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1. Introduction

Most empirical analyses (either at the aggregated or disaggregated
level) of dynamic factors-demand use a specification of the equilibrium
levels of inputs utilized which implicitly or explicitly assumes the dynanmic
stability of the (unique) steady state level of such inputs. It is often
derived, in fact, as a linear-quadratic approximation around such steady-
state, where the displacement from the stationary position is explained by
relative-price variations and lags in the adjustment sequence. To quote
only a few, at random, from a very large literature: Abel [1979], Meese
[1980], Sargent [1978], Shapiro [1986], etc. As most researchers assume
markets are in competitive equilibrium over time, an often cited (and
natural) microeconomic justification for such a model is provided by the
neoclassical theory of the firm's optimization process over time when costs
of adjusting the input levels are present. Nevertheless we are not aware of
any complete theoretical analysis of the neoclassical model showing that,
indeed, global asymptotic stability of the steady state is a logical conse-
quence of the basic assumptions.

Dynamic stability is fairly easy to obtain in the one-dimensional case
(i.e., when there is only one variable input that induces costs of adjust-
ment), but is not a trivial consequence in the general, n-dimensional case.
In the latter setup global stability may be a consequence of the well-known
Turnpike Theorems when the factor of intertemporal discounting is close to
one (i.e., "small interest rate"), but is ﬁot true in general.

The object of the present paper is to provide an aﬁstract analysis of
such a problem and to prove that, indeed, asymptotic stability is obtained

at any level of discounting in force of the specific economic assumptions

that are made on the production and cost of adjustment functions. The



results we obtain guarantee, so to speak, logically coherent dynamic micro-
foundations to a vast area of applied research that would, otherwise, have
to rely on ad-hoc assumptions and/or "intuition".

It is customary to distinguish, in this contest, between "internal" and
"external" costs of adjustment (see Section 3 and 4 for a detailed discus-
sion). We consider both cases in our analysis and it turns out that,
interestingly enough, they are not exactly equivalent from a dynamic point
of view. 1In fact while the internal costs hypothesis always implies global
stability, the same result is not guaranteed in the external-costs case,
Even if we are, at the moment, unable to provide a counterexample where
optimal cycles or chaos occur for such a model, still we conjecture that
such an outcome is indeed possible. We prove, in any case, that stability
is guaranteed when an additional simplifying assumption is added; the latter
amounts either to exclude relevant interactions among factors in the cost-
of-adjustment function or to assume that all inputs depreciate at the same
rate per period of time. Finally, we consider also the full Competitive-
Equilibrium for the whole industry where output and input prices vary over
time according to market clearing equations. We show by a routine argument
that such a Competitive Equilibrium over time indeed exists and is unique.
With a technique similar to the one used in the individual firm problem we
are able to prove that the Competitive Equilibrium sequence of prices and
quantities will asymptotically converge to a steady state vector. The
picture appears, at that point, remarkably‘complete and solid, at least
within the basic assumptions taken here.

The remainder of the paper is organized as follows: Section 2 contains
an introduction to the mathematics of the problem and an exposition of the

main stability theory as previously proved in Boldrin-Montrucchio [1988].



Section 3 discusses the internal-costs case for the individual firm in the
first part and the external-costs case in the second part. In Section 4 we
consider the industry-wide Competitive Equilibrium. Finally, Section 5
compares our result with the ones existing in the literature and draw a few

conclusions.

2. Intertemporal Optimizing and Dynamic Stability

In this paper we will consider various models of firm behavior which
are all special cases of a more abstract optimization problem. We like to
study the latter at the very beginning in order to prove our main stability
theorem once-and-for-all. The subsequent discussion will then be devoted to
show how and when the general result applies to specific economic models.
Assume that an infinitely lived decision maker faces the following

objective:

o0
t
(P) WS(X) = Max }Z V(xt,xt+1)6
t=0
s.t. X € F(xt)
X~ = X, given in X.

0
Here the n-dimensional vector xt describes the relevant state of the world

at time t = 0,1,2,... and is constrained to some compact and convex set X

n

c R V(xt,x is the instantaneous return function in reduced form:

t+l)

its value is the maximum attainable level of satisfaction when the state is

x today and will be x

c in the next period. F(xt) is a correspondence

t+1l
describing the subset of X which is achievable tomorrow as a function of

the present state X Finally § € [0,1) 1is a discount factor and Xg = X

specifies the initial condition we start from.



Mathematically this is described by the following hypothesis:

(Al) T: X+ X is a continuous and compact-valued correspondence with a
convex graph and such that x € I'(x) for all x € X.

(A2) V: D~ R 1is a continuous and concave function defined on D =
{(x,y) € mzn s.t. x€X and y € I'(x)). V(x,*) 1is strictly

concave for every given x.

We summarize here some well-known properties of (P) that are useful for
our purposes (see Lucas, Prescott and Stokey [1986] for the details). The
function W6: X + R 1is called the value function of (P): it gives the

maximum achievable total reward as a function of the initial condition Xy =

x. It is (strictly) concave and continuous and it satisfies the relation:
(D WS(X) = Max{V(x,y) + 6W6(y); s.t. y € I'(x))

which is the celebrated Bellman Equation. Define as Ts' X =+ X the

continuous map solving (L), i.e.:
(2) Wo(x) = V(x,7,(x)) + W (7 (%))

We call 16

mality Principle one can show that {xt):=0 is a feasible sequence

the (optimal) policy function of (P). Using the Bellman Opti-

realizing the maximum in (P) if and only if it satisfies: X1 ™ r6(xt),

X, = X. The shape of r,. will depend, ceteris paribus, on the magnitude of

0 5
§. More formally: for given x, ' and V the map § -+ Ts from the
interval [0,1) into the space CO(X;X) is itself continuous (in the un-
iform topology). This implies that the dynamical system described on X by
the iterates of

5

values of §. In particular, for suitable forms of V, periodic and even

may have different qualitative features at different

aperiodic trajectories can be produced by T, at certain magnitudes of §.



As a matter of fact, there are some economic problems which belong to
the class (P) and for which it is counterintuitive, or even against empiri-
cal evidence, to theorize the optimality of irregular and oscillatory
behaviors. The family of models of the firm we are addressing here seems to
belong to this group, at least when we see it as the General Eqilibrium
foundation of the empirical researches we referred to in the Introduction.
We would like, therefore, to specify (P) in such a way that the predicted
policy functions generates "simple dynamics" for all 6 € (0,1) and for all
dimensions of the state space. The notion of "simple" we are using is

formally stated in the next two Definitions.

Definition 1: Let f: X - X be a continuous function from X into itself

defining the dynamical system x 1~ f(xt). The non-wandering set Q(f)

t+
associated to it is defined as: Q(f) = (x€X, s.t. for every neighbor-
hood U of x and T > 0, 3t = T such that ft(U) N U= ¢}. Here ft

denotes the t' iterate of £, i.e., f£i(x) = £(£5 Y(x)), £2(x) = x.

We find it useful to point out that, in general, the structure of Q(f)
can be incredibly complicated: it includes all the steady states, the
periodic orbits, the strange attractors, etc. As the asymptotic behavior of

the dynamical system x = f(xt) is described by Q(f) it is clear that

t
the former can, in general be very complex. Therefore our notion of simple

dynamics will be stated in terms of a simple non-wandering set:

Definition 2: A dynamical system £: X -+ X 1is "simple" if Q(f) = Fix(f),

where Fix(f) = {(x € X, s.t. x = f(x)}).

The intuition behind this should be clear: every observable trajectory of a

simple dynamical system will asymptotically move toward some steady state.



Consequently the vectors {xt} solving (P) will stay within smaller and
smaller neighborhoods of some point as time goes by and will make the
agent’s behavior more and more predictable.

The reader should also observe that if Fix(ra) results in a
singleton, for some or even all values of §, then the strongest form of
stability, global asymptotic stability, will be obtained. This is the case
in which comparative static exercises are meaningful as the sensitivity of
the unique asymptotic state =x*(§) to variations in § could be evaluated.

In Boldrin-Montrucchio [1988] we proved that a set of sufficient

conditions on V can be found in order to guarantee a simple r for every

)

level of discounting.

Theorem 1: Let Ts' X - X solve (P) under (A-1)-(A-2). Then Ts is

simple for every 6 € [0,1) if V satisfies:

N N
*
(*) Z V(x, ,x.) 2 Z V(x X )
t=1 t=1
for any finite sequence (xl,...,xN} of points in X; (the position XNel
= xl is understood in (*)).

3. The Cgst-of-Adjustments Model of the Firm

Stripped down to its bare essentials, the problem we have in mind is
based on the following story.1

A representative firm is considered which produces a single output by
means of a vector of inputs and a time invariant technology. The critical
feature of the model comes from the existence of some inputs which are
quasi-fixed: a variation in their utilized quantities will entail positive

costs for the firm over and above the payment of the pure market price.



These "adjustment costs" depend on the magnitude of the change.

In our formal treatment we will assume that all inputs belong to this
category: the case in which they can be split into two subgroups, one being
composed of freely adjustable factors is easily tractable as a special

. s . . n
version. Denote the vector of inputs at time t = 0,1,2,... with X € m+.

All the (n+l) spot markets in which the output and inputs are traded,
are assumed to be perfectly competitive: prices are therefore taken para-
metrically by the firm. The firm is infinitely lived and it perfectly

foresees the sequences of prices (pt} and {qt} P, € R+, q, € Ri,

t =0,1,... that will clear the markets.
The technology is described by a production function f(xt) and a

cost-of-adjustment function g(xt which are both time-invariant and

'xt+l)

have values expressed in units of output: g(x is then the output

t’xt+1)

foregone in period t in order to adjust the input level from X, to X1

for the next period. Because quasi-fixed factors depreciate, we denote with
Z the nxx diagonal matrix with diagonal elements 0 < o, = 1, i=
1,...,n representing the rates of depreciation for each coordinate of x.
Finally, we denote with It € mf the gross purchases of quasi-fixed factors

during period t. The firm’'s total cash-flow in any period can then be

written as:

(3) G X 10Pesq) = PIE(x) - 8(x % )] - <q.,I>

t+1)
The assumption of perfect capital-markets closes the model: a profit-

maximizing firm will then act according to the objective:

(-]

t
(P1) Max }: G(xt,xt+l,pt,qt)6

[o0]
2 )0 20

s.t. X1 = (I-Z)xt + It >0



X iven in mn
o & t

({pt},{qt}) given for all t = 0,1,2,...

To get things going we assume that the price sequences {pt} and (qt} are
constant over time and use the output as the numeraire: P, = 1 and q =
q € Rz all t=20,1,.... In Section 4 we show how this hypothesis can be
removed, and the central stability results retained, by using a technique
suggested first in Lucas-Prescott [1971]. A second simplifying assumption
constrains the input vectors within a compact and convex set X C Rz. This,
again, is of no harm to the generality of the argument: convexity is just
natural in this context and compactness may be derived endogenously by using
standard assumptions on f and g, see Brock-Scheinkman [1974, pp. 5-8]
for the details.

The firm's maximum problem now becomes:

t
- <q,xt+1-(I-2)xt>] )

(P2) W(x) = Max }: [E(x)) - 8(x,x )
t

s.t. xt e X all ¢

X, =%xX € X, given;

0

under the hypothesis:

(I) f-g: X XX~ m+ is a continuous function. £f(x) - g(x,y) 1is concave
over X X X and strictly concave in y for every x € X.
It is clear that (P2) is just another.way of writing (P): this means
that the assumptions we have made so far are too weak for our purposes. In
fact, they are consistent with policy functions Ts of almost any type.2

The culprit here is the cost function: we have assumed, not even

explicitly, that g has some degree of convexity but nothing more. We will



show in the following which kind of additional structure can be put on g

in order to apply Theorem 1.

3.1 The Internal Costs Hypothesis
This is the case studied, among others, by Lucas [1967], Mortensen
{1973], Scheinkman [1978].

Assumption (I) is supplemented with:

(11) g(xt,xt+1) is convex and satisfies: g(xt,xt+1) = g(xt+1-xt).

These are the so-called internal costs and their fundamental source is
technological: installation of new equipment and/or training of new labor
forces cause a temporary reduction in production as resources must be
devoted to these activities. These are opportunity costs for the use of
resources: the convexity hypothesis is therefore justified by the classical
non-increasing returns arguments, strict convexity in the second argument is
added to assure a unique solution to the maximization problem. The new

problem is:

- o]

(P3) W(x) = Max Z [£(x) - B(X 1 %) - <q4,Xq-(1-D)x>] '
£=0

s.t. x_€ X all ¢, X, = x glven.
Denote with X1~ ra(xt) the unique solution to (P3). The following is
true:

Lemma 1: The concave function -g(x ) satisfies (*) of Theorem 1.

t+1 "t

Proof: Let ({x .,xN} be any feasible sequence. We need to show that:

t’
N

-Ng(0) = - E: g(xt+1-xt)
t=1
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holds, with X1 = X1 This follows from concavity of -g, 1i.e.:
N N
-8(0) = -glz ) (x_,-x)| = - &) g(x,-x) Q.E.D
N t+1 "t’] - N t+1 7t R
t=1 t=1

We have therefore proved:

Proposition 1: Under (I) and (II) the optimal investment policy of the firm

is a simple dynamical system for every level of the market interest rate.

Proof: By Theorem 1 we need only to show that the short-run return function
V{x,y) = £f(x) - g(y-x) - <q,y-(I-Z)x> satisfies (*). The linear part triv-

ially satisfies it with equality. The rest follows from Lemma 1. Q.E.D.

3.2 The External-Costs Hypothesis

This is the second relevant hypothesis in the literature, classical
references are Brock/Scheinkman [1974] and Gould {1968]. Assumption (II) is

replaced with:

(III) The cost function satisfies g(x,y) = g(y-(I-Z)x) and it is convex.

The story behind external-costs relies on the existence of some market
imperfections: the presence of monopolistic elements in the factor-markets
could explain (III). In this case the equilibrium price for the quasi-fixed
factors will be an increasing function of the amount demanded by the single
firm: q is not taken parametrically any more, and the linear term
<q,y-(I-Z)x)> will be incorporated in g.  The reader should note that this
idea is rather at odds with the hypothesis of a competitive firm: we need
to assume different technologies and some firm-specific factors which happen
to be in limited supply. Notice, anyhow, that the latter hypothesis would

only imply the nonlinear (and increasing) shape of g, not its convexity.
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This second requirement is therefore substantially arbitrary from a
theoretical point of view. It is also clear that we need it to make the
problem concave.

Taking this caveat as understood we can consider the new objective:

-]

(P4) W(x) = Max Z [£(x) - g(xt+1-(1-2)xt)]8t
£=0

s.t. x_€ X all t, =x,=1=x given,

0
Once again strict convexity guarantees the existence of a policy function

describing the optimal program: x = 16(xt). Unfortunately the argument

t+1

of the previous paragraph cannot be replicated here. In fact we have:

Proposition 2: Under assumptions (I) and (III) the return function: V(x,y)
= f£(x) - g(y-(I-2)x) may not satisfy (*) for some feasible sequence

).

{xl,...,xN

Proof: We give an example of cost function g satisfying (I) and (III) but

not (*) for some simple sequence. Set g(z) = z'Az with:

1
13
A= , Z = [zl,zz] e [0,1] x [0,1], z = y-(I-Z)x and
1
) 1
010
}: - , 0=<o,=1, 1=1,2.
i
0 9,

The cost function clearly satisfies (III) and will satisfy (I) for any
standard concave production function. Some tedious but straightforward
computations, given in the Appendix, show that (*) is not satisfied even for

simple sequénces of the form (xl,xz}. Q.E.D.
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In fact it is likely that an optimal cyclic investment policy could be
derived from the previous_example, even if it appears hard to work out the
details. Nevertheless, with regard to (P4), there are two very significant
and empirically important cases in which we can establish a stability

result.

Proposition 3: Consider (P4) under (I) and (III) and assume that: X = ¢l
is satisfied for some scalar o € [0,1], where I 1is the nxn identity

matrix. Then the policy function Ts is simple.

Proof: See Appendix.
We can also prove:

Corollary: Under the same assumptions of Proposition 3, r is simple even

)

if convexity of g 1is replaced by quasi-convexity, whenever Ts is

unique.

Proof: See Appendix.

Our second case is:

Proposition 4: Consider (P4) under (I) and (III), and assume that for any

vector z = (zl,...,zn) the cost function also satisfies g(z) = E?_l
gi(zi), with g; convex for all i =1,...,n. Then the policy function
is simple.

Proof: See Appendix.

Under the rationale for external costs we have given above, it should be
clear that assuming this kind of separability in the cost function amounts

to assuming that the different markets for inputs are separated and cross-

elasticities negligible.
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4. The Industry Competitive Equilibrium

There are many good reasons for which the dynamic models of the firm we
have studied in the previous section may look unsatisfactory. The hypothes-
is of constant prices seems particularly inconsistent with the economic
intuition, considering that quantities will in general be changing along an
optimal path.

We devote this section to show how to relax this assumption without
harming the stability results. To keep things relatively simple and self-
contained we will consider only interior paths by assuming enough steepness
of £ and g on the boundaries. In addition only the internal-costs case
will be worked out in full detail: the case of external-costs does not
present any additional complications, besides those already addressed in
Section 3.2, and can therefore be treated similarly.

We need to consider the competitive equilibrium over time for the
output market of an industry composed by a fixed number of M different
firms, producing the same kind of good. Retain the previous notation and

denote with fj’ g., ., Yie = [fj(xjt) - gj(xjt+l-xjt)] the elements of a

J J J
generic firm j = 1,...,M. Note that the input vector xjt has coordinates
X}t’ i=1,...,n some of which may be zero. We also need the additional
notation:
M
I;t x;t+l (1-a§)x;t, It o= }: jt’ i=1, ,n
j=1
M .
Ve = }: th and z, = [xit,...,x?t,...,x;t, ,xﬁt] € m“M.
j=1

Finally, let X be the convex and compact subset of RnM to which z,
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belongs for all t, obtained by natural product of the M feasible sets
X.j of the participating firms. Now assume that the market equilibrium

prices for output and inputs obey to:

P, = $(y), ' <0, >0

i i ) .
9 Hi(It)’ Hi = 0, Hi >0, 1 1,...,n
where ¢ 1is the inverse demand function for output and the Hi are the

inverse supply functions of the n inputs. Each firm solves:

. t
(Pj) Max }: ) {pt[fj(xjt) - gj(xjt+1-xjt)] - <qt,xjt+1-(1-2j)xjt>}
t=0

s.t. x, € Xj c mn,xj convex and compact

Jjt
on given.
Definition: A set of °° d ® ith
efinition: set of sequences {xlt""’xMt}t=0 an {pt,qt}t=0 wi

. n .
th € Xj all j and t, P, € m++, q, € R++ all t 1is a P.F.C.E. for

this industry if the following are satisfied:

(i) {xjt}:=0 solves (Pj) for the given {pt,qt):_o, all j=1,...,M.
M
(ii) P.= ¢ [ Z yjt] all t; (ii)
j=1
M
(1ii) qf: - H, [Z I}t] all t and all i=1,...,n.
j=1

The M problems (Pj) are clearly non-autonomous with respect to the time
variable. However, it is a routine exercise to use the consumer-surplus
device introduced by Lucas-Prescott [1971] to derive an autonomous dynamic

programming problem, which unique solution for every initial condition is
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]

the one and only P.F. Competitive Equilibrium sequence ({ =0"

xlt""’xMt}

In order to accomplish this, we need a few more definitions. Set:

Yt

M
F(zt,zt+1-zt) - I ¢(LYdL, with yt - }: [fj(xjt) - gj(xjt+1-xjt)]
0 j=1

H(z

i
n It
4l (I-Z)zt) = }: J Hi(L)dL.

i=1 0
where 3 is the (nxM) x (M) diagonal matrix having the M matrices Zj
along the diagonal.
Notice that F: £ x X > R and H: X x X - R, are well defined and

continuous. We have:

Lemma 2: The function F defined above is concave over X X X while H

is convex over X x X. Also F 1is strictly concave when all the gj are

strictly convex.

Proof: The statement for F follows easily either by taking derivatives
and computing the Hessian D2F when smoothness is assumed or by noting that
F 1is a monotonic transformation of the fj and gj that preserves concav-
ity. For H we need only to note that it is the sum of n functions:
i
I
~ t
H, = f H. (L)dL
i i
0

and that each one of them is convex, because all the Hi are increasing.

Q.E.D.

We may now consider the following problem:
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(P.0) Max }: [F(z,,2,,,-2,) - H(zt+1-(I-Z)zt)]6t
£=0

s.t.: z, € X all t,

z iven
o g

which solution is a map: 16(zt) =z, In force of the interiority and

+1°
compactness assumptions we have made and of the strict concavity of (F-H)
proved in Lemma 2, it is a routine exercise to conclude that the unique
sequence (zt) that solves (P.0.) is a Competitive Equilibrium for our
industry. The reverse is also true and we may therefore conclude that the
global behavior of quantities and prices in Competitive Equilibrium for the
whole industry will be simple if such is the solution to (P.0.).

The reader should notice that, even if we have assumed only internal
adjustment costs, the process of endogenizing the input-prices has created
an external-costs problem for the whole industry. This is only natural, as
the Pareto optimal solution cannot disregard the effects of the individual
firm demands on the inputs market prices.

Anyhow: problem (P.0.) can now be handled by means of the technique
illustrated in Section 2. Let’'s begin by picking a numeraire: P, = 1 all

t, so that the demand function will satisfy ¢(yt) =1 all t and

therefore the function F(zt,zt+1-zt) simplifies to:

M

(2% 8 Kyen 0]
(4) F(z,,2,,1°2,) = { dL =

M
P IECICRIDISC
j=1
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We have:

Lemma 3: The concave function F: X x X » R defined in (4), satisfies

condition (*) of Theorem 1.

Proof: Let the sequence {zl,...,zN] be given. We want to show that:
N M N M
LAY 560 -%mHZEKEI%%a-%“wwﬁJ}
t=1 j=1 t=1 j=1

holds true for any such sequence. The latter inequality reduces to:

N

M
) e - ) eyegeng] 20
j=1 t=1

which is obviously satisfied because gj is convex for all j (see Lemma

1). Q.E.D.

Lemma 4: The concave function H: X x X - R satisfies condition (*) of
Theorem 1 when one of the following occurs:
1) Zj =2 all j=1,...,M (depreciation matrices are invariant across
firms)
i

-~ It

2) for each Hi = f Hi(L)dL there exists M functions h;: Xj -+ R such
0

M
that é (Ii) can be written as: ﬁ (Ii) = hi(Ii ) for all
it ) it't jrrjt
: 51

i=1,...,n.

!
Proof: When hypothesis 1) is realized then H 1is the sum of n concave

functions:
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M . .
i i i
1 (®jpq-U-o DXy
Jf H (L)AL = G, (z1 - (1-ohyzh)
0 i itTe+l t
where zt denotes the M-dimensional vector [Xlt""’xat]’ for each i =
1,...,n. Then Gi belongs to the same class of functions considered in

Proposition 3, so that condition (%*) applies to each one of them and, a
fortiori, applies to their sum.

When hypothesis 2) is realized then H is totally separable and so
each of the functions ﬁi belongs to the class of functions considered in

Proposition 4 and (*) applies once again. Q.E.D.

Proposition 5: Under the maintained hypothesis, the Competitive Equilibrium
sequence (zt, P.s qt) generated by the optimal solution to (P.0.), will
exhibit a simple dynamic, if either condition 1) or condition 2) in Lemma &4

is satisfied,

Proof: It follows from Lemmas 3 and 4 and Theorem 1. Q.E.D.

Notice that, while condition 1) is easy to accept as a first
approximation, condition 2) imposes overly strong restrictions on the factor
markets. It amounts to saying that each factor is traded in M different

markets, one for each firm, with no interdependence across markets.

5. Relations With the Previous Literature

The problem of global dynamic stability was almost never taken into
consideration in the papers explicitly dedicated to the firm problem. It
has obviously been studied in the turnpike literature, but only in a few

cases the special functional form of V has been exploited.
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2)

3

19

The most relevant one is Scheinkman [1978], where the continuous-time
version of the internal-costs model is considered. He shows that every
optimal path either converges to the boundary of the feasible set or to
the unique, interior 0SS. His basic argument is totally different from
ours and cannot be applied to the external-costs model. He exploits the
fact that in his model the Hamiltonian is separable in the state and co-
state variables. Differentiability is also used. Further, he provides
a solution to the industry-competitive equilibrium problem along the
same lines we have used here, but he keeps input prices fixed over time.
Brock-Scheinkman [1974] is the only global analysis of the discrete-
time version of the problem. They take in explicit consideration only
the external-costs, but the internal-costs is also covered by their
technique. They add differentiability to our assumptions and obtain a
global stability result for the interior solutions as a consequence of
the negative quasi-definitiveness of a certain Hessian matrix. The
latter is satisfied, in general, for values of the discount factor close
to one. Their theorem does not, therefore, exclude different behaviors
for smaller values of §.
Again for the discrete-time problem, an interesting local analysis has
been recently carried on by Dasgupta [1985] (see also Dasgupta-McKenzie
[1983]). His main concern is the relation between local stability and
regularity of the optimal steady states. Here regularity means that the
value of the steady state capital stocks <q(§),k*(§)> increases when
6§ 1increases. Theorem 4.2 of the first paper shows that, for the
internal-costs case, the 0SS's are locally asymptotically stable.

To prove this, one needs differentiability, but a strong turnpike

result is gained when this theorem is combined with our Proposition 1:
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there exists a unique globally asymptotically stable optimal steady
state. This holds independently of §. The same result can be
obtained, without differentiability, by imposing strong concavity and
convexity assumptions on f and g fespectively. This can be used to
prove that Fix(r5) is a singleton at each § which, together with
Proposition 1, yields the named conclusion.

Returning to Dasgupta's result, it is worth noting that it cannot
be extended to the external-costs case. We have already seen this in
our example of Section 3.2.

Furthermore, some interesting comparative statics and dynamics
propositions are implied. For example, Remark 4.1 in Dasgupta [1985]
implies that regularity and local stability are equivalent for both the
internal and external-costs models. Also by Theorem 9 of Dasgupta-
McKenzie [1983] we may deduce that all optimal paths are "dynamically
regular” in both models. 1In fact, we have shown that they always
converge to an optimal steady state. In fact in the external-costs case
there is a (measure zero) set of investment paths which are not dynami-
cally regular: they are the unstable steady states which, from the
previous remark, are not even regular.

Finally, the n-dimensional version of the monopolist optimal pricing
problem studied by Brock-Dechert [1985] turns out to be a case of

external-costs and our stability results may be applied.
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APPENRDIX

Proof of Proposition 2: Take a sequence in [0,1] x [0,1] defined as

{x,y} = {[xl,xz], [yl,yz]). Then (*) is satisfied if g(y-(I-Z)y) +

g(x-(I1-2)x) < g(y-(I-Z)x) + g(x-(I-T)y) which in this case is:

2 2 2 2
(alyl) + (azyz) + alazyly2 + (alxl) + (02x2) + alazyly2 <

1A

(3, (L-ox? + (37, (Le0)x) % + (73~ (1-0)%,) (7, (1-0,)%,) +

+

2 2
(Xl‘(l'Ul)Yl) + (X2'(1'02)yZ) + (xl'(l'al)yl)(xz'(l'az)Y2)
=0, o0, =1. This entails no loss of

1 2

generality given the continuity of g with respect to ZX. The inequality

To simplify computations set o

above boils down to:
(%-y7) [%,-y, + 2(x,-y)) = 0
which should hold for any pair of points [Xl'XZ] and [yl,yz] in the non-

negative unit square. This is not the case. Q.E.D.

Proof of Proposition 3: We only need to show that (%) is satisfied, i.e.,

that:
N N
i=1 i=1
holds for all sequences {xl,...,xN} and all o € [0,1]. For given

sequence and o define the convex combination:

oxX,
i+l

- (l-o)axi + a[xi+l-(l-a)xi]
for i =1,...,N and N+1 = 1.
Then the convexity of g implies: g(axi+1) < (1-a)g(axi) +

ag[xi+l-(1-a)xi] all i. Summing up from i =1 to i =N we get, after
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simplification:
N N
o }: g(axi) < }: g(xi+l-(1—a)xi) Q.E.D.
i=1 i=1

Proof of Corollary to Proposition 3: Using the same convex combination as

in the proof of the proposition, quasi-convexity implies: g(axi+1) =<
Max[g(axi), g(xi+l-(1-a)xi)] i=1,...,N. Hence there exists p € [0,1]
such that

glox, ) = (L-p)glox,) + pg(x; 1-(1-0)%,)

i=1,...,N. Summing up and simplifying yields the desired inequality.

Q.E.D.

Proof of Proposition 4: Here the depreciation factors can be different so

z = diag(al,...,an). Let Xqs oo Xy be a sequence of feasible vectors in

X, with coordinates (xi,...,x?) for 1 =1,...,N. Once again set:

J o _ o1 1 I o0 yed
iji+1 (1 aj)ajxi + aj[xi+1 (1 aj)xi]
for every vector i =1,...,N and each coordinate j = 1,...,n.

As we have assumed convexity for every gj, we have:

J
i+l

1. k|
(1 aj)xi) Vi’vj

3 . j

By summing the above inequality along the index i we get:

N N N
3 'y wd J J
i=1 i=1 im]

for all j =1,...,n. After simplification we get:
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N N

Z g;(0,%}) = Z gy (x], - (1-0)x])

i=1 i=1

all j=1,...,n. A second summation along the coordinate gives:

}: }: g. (a x3 ) }: }: g. (x1+1-(1-aj)xg).

j=1 i=1 j=1 i=1

Interchanging the order of summation and using the property of g given in
the Proposition we get:

N N

}: g(Exi) < }: g(xi+l-(I-E)xi) Q.E.D.
i=1 i=1
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FOOTNOTES

1l-lere we are extensively drawing from a very large literature on the
argument; to name a few: Brock-Scheinkman [1974], Gould [1968], Lucas
[1967], Mortensen [1973], Treadway [1971].

2For a proof of this, rather strong, assertion see Boldrin-Montrucchio

[1986].
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