Lucas [1970]. Robert E. Hall has compiled

similar findings for data disaggregated by industry (see Hall [1986]).
An alternative effort to ours is Kydland and Prescott’s [1986].

Christiano [1986] has studied how well the solution to a linear-quadratic problem
approximates the solution to a class of problems with logarithmic objective functions
and Cobb-Douglas constraints (problems of the class studied by Brock and Mirman
[1972] and Long and Plosser [1983]). This setting has the advantage that Christiano
can solve analytically both the linear quadratic problem and the nonlinear problem.
Exploiting this advantage, Christiano is able to characterize precisely some properties
of the estimates of the parameters of the nonlinear quadratic model based on the

intermediating linear quadratic model.

Sargent and Wallace [1974] and Sargent [1978] not only take h; and hy as given,
but also take the ratio of the overtime wage to the straight-time wage as given from
outside the analysis. Taking k1, ho and the wage ratios as given amounts to adopting a
specialization of the wage premium schedule which Lucas [1970] takes as exogenous to
the firm. In terms of Lucas’ specification, the present paper endogenizes some but not
all aspects of the premium schedule. We continue to impose h; and hy exogenously,
reinterpreting their imposition in terms of a restriction on agents’ consumption set.

Given the shift lengths, the model determines equilibrium wage rates across shifts.

Compare the specification of the household’s consumption set with the more restric-
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tive one in Hansen [1985).

This uses the fact that, since preferences are separable in consumption and leisure,
the consumption level chosen in equilibrium is independent of whether the individual

works zero, hq, or hy + hg hours.

Note that 7y, is the probability of working h; hours, and only h; hours, while mo; is
the probability of working precisely h; + ho hours. We assume that all of those who
work overtime at ¢ also work the straight time shift. Thus, 714 + mg; is the fraction

of people working the first shift.

We have also worked with a modified model generated by altering (9) to be
oo
Eo )y B [log ¢t — a1(nys — nat) — agny (9)
t=0

d
- '22(n2t + Omzt—l)z]

where 0 < a < 1 and dp > 0. The extra term in (9’) represents a preference for not
being exposed in two successive periods to a high probability of working overtime.
Setting a close to unity and making dy large will tend to reduce the serial correlation
of the equilibrium no; process. Kydland and Prescott [1982, 1986] have a term similar
to this in their social planner’s preference function. We do not, however, report results

based on this model in this paper.

The straight time wage rate wy; is given by h;l times 8y;/Ony;, where

3 d -4
o S ztkf{hl(l - 0) [nlt - E(nlt - nlt—l)z]

3n1t
[t — d(rgs — nae-1)] }-
The overtime rate wo; is given by hy 1 times Ay; /8ng:, where

Oy _ .6 a0
anZt-ztkthz(l O)nyt -
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10.

11.

12,

13.

14.

Note that since agents are identical and markets complete, all households are paid the
same amount independent of whether they work straight time, overtime, or not at all.
However, we are free to consider a decentralization of this economy where households
get paid for the work they do according to the above wage structure and, in addition,
have access to an insurance market. This is similar to the decentralization discussed

in the appendix to Hansen [1985).

For the calculations reported in section 5 of this paper, we used the following method
for obtaining this linear approximation. Using a pseudo-random number generator to
produce a realization of 200 observations for €;, we computed a 200 observatioh real-
ization of X; using (14). Then we solved for realizations (y;, ¢t, w1z, wot, Wy, ht, pre) as
nonlinear functions of X;. We used this 200 observation sample to regress (y;, ¢, wy,
woy, hy, Wy, pry) linearly against X; to estimate the matrix H in (17). For each of the
seven regressions, R2 exceeded 0.999, which made us comfortable with the quality of

these linear approximations.

See Sargent and Sims [1977]. Altug [1985] has noted that Kydland and Prescott’s
[1982] model augmented with measurement error and some orthogonality assumptions

delivers an unobservable index model.

THRS is the series LHOURS from the Citibase data tape. Similarly AVHRS is the
series LHCH.

The capital stock series is nonresidential equipment and structures. This series, as
well as real GNP, for the period 47,1 to 85,2 was taken from the Citibase data tape.

We estimated a vector autoregression with eight lags, a constant term, and a trend.

The values chosen for the parameters (0,8, p,8, A) are the same as the values of the
same set of parameters used by Kydland and Prescott [1982,1986] and Hansen [1985].
These values were selected by Kydland and Prescott based on evidence from growth

27



15.

16.

17.

18.

observations and results of studies using microdata (see Prescott [1986]). The value
chosen for o2 is consistent with measurements in Prescott [1986]. The adjustment
cost parameter d is a free parameter which was set equal to 15 so that the model

mimics certain features of the impulse response functions described in the previous

section.

The parameters hy and hy are calculated from the estimates hq and izz of the previous
section. We assumed that households have 80 hours per week of discretionary time
which can be allocated between market and non-market activities. From this we set

hy = (h1/80) = 0.46 and hy = (hy/80) = 0.13.

The “coefficient of variation” is the standard deviation of a variable divided by its

mean.

If data on y[" are constructed as the sum of z* and ¢, then the measurement
errors for {z{,¢[*,y["} cannot all be uncorrelated. We have explored alternative
assumptions about the correlation structure of these measurement errors, but do not

report on these in this paper.

Note that an additional implication of our regarding measured wages in Trejo’s work
as corresponding to w” is that the value of a should not differ if the dummy variable
d; is altered to be 1 for all in FLSA covered workers, whether or not they work

overtime.

It hardly bears mentioning that “general equilibrium” need not entail generality, and
that building general equilibrium models does not permit dispensing with “ad hoc”
(“for this purpose”) assumptions. The assumptions made in this paper are indis-
putably ad hoc, and are frankly tailored for the purposes announced in the introduc-
tion to this paper. Our assumptions’ status in terms of general equilibrium theory
rests on their being interpretable in terms of restrictions on preferences, endowments,
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technology, and equilibrium concept (or mechanism).

19. We used as initial conditions the stationary values of the state variables described by

the nonstochastic version of the closed loop system.
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Captions for Figures 1 to 12

Figure 1 Number of workers employed during the straight time
shift (N1) and overtime shift (N2) based on quarterly U.S.
time series from 47,1 to 85,2. The series Nl is equal to
the reported series on total number at work in all in-
dustries, and N2t is equal to Nlt(AVRSt—37)/10, where AVRS
is average hours at work in all industries.

Figure 2 The response of capital (CAP) and output (GNP) to an
innovation in output. The impulse response function was.
computed from an estimated vector autoregression consisting
of a trend and eight lags of real GNP, straight time
employment, overtime employment, and capital. The Quarterly
U.S. time series used is from the period 47,1 to 85,2.

Figure 3 The response of output divided by 10 (GNP/10), straight
time employment (N1), and overtime employment (N2) to an
innovation in output. The impulse response function was
computed from a vector autoregression consisting of a trend
and eight lags of real GNP, straight time employment,
overtime employment, and capital. The quarterly U.S. time
series used is from the period 47,1 to 85,2.

Figure 4 The response of the technology shock (Z) and capital
(K) to an innovation in Z. The responses are the ap-
propriate coefficients of the moving average representation
computed in section 5 for our example equilibrium without
measurement error.

Figure 5 The response of the technology shock (2), straight time
employment (N1), and overtime employment (N2) to an innova-
tion in Z. The responses are the appropriate coeftficients
of the moving average representation computed in section S5
for our example equilibrium without measurement error.

Figure & Simulated data on output (Y), consumption (C), and
investment (X) based on the example equilibrium in section 5
without measurement error.

Figure 7 Simulated data on straight time employment (N1) and
overtime employment (N2) based on the example equilibrium in
section 5 without measurement error.

Figure B Simulated data on the straight time wage rate (Wi} and
the overtime wage rate (W2) based on the example equilibrium

in section S5 without measurement error.
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Figure 2 Simulated data on output (Y), consumption (C), and
investment (X) based the example equilibrium in section §

with measurement error.

Figure 10 The response of capital (K), straight time employment
(N1), and overtime employment (N2), output (Y), consumption
(C), and investment (X) to an innovation in Y. The respon-—
ses are the appropriate coefficients of the moving average
representation computed in section 5 (equation 24) for our
example equilibrium with measurement error.

straight time employment
output (Y), consumption
The respon-—

Figure 11 The response of capital (K),
(N1), and overtime employment (N2),
(CY), and investment (X) to an innovation in X.
ses are the appropriate coefficients of the moving average
representation computed in section 5 (equation 24) for our

example equilibrium with measurement error.

Figure 12 The response of capital (K), straight time employment
(N1), and overtime employment (N2), output (Y), consumption
(C), and investment (X) to an innovation in C. The respon-
ses are the appropriate coefficients of the moving average
representation computed in section 3 (equation 24) for our
example equilibrium with measurement error.



