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1. Introduction

It is probably not unfair to say that Nonlinear Dynamics (NLD) has not
had a major impact on the development of modern economic theory. In fact
one may even be tempted to add that, until very recently, it was either an
unfamiliar tool for the mathematical economist or one whose implications
were often disregarded as nonrelevant to the purposes of the research.
Dynamical Systems theory appeared for a while in the background of the
studies on the stability of the tatonﬁement process (see Hahn [1982]) and on
optimal growth and turnpike (see McKenzie [1986]), but never really got on
the stage.

During the 1950s and 1960s the only well developed effort to use
nonlinear techniques in the study of dynamic economic processes is associa-
ted to the name of Richard Goodwin (see Goodwin [1982] for a collection of
the relevant essays). He put forward the idea of illustrating persistent,
deterministic oscillations within a multiplier-accelerator setup by means of
a limit cycle for a nonlinear, two-dimensional flow. His research effort
toward an endogenous explanation of economic fluctuations motivated a few
others contributions within the Keynesian and Cambridge (UK) tradition, but
was never able to take off and influence the whole of the profession. In
fact the late 1960s and 1970s witnessed an almost complete unanimity on the
use of linear-stochastic models in order to understand business cycles. The
causes of this historical process are complex and they will not concern us
in this place. Similarly, I will not try to list the motivations for the
sudden revival of interest in NLD which is characteristic of the last few
years, but simply try to provide a (cursory) description of the problems
that have been considered and of the results achieved. At the end I will

also take a timid look at the "mare magnum" of issues that are still open to



investigation.

Let me make clear, at the outset, that the revival of interest in NLD
to which I refer is not widespread among economists and that, as a matter of
fact, the great majority of applied and theoretical researchers still look
at it with doubtful eyes and believe it will not help much in understanding
what is going on in the real economic world. They may, indeed, be right.

In spite of this a group of scholars have taken the opposite
perspective and have started to look ét economic fluctuations under the
hypothesis that a relevant portion of them can be explained as a
deterministic phenomenon, endogenously created by the interaction of market
forces, technologies and preferences. In particular it is conjectured that
deterministic periodic cycles affected by small stochastic forces and/or
"noisy" chaotic paths generated by dynamical systems of relatively small
dimensionality, can account for a relevant portion of the observed
fluctuations of most of the important macroeconomic variables.

Such a research program naturally involves two lines of inquiry:

a) finding theoretical models that predict cycles and chaos as logical
outcomes of "reasonable" economic hypotheses and b) testing the available
data in order to find evidence of nonlinearities in the underlying dynamic
processes. A third, and most important, step should indeed be added:
comparing the data and the qualitative predictions of the theoretical models
in order to understand if they are at least compatible or if instead the
former reject the latter. Such a task remains, for the time being, far from
being undertaken. The available models are too abstract to yield any seri-
ously testable implication and the data-screening techniques we know seem
still too weak to place any confidence on their results. In any case it is

clear that the approach we are discussing will win or lose its bet exactly



on this point: any effort along those lines is, therefore, worthwhile.

This survey (fortunately !), is limited to point a), issues and results
that pertain to b) are illustrated in Brock [1987] (see also Ruelle [1987]).
I have tried to the best of my ability to make this an economic survey.
Given the intrinsically technical nature of the problems and the sophistica-
ted mathematics involved; this choice entails a major consequence: I have
dispensed completely with mathematical definitions, lemmas and theorems,
taking as granted that the reader is familiar enough with the terminology to
have at least an intuition of what is going on from a mathematical point of
view. I have assumed the reader knows the mathematics of chaos and wants to
learn a bit about the economics of chaos. For the non-technical reader I
can only recommend a few standard references: Collet-Eckmann [1980],
Devaney [1986], Guckenheimer-Holmes [1983], Iooss [1977] and Lasota-Mackey
[1985].

The note follows these steps: in the second section I discuss the
earlier examples of competitive models having an oscillatory or chaotic
dynamics. Those of them which had a macroeconomic structure were not
derived from explicit maximizing behavior on the part of the agents. As it
used to be believed that intertemporal maximization would eradicate instab-
ility we consider in the next two sections models with a complicated dyna-
mics which are grounded on rational, maximizing procedures. Section 3 takes
care of the so-called overlapping generations models (OLG) and Section 4
examines the models where agents live forever. Section 5 gives some
concluding comments. The Bibliography at the end is meant to include all
the works on nonlinear dynamics in economics which have a theoretical
nature, have been published during or after the "revival" and are known to

me.



2: n- i of Economic cs
2.1 Keynes-Kaldor Models
At the outset there was the "Keynesian" model, in one of its many

possible dynamic versions. Torre [1977] for example considered:

¥ = «(I(Y,R) - S(Y,R))
» (2.1)
R = B{L(Y,R) - L5)

where Y 1is real income, R is the rate of interest, I and S are the
investment and saving function with: 4I/3Y > 0, 48I/8R < 0, 4S/3Y > O,
3S/6R > 0, L 1is the demand for money with dL/8Y > 0, 4dL/0R < 0 and L®
is the fixed money supply. Finally, a« and p are two positive para-
meters. That such a model could exhibit a limit cycle was a kind of folk
theorem to which Torre provides a formal proof by showing that an Hopf
bifurcation occurs when the steady state loses stability as the bifurcation
parameters a and B increase. This came as no surprise: the model was
formally analogous to the standard representation of Kaldor's business-cycle
model, which was known to have limit-cycles as a solution since the work of

Chang and Smith [1971]). This is in fact written as:

Y = a{I(Y,K) - S(Y,K))
(2.2)

e

- I(Y,K) - 8K

where K 1is the aggregate capital stock, B 1is the depreciation factor and
the functions satisfy: 48I1/8Y > 0, 9dI/3K < 0, 45/8Y > 0, 485/3K 2 0.

Dana and Malgrange [1984] contains an interesting analysis of model
(2.2). After proving the existence of a limit cycle for a continuous-time
parametric version of the model (with parameter-values specified as to
satisfy French quarterly data for 1960-74), the authors address, using both

simulation techniques and analytical instruments, a discrete-time version of



the same model. They show that, by using a as a bifurcation parameter,
different regimes may be obtained that go from an attracting steady state to
an apparently chaotic state that they label "intermittent chaos". Even if
they are unable to fully prove the existence of a strange attractor for
their model, the two authors provide a considerable amount of evidence to
this end.

Both the "Keynesian" and the "Kaldorian" models are susceptible of various
criticisms. A couple of them may be.handled by means of the Hopf bifurca-r
tion. The first relates to the fact that you need to make strong global
assumptions on the shape of I and S to obtain a cycle in (2.2) (or
(2.1)) by means of the Poincare-Bendixon theory. In fact Chang and Smith
[1971] had to assume either I or S to have an S-shape with respect to
Y, for given values of K: a strong assumption with little support. By
using Hopf you may disregard this hypothesis: all you need are local
information on the degree of sensitivity of I to changes in Y and K
(or R) around the steady state.

A second criticism is concerned with the fact that in both (2.1) and
(2.2) an important variable that does change along the business cycle is
conside£ed fixed by the model: this is K in (2.1) and R in (2.2). This

means that you would like to consider a more complete model like:

¥ = «[I(Y,R,K) - S(Y,R,K)]
R = y[L(Y,R) - L] (2.3)
K = I(Y,R,K) - BK

where the signs of the first partial derivatives are as before. The Hopf
bifurcation is here especially useful as the standard Poincare-Bendixson
technique is of no help in high dimensions. Model (2.3) has been studied by

Boldrin [1983] and Cugno-Montrucchio [1983]: the existence of limit cycles



is proved for large sets of values of the parameters. In fact, Cugno and
Montrucchio add also a fourth variable (price expectations) and still obtain
oscillatory solutions by means of the Hopf theorem. Almost nobody seems to
have looked for the emergence of more complicated patterns of behavior in
(2.3) even if it seems obvious that a bifurcation-cascade may easily be ori-
ginated and, therefore, the Newhouse-Ruelle-Takens [1978] theory applied to
argue the existence of a strange attractor: the thing seems, indeed, to be
computationally demanding and with a very low return for our economic
understanding. Lorenz [1985] has tried something along these lines for a
six-dimensional version of (2.2) (three different goods and 3 different
capital stocks) but he does not seem to get any economic insight. Along
similar lines a related work is that of Medio [1984] which considers an n-
dimensional multiplier-accelerator model and proves the existence of cycles
by using both the ideas of Synergetics and the Hopf bifurcation theorem.
Still within a Keynesian framework there is another attempt to explain
the emergency of complicated dynamics that is worth mentioning. This is
Day-Shafer [1983]. A modified version of the textbook IS-IM approach

provides a consumption-income function and an investment-income function:

C = G(Y,M) = C[L(Y,M),Y)
‘ (2.4)
I = aH(Y,M) = aI[L(Y,M),Y]

where M denotes the amount of money and L(Y,M) is the LM function which
expresses the value of the interest rate R that guarantees a temporary
money-market equilibrium for given Y and M. The other notation is as be-
fore. A dynamic process is obtained by using what is called a Robertsonian
lag (current C and I depend on past income) that yields a nonlinear

version of Samuelson’s multiplier-accelerator process:



Yt+l = G(Yt;a,M,A) - G(Yt;M) + aH(Yt;M) + A (2.5)

A is a positive constant representing exogenous expenditure. The money
supply here is taken as a parameter: the dynamic is therefore described by
the one-dimensional map (2.5). As the authors want to use the existing
theory of unimodal maps they need to make ¢ wunimodal. Consumption is
monotonically increasing in income (with a slope bounded away from zero and
bounded above by 1) therefore the burden of nonmonotonicity is on the
investment function. Their intuition goes as follows: investment demand
increases with income for low level of income because of the accelerator
mechanism and low interest rates. But as income increases the fixed amount
of money supplied requires an ever-rising interest rate to clear the money
market. If investment is elastic enough at high interest rates, then it
must eventually fall. Also, as a grows the hump in 4 increases and it
is clear that by treating it as a bifurcation parameter the classical route
to chaos can be obtained for fairly simple specifications of ¢ and H. In
fact the authors accomplish this by using piecewise continuous maps. Even
more, they show that the accelerator mechanism is not strictly necessary to
the argument: even if I depends only on R the negative effect of Y
for high Y's can be brought in by the demand for money function that
determines the market interest rate. One may notice that models of this
type leave a large room for stabilizing (or destabilizing) monetary
policies. Leaving expectations considerations aside, it is clear that a
procyclical monetary policy could inject the amount of money necessary to
prevent R from increasing as Y increases, and, therefore, eliminate the
unimodal shape of # or, at least, reduce its steepness. A similar, but

not identical point is made in Day [1984]. On the nonlinear accelerator one

may also want to look at Rustichini [1983], even if I must admit that the



sense of the latter escapes my undeistanding.

For completeness we may also recall the work of Simonovits [1982]. He
adopts the framework introduced by Benassy and Malinvaud of distinguishing
between "classical™ and "Keynesian" equilibria in the wage-price space and
tries to describe a dynamical system in those variables. The author claims
the existence of cycles and chaos but nothing precise is actually proved.
2.2 (Class §t;ggglg and Chaos

A role by itself was played in ﬁhis debate by a simple and elegant
model that Richard Goodwin elaborated to formalize Marxian or conflictual
views of economic growth and income distribution. Even if the huge amount
of research done around this model has had little or no spillover on any
other area of economic dynamics, the basic idea is very interesting by its
own sake and worth mention. The original setup (see Goodwin [1967]) is like
this: q 1is output, k 1is capital stock, w 1is the wage rate, a =
aoexp(at) is labor productivity trend, o = k/q a fixed ratio, u = w/a
is the labor share in national income and (l-w/a)a = k are profits that

are completely invested. If the work force grows like n = noexp(ﬂt) and

£ = q/a represents the employment level, time differentiation will give:
Yo A L (aep) (2.6)
b o atf .

where v = £/n (employment ratio). Assume wages vary according to: w/w =
f(v) = -y + pv (the bargaining rule), then time differentiation will also

give:

D= (o) + pv (2.7)

(2.6) and (2.7) together give a bi-dimensional dynamical system well known

to mathematical biologists, i.e., Lotka-Volterra "prey-predator" model.



The solution to it is given by a continuum of closed curves around the
unique stationary state. Different initial conditions will place the system
on different oscillatory path along which profits/wages and unemployment
oscillate perpetually. The economic interpretation is obvious, given the
premises.

Pohjola [1981] modifies the basic model in order to use the one-
dimensional setup for maps. Beside the translation of the basic relations
into a discrete time version he modifies the wage-bargaining rule assuming
that the level of employment determines the wage level and not its rate of

change. In our notation this reads:
u, ==Y+ vy (2.8)

and the state of the model is fully described by the single variable Ve

the employment ratio. The dynamical system is now:

v
Vel - vt[l + A[l - v—&]] (2.9)

where A = (l-o(B+ataB) + 7)/o(l+B+at+aB) and v* = (l-o(Bt+ataf) + v)/p. A
simple change of variable will transform (2.9) in the quadratic map X =

axt_l(l-xt_l), which has well known chaotic properties.

2.3 Descriptive Growth Models

Most of the research effort illustrated so far went unnoticed outside
the boundaries of a restricted number of "afacinados". A somewhat wider
attention was attracted by Day [1982]. His starting point is a capital-

accumulation equation of the form:

s(kt)'f(kt)

kvl ™ 1o (2.10)
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where s 1is the saving function, £ the production function and A > 0 is
the exogenous population's growth rate. This is a discrete-time version of
the famous Solow's growth model. The latter had used a continuous time
specification to show that under neoclassical assumptions any capital
accumulation path will converge to a stead-state position. Day, on the
reverse, exploits the well known instability of unimodal maps to provide
examples of chaotic behavior within that very same framework. As the model
is not an optimizing one, i.e., the aggregate saving function is not expli-
citly derived from considerations of intertemporal efficiency, the author is
free to pick "reasonable" shapes for s(kt) (and f(kt) obviously) in
order to prove his claim. He begins with a constant saving ratio o and a

Cobb-Douglas form for £, (2.10) then becomes:

aBkg
Kes1 T T (2.11)
which is monotonic and therefore stable. By introducing a "pollution
effect® in the production function one obtains:
0Bk (m-k )7
Ko =7 (2.12)
which is unimodal and has period-three for certain ranges of parameter
values. Returning to the Cobb-Douglas form and allowing instead for a
variable saving rate, s(k) = a(l-b/r)k/y he obtains:
- [ _ b 1-8
kt+1 [1+A] kt[l BB kt ] (2.13)

using the fact that the rate of interest must be r = By/k. This equation

also displays topological chaos for feasible parameter values.
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It is obviously very easy to question the empirical validity of this
exercise, but this will not eliminate the simple fact that Day showed:
small perturbations of well established models could yield dynamic predic-
tions that go in the direction of chaos. As chaotic dynamics can be
displayed by such a simple, basic model there are no reasons to sustain the
claim that it is theoretically irrelevant.

Growth models appear to be particularly well suited to provide examples
of economic chaos. Day himself has Qorked out the chaotic properties of
certain formalizations of classical (Malthus) theories of economic growth
(see Day [1983] and Bhaduri and Harris [1987] for the Ricardian system).
Stutzer [1980], in turn, had already considered the growth model of Haavelmo
and translated it in a discrete-time version that, again, was homeomorphic
to the quadratic map. The original model he starts from is a simple one-
dimensional differential equation with a globally stable steady state. Once
translated in discrete time, the very same system becomes chaotic. This
fact occurs often in many of the first works on chaos in economics and casts
some doubt on the relevance of the findings. Indeed, one would like the
qualitative results of a model to be invariant with respect to changes from
continuous to discrete time. If this does not happen then we are entitled
to question the appropriateness of the chosen formalism as well as the
relevance of the result. We may claim, in fact, that the change in time-
units introduce hidden assumptions into the model (lags, for example) and
that these should be properly clarified. The issue has been scarcely
considered by the theorists working in the field and it does not seem easily
solvable. In any case it is true that we have to look with some suspicion
to those results that depend almost entirely on the discreteness of the time

representation and that cannot be replicated in continuous time. Because



12

one- and two-dimensional autonomous vector fields cannot produce chaos, this
would imply that a "natural translation" of the low-dimensional map into a
higher dimensional flow should be possible and should also preserve the
qualitative predictions of those models we want to consider seriously as an
explanation for dynamic economic complexities.

A second, more direct, criticism can be used against most of the
results presented so far: that they are derived at an aggregated, macroeco-
nomic level, assuming some kind of competitive behavior on the part of the
market participants, but without ever spelling out the kind of objectives
these agents are pursuing and the set of constraints into which they are
bound to operate. In short: all of the previous macromodels lack a micro-
economic foundation in terms of explicit intertemporal optimizing behavior.
Clearly, one can always reject such a criticism as irrelevant by claiming
that actual economic agents do not, in fact, maximize consistently over time
and follow instead adaptive paths and rule of thumbs in taking their deci-
sions. Such a position has been taken, among others, by Richard Day on more
than one occasion (see Day [1986] for all of them) and it solves the problem
by removing it to a different level of analysis.

As a matter of fact the "rationality assumption" is instead taken very
seriously, for one reason or another, by the majority of economists (myself
included) and is therefore worth some investigation. The criticism will
turn out to be wrong but it possesses, indeed, a strong intuitive basis.
Economic agents (either consumer-workers or firms) are typically assumed to
maximize concave objective functions over convex feasible sets. As the con-
cavity refers to variables indexed by time, this would suggest that cycles
(and a fortiori, chéos) should not be optimal. Averaging over cycles will

exploit the concavity of the function and therefore increase the value
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achieved. One may conjecture from this reasoning, and it will become clear-
er from the discussion of Section 4, that the critical assumption behind the
argument is not rationality per se but rationality and concavity together.

In any case the rationality-based criticism is widely spread among
economists even if very seldom it has been expressed in written form. In
one case, Dechert [1984], it appeared to be especially strong and well
grounded, particularly because it was almost independent from the concavity
assumption. Dechert’s argument goes.as follows: pick, for example, Day's
version of the Solow growth model and ask if the saving function he is using
in his example could be determined, everything else equal, as the solution
to a representative-agent infinite-horizon maximization problem. The answer
is negative. More formally we have: let Ye = f(kt) be total output at
time t, as a function of the existing stock of capital. The consumer-
producer chooses how to split it between consumption and future capital in
order to maximize: 2:80 u(ct)6t, where u is a concave utility function,
§ 1is a time-discount factor, 6 € (0,1) and ko is given as an initial

condition. It turns out that, even if the production function is not

concave, the optimal program {ko,k .} can be expressed by a policy

l’k2"'
function kt+1 - r(kt) which is monotonic. The dynamical system induced in
this way cannot therefore produce cycles or chaos. The economic prediction
is that such a society will asymptotically converge to some stationary
position. The latter is unique when f 1is concave. From this we have to
conclude that the chaotic examples derived from a one-sector growth model
would not pass the rationality critique. Such a critique turns out to be
rather special itself, as it holds true only for the special version of the

one-sector growth model considered above. This will be illustrated in the

next two sections.
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2.4 Miscellanea

A variety of different economic models have been considered in the
recent years in order to show that they could admit, under reasonable
hypotheses, chaotic outcomes. In order not to disperse our exposition along
too many directions I would like to name some of them here, simply in order
to facilitate the interested reader in his choice of the topic. Albin
[1987] considers a disaggregated model of firms interaction that give rise,
at the aggregated level, to the behavior considered in Day [1982]; many
interesting simulations are provided. Baumol and Benhabib [1987] contains
an introductory survey to chaos in economics, while Baumol and Wolff {1983]
prove chaos in a simple model of research and development. Benhabib and Day
[1981] is an extremely interesting paper in which an axiomatic approach is
taken to dynamic consumer behavior: a set of conditions is imposed on pre-
ferences and the way they depend on experience in order to produce chaotic
consumption paths in an environment where income and prices are fixed.
Deneckere and Judd [1986] prove that the innovation dynamic may be chaotic
under certain patent rules. Jensen and Urban [1982] show chaos for the old
cobweb dynamics.

In a very nice paper Rand [1978] first introduced these arguments in
dynamic games by showing how a natural duopolistic interaction (of the
Cournot-Nash type) could lead to chaos. In Dana-Montrucchio [1986] another
class of infinite horizon repeated games is considered: it is shown that
chaos and almost everything else are possible Markov perfect equilibria.

Finally, let us recall the collective volume edited by Jean Michel
Grandmont [1987] which contains some of the most significant recent papers
in this area, these were presented at a conference held in Paris in June

1985 and first published in the October 1986 issue of the Journal of
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Economic Theory. We will survey some of these works in the following
sections, but a direct look at the whole volume méy help the interested

reader to put the material in a more proper perspective.

3. erlappti nerat Models

To overcome the "lack of rationality" critique we need to place our
economic agents in an environment where they have to make a concrete
intertemporal consumption-investment choice in order to achieve a well
specified objective in the face of given or expected prices and resource
constraints.,

The simplest framework is provided by a model of overlapping genera-
tions with constant population and a répresentative agent per generation and
an exogenously specified endowment stream of the consumption good. Let's

indicate with a superscript y those variables pertaining to the youngs and

with o those for olds, let t = 0,1,2,... indicate calendar time.
Preferences are represented by a utility function U(c{,cz+1), where c{
is consumption when young of an agent born at t, and cz+1 is the same

agent'’s consumption when old. Finally, let (wy,wo) denote the time-
invariant endowment pair and P, the price of the homogeneous good at time
t, so that Pe ™ pt/pt+1 is the interest factor at time t. The represen-

tative agent will maximize his lifetime utility U(c{,cz+l) under the

budget constraint:

o

Ce+l

-w°+pt[wy-c>t’]. (3.1)

Standard concavity assumption will give two utility maximizing consumption

demands: an intertemporal competitive equilibrium will then be a sequence

y

of vectors (pt,ct,

cz) such that utility of each generation is maximized

under (3.1) and the material balance constraint:
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[wy-cZ] + [wo-cz] =0 (3.2)

is also satisfied.

Clearly the youngs can either save or borrow and therefore they may
carry claims or debts into the second period. Assume this is done by means
of a universally accepted paper asset called money (or checking account).
Following Gale [1973] let’s call "classical" the case in which the young are
impatient and borrow, and "Samuelson" the opposite one. Which state will
occur clearly depends both on the shape of the utility function U and the
relative magnitudes of w  and wo. Note also that the no-exchange (and
no-money) equilibrium is always a possible outcome and it is such that if it
obtains in the first period it will be replicated forever, as our economy is
time-invariant in its fundamentals. Gale also showed that, under the
natural dynamics we will introduce in a moment, such autarkic equilibrium is
locally unstable in the classical cases and locally stable in the Samuelson
economies.

Benhabib and Day [1982] were the first to consider these economies from
the point of view of nonlinear aﬁalysis (even if Gale has already pointed
out the possibility of cycles). They studied the dynamics of the classical
case (in an earlier paper, Benhabib and Day [1980], they had used the
overlapping generations model with capital and production to obtain chaos,
but that result was critically dependent upon a rather questionable use of a
future-utility discount-factor varying positively with wealth). We will
briefly summarize their analysis in the following pages.

Assume all solutions are interior. Using the first order necessary and
sufficient conditions for utility maximization together with the budget

constraint one obtains the equality:



17

y o o__o

Uy (e Ceq1) _ Y %n (3.3)
y .0 y. )

U2(°t’°t+1) ct w

where U1, U2 are the partial derivatives of U. Under regularity

assumptions (3.3) can be solved uniquely for cz+1, call this function:
c2+1 - G(cz;wy,wo). (3.4)

Now use (3.4) to eliminate ¢ from the lefthand side of (3.3) which, in

o
t+l
equilibrium, must be equal to Py Let’'s call this newly obtained ratio the

constrained marginal rate of substitution'(CMRS), it will be a function of

y

[+
t

only and of the parameters wy, wo. Denote it with V(cz;wy,wo).
Finally use the latter together with the material balance (3.2) to obtain a

first order difference equation in the youngs’ consumption levels:
y . Y. 0 y. y
el =W + V(LW W) (e]-w) = £(e)). (3.5)

The problem is now that of providing conditions for f(cz) to be unimodal
and with the degree of steepness sufficient to produce chaotic trajectories.
The authors looked for chaos in the "topological" sense (i.e., existence of
a period-three orbit), but in fact provided examples of utility functions
and endowment pairs for which also the stronger form of chaos (i.e.,
existence of an invariant, absolutely continuous and ergodic measure) can be
obtained.

Naturally such sufficient conditions depend on U, through the CMRS,
and amount to say that V(c{) can vary sufficiently over the interval I =

(wy,wy+w°). They are: there exists a ¢ >w such that;

a, = v(e) > 1 (resp. < 1) (3.6a)

a, = V(ale + (1-a1)wy) >1 (resp. < 1) (3.6b)
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0<a, =a

3 V(alaze + (l-alaz)wy) <1 (resp. =21) (3.6¢)

172
Under (3.6a)-(3.6c) "topological chaos" will occur for the dynamical system
(3.5).

Benhabib and Day considered other relevant economic issues pertaining
to the model, such as the role of a central authority regulating the credit
used by the young and the Pareto efficiency of the chaotic trajectories
(they may well be such, undér very general conditions). In a brief remark
they also addressed the Samuelson case pointing out that, for the case in
which cyclic or chaotic trajectories could obtain, the dynamical system
(3.5) would not be well defined, in the sense that for each c{ there will
exist two equilibrium levels of c{+1. In the absence of a convincing
selection criterion they saw no purpose of analyzing such a system.

This very same case (the Samuelson one) was instead taken up and worked
out in all its details in a paper by Grandmont [1985]). The length of this
article prevents a description of all the results there obtained. I will
content myself with a brief discussion of the basic technique used by the
author to define a meaningful dynamical system for the Samuelson case and to
prove that it can be chaotic.

The basic model is, as before, one with overlapping generations.

Assume the utility function is time separable and, instead of a fixed
endowment of consumption good, assume each agent has aflabor-time endowment
El, i = y,0, 1in each period of his 1life. Denote with li the amount of
ii he supplies for work and assume his utility depends both on consumption
ci, i = y,0, and leisure time li-li, according to: U{(cy,iy-ly) +
UO(CO,PO-IO), where the utility functions Ui satisfy, for i = y,o0,

standard differentiability monotonicity and strict concavity hypotheses. As

we want to consider the case in which the young lends to the old in exchange
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for "money", let us introduce the latter explicitly in a fixed amount M.
The representative individual once again maximizes his utility subject to
the budget constraints:

d

p(c)-2) + " = 0 (3.7a)

e o] (o]
Pes1(Ceypfeqy) — (3.7b)

Here md denotes the nominal amount of money demanded by the young. Notice
that we assume the technology to be such that a unit of labor is transformed
into a unit of consumption good so that we are still facing a pure exchange
economy. Note also that, for now, the perfect foresight assumption about
future prices, used by Benhabib and Day has not been made and pz+l denotes
the expected future price as of time t.Such a maximization problem has,
once again, a unique solution which will depend only on pz - pt/pi+1, the
expected interest factor. By modifying slightly the notation used
previously we can define an excess demand for the good zi(pe), i=y,o0,
as: zi(pe) - ci - li. Remember that we are considering the case in which
the young lends to the old in exchange for money. This implies that the
zy(pe) will always be negative and such that md -M = -ptzy(pi) -
pz+1z°(pz) at each t, along an equilibrium path. Conversely, when old,
each agent will spend all of his money stock in exchange for goods. 1In the
equality above M denotes the fixed amount of existing bills that must all
be demanded by the young in equilibrium.

Assume now that agents have perfect foresight, i.e., pz+1 = Pey1-

From the equilibrium conditions given above and the material balance it

follows that a competitive equilibrium is a sequence of P that solves:
y ° -
z7(p) t 2 (Pe.1) 0 (3.8a)

P.yqZ (p) = M. (3.8b)
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Notice that what matters for the dynamic is (3.8a): once the sequence of

Pe is determined we will get the price level from (3.8b) as a function of
the given M. Our system satisfies the Quantity Theory of Money, the latter
is of no obstacle to chaos. If we try to invert z' to obtain a "forward
dynamics" (i.e., p. as a function of Pt-l) we get into the problem
recalled above as z° may be backward bending. This is the crucial feature
of the model as well as the main source of the aperiodic behavior. An
increase in Pe has two conflicting effects on the demand for consumption
by the young. It has an intertemporal substitution effect as it makes today
consumption more expensive (hence z” should decrease), but it also makes
the agent richer (wealth effect) as today's labor is paid more. This will
tend to increase his demand for present consumption (hence z7 should
increase). But this is not the case for z°. A little thought along the
same lines will convince the reader that when P..1 BOES UP both
substitution and wealth effect will push up the old agent’s demand for
consumption. Therefore z° may be inverted and a (fictitious) backward

dynamics can be obtained from (3.8a):

Py = o) = )T (o)) (3.9)

Even if the "trick" behind (3.9) is not quite the full solution to our
problem, it suggests the line along which a perfect foresight dynamics can
be studied for an economy of the Samuelson type. Conscious of this fact,
Grandmont dedicates a large part of his paper to clarify the relation
between the backward and the forward dynamics, as well as to work out the
implications that different expectation-formation rules have for the
stability of the system (on this point see also Grandmont and Laroque

[1986]). We have to skip all this for reasons of brevity. What matters to
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us is that, given a periodic trajectory for the backward dynamics, one may
generically define a forward dynamics in a neighborhood of such trajectory
so that a stability analysis can be conducted by reversing the dynamic pro-
perties of the backward paths. By following this strategy the author gives
conditions under which (3.9) defines a dynamical system as an iterated map
of an interval into itself and carries on a complete bifurcation analysis of
such system. He makes abundant use of the techniques and results illustra-
ted in Collet and Eckmann [1980] in order to show that a period-doubling
bifurcation cascade leading to chaos will originate for a large class of
utility functions. In particular it turns out that when z7 is not
monotonic (for the reasons given above), then a large enough degree of risk
aversion on the part of the old trader (i.e., a "very concave" Uo) will
lead to chaos if certain technical conditions are satisfied.

A more detailed consideration of his results would show that they
confirm and generalize the earlier proof given by Benhabib and Day for the
classical case. Chaos originates out of a conflict between the wealth and
intertemporal substitution effects created by a variation in the real
interest rate if the first effect is strong enough. Finally, it is worth
noting that, contrary to many of the papers considered in this and the next
section, such paths are not Pareto efficient and the cycles may be dampened
(or created) by appropriate monetary and fiscal policies.

It is not exaggerating to say that Grandmont'’s paper has had a much
bigger impact on the economics profession than any other of the previous
(and, for that matter, subsequent) works on chaos in economics. It is in
fact after this work that macroeconomists and economic theorists in general
have started to realize that, indeed, there may be something in an endogen-

ous theory of business cycles that cannot be captured by the prevailing
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linear-stochastic approach.

This new attention has made possible to better reconsider some of the
former studies I have been illustrating here as well as provided incentives
for new research on different models. As far as the overlapping generations
economies are concerned, some recent efforts have generalized and improved
upon the older results. Reasons of space suggest brevity, therefore I will
only sketch some of these discoveries. Farmer [1986] has considered a
variation of the basic model Where capital is introduced both as a means of
production and as an asset: it is proved that, when government debt is
present to finance a deficit of fixed value, periodic orbits may obtain for
the two-dimensional discrete time system that describes the economy’s
evolution. The technique used here is that of Hopf bifurcation for maps on
the plane. The role of production is more fully analyzed in Reichlin [1986]
(see also Reichlin [1987] for further improvements along the same line). In
particular the author is able to show that, when a nontrivial technology is
present, one does not need the empirically unlikely assumption made by
Grandmont which requires saving to become a decreasing function of the
interest rate when the latter is high enough (strong wealth effect) in order
to obtain complicated dynamic behaviors. In fact by means of simple
production functions (either fixed coefficients or CES) that use labor and
the invested amount of the homogeneous good to produce new output, Reichlin
obtains a dynamical system for the capital stock which is represented by a
map of the plane into itself. He also uses the Hopf theorem to prove the
existence of a limit cycle. The result is obtained even if saving is a
monotonically increasing function of the rate of interest, as long as the
elasticity of substitution between factors of production is low enough.

This is consistent with a result obtained by Boldrin [1986] (see Section 4
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below) for an economy with infinitely living agents, where an example with a
CES and a Leontief production function exhibits chaos when the elasticity of
substitution for the CES is low, even if agents do not have a high discount
factor for future utilities. 1In Reichlin [1987] the same overlapping
generations economy is considered with a two-sector technology. In this
case the author is able to show the existence of chaotic trajectories.
Finally, Aiyagari [1987] proves the existence of periodic orbits for an
exchange economy with overlapping generations that do not live only for two

periods but for finitely many ones.

4: Economies with a Finite Number of Infinitely Lived Agents

There are many reasons for which one may feel unsatisfied with the type
of world described in an OLG model. From the dynamic point of view, which
concerns usrhere, these models may appear rather farfetched. Each time
period has to be interpreted, empirically, as equivalent to 30-40 years
which makes it impossible to define observable counterparts for the vari-
ables of the model. On the other hand each agent behaves very myopically as
nobody cares for the consequences of his actions more than one period ahead.
This seems intuitively at odds with the existence of many institutions
(firms, in primis) that participate in the markets for very long periods of
time and that should therefore try to forecast the implications of their
choices for the far future. Finally, it is reasonable to claim that a "good
government" should be one which takes Into account the interests of all the
generations, even of the unborn, in pursuing its policies and this fact
should lead to programming over infinite horizons of time. This was,
indeed, Frank Ramsey’s concern when, in the 1920s, he first proposed to con-

sider optimal programs that maximize an infinite sum of society’s welfares
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from the initial period up to infinity.

To make a long story short, such basic intuitions have led many
scholars to consider the behavior of competitive economies where a finite
number of agents live forever and, being endowed with perfect foresight, try
to maximize the discounted sum of their utilities over the infinite horizon.
The literature on this field is enormous, the curious reader is referred to
Arrow and Kurz [1970], Cass and Shell [1976], Bewley [1982] and especially
McKenzie [1986, 1987] for more compléte treatments. For our purposes it
suffices to sketch here the basic ingredients of a very general model from
which most of the adopted setups can be derived as special cases. In parti-
cular we will consider a world with a single (representative) agent that
controls both consumption and production decisions and perfectly foresees
even the more distant future (see Bewley [1982] and the literature therein
for a reconcilliation of this abstraction with the case of many independent
consumers and producers). Also we will describe only the discrete time
formalism even if, later on, we will have to use the continuous-time version
of the same model: the translation should be immediate.

In every period t = 0,1,2,... an agent derives satisfaction from a
"consumption”" vector ¢, € Rm, according to a utility function u(ct)
which is taken increasing, concave and smooth as needed. Notice that .

denotes a flow of goods that are consumed in period t. The state of the

world is fully described by a vector x_ € m: of stocks and by a feasible

t
set F C mfn x R" composed of all the triples of today’s stocks, today’s

consumptions and tomorrow's stocks that are technologically compatible,

i.e., a point in F has the form ( Now define:

xt’ ct’xt+1) :

V(x,y) = max u(c) s.t. (x,c,y) €F (4.1)
c
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2n

and let D C m+

be the projection of F along the c¢’s coordinates.

Then V, which is called the short-run or instantaneous return function,
will give the maximum utility achievable at time ¢t if the state is x and
we have chosen to go into state y by tomorrow. It should be easy to see
that to maximize the discounted sum Z:_O u(ct)St s.t. (xt,ct,xt+1) € F is
equivalent to max E:_o V(xt,xt+1)6t s.t.(xt,xt+1) € D.

The parameter § indicates the rate at which future utilities are
discounted from today’s standpoint (impatience): it takes values in [0,1).
For 6§ = 0 the agent is infinitely impatient and there is a sense in which
a repeated myopic optimization of this kind may represent the outcomes of an
OLG model. 1In general § will be greater than zero.

It is mathematically simpler to consider the problem in the latter
(reduced) form. The following assumptions on V and D may be derived
from more basic hypotheses on u and F:

(A.1) V: D-» R is strictly concave and smooth (if needed). V(x,y) 1is
increasing in x and decreasing in y.

(A.2) DcXxXcC Rin is convex, compact and with non-empty interior. X
is also convex, compact and with non-empty interior.

The initial state Xq is given. Notice that the economy we are describing

is essentially time-invariant: return function and feasible set do not

change over time, the latter enters the picture only through discounting and

the intrinsically intertemporal nature of the production process summarized

by D (see McKenzie [1986] for the case in which V and D evolve exogen-

ously with time in a fairly restricted way: very little can be said about

this case).

The optimization problem we are facing can be equivalently described as

one of Dynamic Programming:
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W(x) = Max{V(x,y) + 6W(y), s.t.(x,y) € D} (4.2)

The latter is the Bellman equation and W(x) 1is the value function for such

a problem. A solution to (4.2) will be a map r.: X - X describing the

X
optimal sequence of states (xo,xl,xz,...) as a dynamical system X1~

ra(xt) on X. The time evolution described by Ts contains all the rele-
vant information about the dynamic behavior of our model economy. In
particular, the price vectors P, of the stocks X, that realize the
optimal program as a competitive equilibrium over time follow a dynamic
process that (when the solution (xt} is interior to X) 1is homeomorphic
to the one for the stocks. In other words: Py = O(pt) with 6 = 6DW « 7
. (DWS)'l, where D 1is the derivative operator.

The question that concerns us is: what are the predictions of the
theory about the asymptotic behavior of the dynamical system 76? Where

should a stationary economy converge under Competitive Equilbrium and Per-

fect Foresight? A first, remarkable answer is given by the following:

TURNPIKE THEOREM: Under Assumptions (A.l) and (A.2) there exists a level
§ of the discount factor such that for all the é6's in the non-empty
interval [§,1) the function Ts that solves (4.2) has a unique globally
attractive fixed point x¥% = fa(x*). Such an x* 1is also interior to X
under additional mild restrictions.

Not too bad indeed: wunder a set of hypothesis as general as (A.l) and
(A.2) we are able to predict that if people are not "too impatient" relative
to the given V and D then they should move toward a stationary state
where history repeats itself indefinitely and no surprises ever arise. In

the form given here the Turnpike Theorem is due to Scheinkman [1976], where-

as McKenzie [1976] and Rockafeller [1976] proved it for the continuous time
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version, Bewley [1982] and Yano [1984] generalized it to the many-agents
case (but see McKenzie [1986] for a more careful attribution of credits).
As remarkable as it is, the Turnpike property is also very sensitive to

perturbations of its sufficient conditions. In particular, how close should

6§ be to one in order to obtain convergence and what happens when § is
smaller than §? These are important questions. It is hard to rely heavily
on a property that may depend critically on such a volatile and unobservable
factor as "society's average degree §f impatience".

The careful reader should have realized by now that the one-sector
model we briefly introduced at the end of Section 2, and used by Dechert to
prove that cycles and chaos are not optimal in that framework, is a special

case of the general model we are considering here, with V(xt,xt+1) -

u[f(xt)-x and D = {(xt,x s.t. 0= Xeyp S f(xt)). For that model

t+l] t+1)

the Turnpike Theorem holds independently of the discount factor as Ts is

always monotonic increasing. Unfortunately, such a nice feature does not
persist even if the simplest generalization of the one-sector model is taken
into account. This was proved by Benhabib and Nishimura [1985]. They
considered a model with two goods -- consumption and capital -- which are
produced by two different sectors by means of capital and labor. Given the
two production functions one can then define a Production Possibility Front-

ier (PPF) T(xt,x that gives the producible amount of consumption

t+1) = S¢

when the aggregated capital stock is X, (a scalar), labor is efficiently

and fully employed and the decision of having an aggregated stock X1

tomorrow has been taken. The return function is now V(xt,xt+1) =

u[T(xt,x and D = ((xt,x s.t. 0 < X < F(xt,l)) where F is

t+l)

the production function of the capital good sector and labor has been

t+1)]

normalized to one. In such a case Ts is not always upward-sloping. If
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the consumption sector uses a capital/labor ratio higher than the one used
by the capital sector it will be downward-sloping. Let x* be the (unique)
interior fixed point (i.e., fs(x*) = x*)., This is the candidate for the

Turnpike. Assume, for simplicity, that s, is differentiable in a neigh-

s
borhood of x*. The derivative will be ré(x*) at the steady state, it is
negative and it changes as § moves in (0,1),‘ everything else equal.
Benhabib and Nishimura showed that it may take up the value -1 for admiss-
ible §'s, in such a way that the c§nditions for a flip (period-doubling)
bifurcation are realized. In this case an optimal cycle of period-two will
exist which can also be attractive: mno more Turnpike! One may provide
examples of this phenomenon showing that such an outcome is by no means due
to "pathological" technologies and preferences.

Not only this: cycles are not a special feature of the discrete time
version of our model. In fact in a much earlier work, see Benhabib and
Nishimura [1979], the two authors had used the Hopf bifurcation theorem to
prove that limit cycles can occur in the continuous time case. Let us show

very briefly how this can happen. In continuous time we face an optimal

control problem of the form:

max f V(x,i) exp(-pt) s.t. (x,i) € D, x(0) given. (4.3)
0.

Here x(t) 1is a vector depending on time, x is its time derivative, D
again the convex feasible set, p the discount factor in [0,0), (p =0
is equivalent to & = 1 in discrete time). Using the Maximum Principle one

defines a Hamiltonian:

H(x,q) = max (V(x,X) + <q,x>, s.t. (X,X) € D) (4.4)
X

which can be interpreted as the current value of national income evaluated
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at the (shadow) prices q (on this point see Cass and Shell [1976]).

The dynamical system is then:

% - dH(x,q)
9q (4.5)

. _ -8H(x,
g - Hxd) ,

Linearization of (4.5) around the steady state will yield, after some mani-
pulations, a Jacobian matrix J that can be written as J = I+ (p/2)1,

where I 1is the 2n x 2n identity ﬁatrix. As J 1is a Hamiltonian matrix
we may consider how its eigenvalues will change with the discount factor p

and then add p/2 to obtain those of J. If p =0 J has the form:

- A B

J = [ c AT } (4.6)
with A = 82H(x,q)/8xaq, B = 82H(x,q)/a2q, C = -aZH(x,q)/azx. It is a
result of Rockafellar [1973] that under strict concavity in x and strict
convexity in q of H the 2n eigenvalues of J will split into n
positive and n negative ones. The steady state will be a saddle point
with a stable manifold of dimension n. As the latter is also the dimension
of the control vector the optimal program will steer the system on the
stable manifold thereby guaranteeing convergence to the Turnpike. For p >
0 this is not necessarily true: the saddle point property may be lost as
some of the negative eigenvalues become positive. The Turnpike Theorems
give conditions under which such stability property is preserved for small
p. But as Benhabib and Nishimura showed when p grows a pair (or more than
a pair) of eigenvalues may change the sign of their real part by crossing
the imaginary axis. 1In such a case they proved that (care taken for the
technical details) a Hopf bifurcation realizes. The limit cycle associated

to it may indeed be an attractor for the system (4.5). Once again the
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Turnpike property is lost as people become "a bit more impatient" than the
economists would like!

Some characteristics of the oscillatory paths so obtained need to be
stressed. First of all they are realized as "equilibrium paths", in the
sense that all markets are continuously clearing at each point in time,
prices adjust completely and no productive resource is left “"involuntarily
unemployed". Moreover, they are Pareto efficient in the sense that it is
impossible to modify the allocation éf resources they imply, in order to
increase the welfare of some agent without making somebody else worse off.
Let us make it clear that none of the authors working along these lines seem
to imply, with this, that economic fluctuations are intrinsically good and
that nothing can or should be done to modify and control them. The idea
instead is of showing that there exist forces that are intrinsic to the
competitive mechanism, and depend from the technological structure of the
economy, that can be a source of wide oscillations for output and prices.

As it was the case with the discrete-time two-sector model it is the
existence of certain factor-intensity relations across sectors that make it
profitable for the producers (and the consumers alike) to invest, produce
(and consume) in an oscillatory form. Even if all the prices are the "right
ones" (i.e., no conditions for profitable arbitrage exist) still the price
seeking of individual profits will bring about cyclic behavior.

It is opportune to admit that we do not presently have an empirical
representation for this phenomena and that our ability to measure how
intersectoral profitability relations affect the cycle is very small or
almost nil. Nevertheless they follow from sound economic theory and it is
hard to rule them out on pure a priori grounds. Not only, as we will see in

a moment, this very same logic can be pursued further to explain the origin
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of chaotic movements for the same class of model economies.

Indeed, the possibility of more complicated trajectories had already
been envisaged by Benhabib and Nishimura [1979, p. 433], where they quote
Ruelle and Takens celebrated paper on Turbulence after noticing that further
bifurcations may follow the Hopf one, giving rise to a torus, etc. It took
nevertheless a few years before a full proof was produced, and when it came
it was more general than expected. Every dynamics turned out to be a
possible solution for an economy satisfying (A.1)-(A.2) above. This was
proved in Boldrin and Montrucchio [1986b] (but see also Boldrin and Monruc-
chio [1984] and [1986a] and Montrucchio [1986] for additional results). The
result, formally speaking, has the following form: let #: X+ X be a Cz-
map describing a dynamical system on the compact, convex set X C Rn, then
there exist a technological set D, a return function V and a discount
factor § € (0,1) satisfying (A.1), (A.2) and such that # is the policy
function Ts that solves (4.2) for the given D, V and 6. The proof
given was a constructive one, so that one may effectively compute a fictiti-
ous economy for each given dynamics. This makes clear that any kind of
strange dynamic behavior is fully compatible with competitive markets,
perfect foresight, decreasing returns, etc. At about the same time
Deneckere and Pelikan [1986] also presented some one-dimensional examples of
models satisfying our assumptions and having the quadratic map &4x(1-x) as
their optimal policy function.

All these results were given for the discrete time version of the
model, but they are not specific to it. In Montrucchio [1987] it is in fact
proved that exactly the same facts hold for the case in which time is

continuous. One big question that still remains open in this area pertains

to the economic logic behind these theoretical and mathematical results.
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What is it that makes it profitable for a competitive economy to oscillate
erratically over time? As we noticed above with respect to the works of
Benhabib and Nishimura on limit cycles, the driving force seems to be the
technological structure of the different sectors. A very similar answer is
true for the chaotic motions. Unfortunately we do not have a full-fledged
analytical explanation forvthe multisectoral case, but something can be said
for the two-sector, two-good economy that is often used in macroeconomic
applications. A theoretical analysié is provided in Boldrin [1986]. There
are two gobds -- consumption and capital -- produced by means of two factors
-- capital itself and labor. The model is therefore the same as in Benhabib
and Nishimura [1985] and the resulting dynamics in the aggregate capital
stock kt is one-dimensional. It is proved that the policy function X
= 75(kt) is unimodal when factor-intensity reversal occurs between the two
sectors. Remember that for the case in which the consumption sector always
uses a capital-labor ratio higher than the one of the capital sector,
period-two cycles are possible. More often than not it is possible to find
a level, say k*, of the aggregate capital stock such that when kt is in
[0,k*) the capital sector has a higher capital-labor ratio, whereas the
opposite happens when kt is in (k*,k], where k 1is the maximum level of
capital that the economy can sustain. This technological feature provides
the unimodal shape for Ts- Variations in the level of the discount factor
§ then can produce a cascade of period-doubling bifurcations that (techni-
calities aside) leads to period-three orbits and even to chaos in the sense
of the existence of an invariant and absolutely continuous ergodic measure.
A simple example that uses standard production functions is also provided in

the same paper. The problem is taken up again in Boldrin and Deneckere

[1987]. The case of a two-sector economy with a Cobb-Douglas and a Leontief
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production function is here studied in detail. That such an economy could
have chaotic trajectories was first conjectured by José Scheinkman in
Scheinkman [1984]. Boldrin and Deneckere provide a full proof to this
assertion and also show how, depending on the various parameters, cycles of
different lengths can be originated.

A by-product of these exercises is to make clear that the often adopted
criticism that asserts the irrelevance of this approach to business cycle
theory because of the "too high" level of discounting required for chaos is,
indeed, wrong. Clearly a level of § too close to zero as in the earlier
examples would imply annual "interest rates" of the 1000% magnitude. But
this need not occur.  In particular the example provided in Boldrin [1986]
shows that § may be very close to one (say in the range (0.6, 0.8)) and
chaos be still possible for appropriate values of the technological
parameters.

The open question is this: can we move from the "toy models" stage to
a fully specified, disaggregated and empirically calibrated model of the
same class that will reproduce the so-called "stylized facts" (see Summers
[1987]) of observed business cycles? The question is open.

It would be unfair to conclude this section without a reference to the
innovative work that Mike Woodford has conducted in this area. The best
example of it is provided by Woodford [1987] (but see other references to
the same author therein). What he uses is the one-sector growth model we
described at the end of Section 2.3. We recalled there the result of
Dechert [1984], according to which only monotonically convergent orbits are
possible in such a setup. Woodford asks the simple question: what happens
if, for some reason, one of the agents is not free to borrow? That is to

say, what if (as in the real world) there are no markets open for trade at
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very distant dates, or loan markets for financing investments above a
certain amount are not available? This intuition is captured by postulating
two different types of agents -- consumers and entrepreneurs. The latter
are in charge of the investment process but they cannot borrow against
future returns. They must finance their investments only out of funds
generated internally to the firms. The author provides very good arguments
for such a state of affairs to occur (idiosyncratic shocks and private
information about returns, for exampie) and also shows that, in such a case
both equilibrium cycles and chaotic equilibrium dynamics may exist under
very general hypotheses about the technology and the level of discounting.
The latter, in particular, may be as low as one likes, without affecting the
result.

Considering the appealing aspect of the hypothesis on the lack of
complete markets, it seems to me that such a line of research appears as one

of the most promising and worth pursuing further.

5. Conclusions

It is difficult to conclude, when a research topic is as recent, open
and chaotic as the one we have surveyed. The real issue is: where do we go
from here?

It seems clear that chaotic behaviors are not rare, at least
theoretically, in well formulated economic contests. In fact they seem to
be pervasive of even the simplest, descriptive representations of economic
dynamics, as we have tried to show in Section 2.

When the discipline of utility maximization and rational intertemporal
choice is imposed on the behavioral rules, they do not disappear at all.

The research effort conducted so far has been able to identify classes of
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economic factors that may explain such persistence: a) the relative
importance of wealth effects as opposed to intertemporal substitution
effects; b) the degree of factor substitutability in production and the
different factox-utilization ratios across sectors; c) the degree of
people impatience and/or the extent to which they behave myopically with
respect to future events; d) the lack of certain markets, especially of
those for borrowing-lending against expected future returns.

It is difficult to establish anAorder of importance among these
elements and they need not exhaust the class of possible explanations. What
matters is that they all make sense from the point of view of economic
theory: the endogenous approach to economic fluctuations appears therefore
well grounded within the established General Equilibrium paradigm.

How far we go with this, on the practical side, is not clear. We are
still in the stage of very abstract, purely qualitative models: their
predictions are so general and so vague that any hope of testing them
directly will be easily frustrated. On the other side the empirically
oriented works surveyed by Brock in his contribution to this volume suggest
that there are important results we may achieve along those lines.

What we need, therefore, is to construct models that can be
parameterized by using empirical evidence and that can yield testable, even
if primitive, predictions by means of computer simulations. I believe it
would be most useful, at the present stage, to channel our research efforts

along these lines.



36
References

Aiyagari, S.R. [1987], "Stationary Deterministic Cycles in a Class of
Overlapping Generations Models with Long Lived Agents," Working Paper
#319, Federal Reserve Bank of Minneapolis.

Albin, P.S. [1987], "Microeconomic Foundations of Cyclical Irregularities or
Chaos," Mathematical Social Sciences 13, 185-214.

Arrow, K.J. and Kurz, M. [1970], Public Investment, the Rate of Return and
Optimal Fiscal Policy, Baltimore: Johns Hopkins University Press.

Baumol, W., and Benhabib, J. [1987], "Chaos: Significance, Mechanism and
Economic Applications," R.R. #87-16, C.V. Starr Center for Applied
Economics, New York Univérsity.

, and Quandt, R. [1985], "Chaos Models and Their Implications for
Forecasting," Eastern Economic Journal 11, 3-15.

, and Wolff, G. [1983], "Feedback From Productivity Growth in ‘R
and D'," Scandinavian Journal of Economics 85, 145-157.

Benhabib, J., and Day, R. [1980], "Erratic Accumulation," Economic Letters
6, 113-117.

and [1981], "Rational Choice and Erratic Behavior,"

Review of Economic Studies XLVIII, 459-471.

and [1982], "A Characterization of Erratic Dynamics in
the Overlapping Generations Model," Journal of Economics Dynamics and

Control 4, 37-55.
and Laroque, G. [1986], "On Competitive Cycles in Productive
Economies," IMSSS Technical Report #490, Stanford University.

and Nishimura, K. [1979], "The Hopf Bifurcation and the Existence

and Stability of Closed Orbits in Multisector Models of Optimal Economic



37

Growth," Journal of Economic Theory 21, 421-444.

and [1985], "Competitive Equilibrium Cycles," Journal

of Economic Theory 35, 284-306.

Bewley, T. [1982], "An Integration of Equilibrium Theory and Turmpike

Theory," Journal of Mathematical Economics, 10, 233-268.

Bhaduri, A., and D.J. Harris [1987], "The Complex Dynamics of the Simple

Ricardian System," Quarterly Journal of Economics 102, 893-902.

Boldrin, M. [1983], "Applying Bifurcation Theory: Some Simple Results on
the Keynesian Business Cycle," Note di Lavoro #8403, Dip. di Scienze
Economiche, Univ. di Venezia.

[1986], "Paths of Optimal Accumulation in Two-Sector Models,"
IMSSS Tech. Rept. #502, Stanford University; forthcoming in W. Barnett,
J. Geweke and K. Shell (eds.), Economic Complexity: Chaos., Sunspots,

Bubbles and Nonlinearity, Cambridge: Cambridge University Press.

and Deneckere, R. [1987], "Simple Macroeconomic Models with a

Very Complicated Behavior," mimeo, University of Chicago and Northwestern

University.
and Montrucchio, L. [1984], "The Emergence of Dynamic Complexit-

ies in Models of Optimal Growth: The Role of Impatience,” Working Paper

#7, Rochester Center for Economic Research, University of Rochester.
and [1986a], "Cyclic and Chaotic Behavior in

Intertemporal Optimization Models," Mathematical Modelling 8, 627-700.
and [1986b], "On the Indeterminacy of Capital

Accumulation Paths," Journal of Economic Theory 40, 26-39.

Brock, W. [1987], "Nonlinearities and Complex Dynamics in Economics and

Finance," this volume, Santa Fe Institute, Santa Fe, N.M.



38

Cass, D. and Shell, K. (eds.) [1976], The Hamiltonian Approach to Dynamic
Economics, NY: Academic Press.

Chang, W.W. and Smith, D.J. [1971], "The Existence and Persistence of Cycles
in a Nonlinear Model: Kaldor's 1940 Model Re-examined," ngigz_gﬁ

Economic Studies 38, 37-44,

Collet, P., and Eckmann, J.P. [1980], a he erv S
Dxngmiggl_§x§;gm§, Boston: Birkhauser.

Cugno, F. and Montrucchio, L. [1982a], "Stability and Instability in a Two-
Dimensional Dynamical System: A Mathematical Approach to Kaldor’s Theory
of the Trade Cycle," in G.P. Szego (ed.), New Quantitative Techniques for
Economics, New York: Academic Press,

and [1982b], "Cyclical Growth and Inflation: A
Qualitative Approach to Goodwin’s Model With Money Prices," Econom
Notes 3, 93-107.

and [1983], "Disequilibrium Dynamics in a Multidimen-
sional Macroeconomic Model: A Bifurcational Approach," Richerche
Economiche XXXVII, 3-21.

Dana, R.-A. and Malgrange, P. [1984], "The Dynamics of a Discrete Version of
a Growth Cycle Model," in J.P. Ancot (ed.), the u re of
Econometric Models, Amsterdam: M. Nijhoff.

and Montrucchio, L. [1986], "Dynamic Complexity in Duopoly
Games," Journal of Economic Theory 40, 40-56.

Day, R. [1982], "Irregular Growth Cycles," American Economic Review 72(3),
406-414,

[1983],"The Emergence of Chaos From Classical Economic Growth,"

Quarterly Journal of Economics 98, 201-213.



39

[1984], "Intrinsic Business Fluctuations and Monetary Policy:
Can the Fed Cause Chaos?", MRG Working Paper #8419, University of
Southern California.
[1986], "Disequilibrium Economic Dynamics,” in Day, R. and
Eliasson, G. (eds.), The Dynamics of Market Ecopomies, Amsterdam, NY:
North Holland.
and Shafer, J.W. [1983], "Keynesian Chaos," Working Paper,
Economics Dept., University of Southern California.
Dechert, W.D. [1984], "Does Optimal Growth Preclude Chaos? A Theorem on
Monotonicity," Zeitschrift fur Nationalokonomie 44, 57-61.
Deneckere, R. and Judd, K.L. [1986], "Cyclical and Chaotic Behavior in a
Dynamic Equilibrium Model With Implications for Fiscal Policy," mimeo,
Northwestern University, June.

Deneckere, R. and Pelikan, S. [1986], "Competitive Chaos," Journal of

Economic Theory 40, 13-25.
Devaney, R.L. [1986], Chaotic Dynamical Systems, Menlo Park, CA: Benjamin

Cummings Publishing Co.

Farmer, R.A. [1986], "Deficit and Cycles," Journal of Economic Theory 40,
77-88.

Gale, D. [1973]}, "Pure Exchange Equilibrium of Dynamic Economic Models,"

Journal of Economic Theory 6, 12-36.

Goodwin, R.M. [1967], "A Growth Cycle," in Feinstein, C. (ed.), Socialism,

is E ¢ Growth, London: Cambridge University Press.
[1982), Essays in Economic Dynamics, London: Macmillan Press Ltd.

Grandmont, J.M. [1985], "On Endogenous Competitive Business Cycles,"
Econometrica 53, 995-1046.
(ed.) [1987], Nonlinear Economic Dynamics, NY: Academic Press.



40

Grandmont, J.M. and Laroque, G. [1986], "Stability of Cycles and

Expectations," Journal o conomic ory 40, 138-151.
Guckenheimer, J. and Holmes, P. [1983], Nonlinear Oscillations. Dynamical

Systems and Bifurcation of Vector Fields, NY: Springer Verlag.

Hahn, F. [1982], "Stability," in Arrow, K.J. and Intriligator, M. (eds.)
Handbook of Mathematical Economics, vol II; Amsterdam: North Holland.
Iooss, G. [1979), Bifurcation of Maps and Applications, NY: North Holland.

Jensen, R. and Urban, R. [1982], "Chaotic Price Behavior in a Nonlinear
Cobweb Model," mimeo, Yale University.

Lasota, A. and Mackey, M.C. [1985], Probabilistic Properties of Determinis-
tic Systems, Cambridge: Cambridge University Press.

Lorenz, H.W. [1985], "Strange Attractors in Multisector Business Cycle
Models," Universitat Gottingen, Beitrag Nr. 24, September.

McKenzie, L.W. [1976], "Turnpike Theory," §onomegrica 44, 841-855.

[1986]), "Optimal Economic Growth, Turnpike Theorems and

Comparative Dynamics," in K.J. Arrow and M.D. Intriligator (eds), Hand-

book of Mathematical Economics, vol. III, Amsterdam-NY: North-Holland.

[1987], "Turnpike Theory," in The New Palgrave, NY: Stockton

Press.

Medio, A. [1984], "Synergetics and Dynamic Economic Models," in Goodwin,
R.R., Kruger, M. and Vercelli, A. (eds.), Non-Linear Models of Fluctuat-
ing Growth, Berlin and NY: Springer-Verlag.

[1987], "Oscillations in Optimal Growth Models," Journal of
Economic Dynamics and Control 11, 201-206.
Montrucchio, L. [1982], "Some Mathematical Aspects of the Political Business

Cycle," Journal of Optimization Theory and Applications 36, 251-275.



41

[1986], "Optimal Decisions Over Time and Strange Attractors: An
Analysis by the Bellman Principle," Mathematical Modelling 7, 341-352.

[1987], "Dynamical Indeterminacy in Infinite Horizon Optimal
Problems: The Continuous Time Case," mimeo, Politecnico di Torino.

Newhouse, S., Ruelle, D., and Takens, F. [1978], "Occurrence of Strange
Axiom-A Attractors Near Quasi-Periodic Flows on Tm, m== 3," Comm, in
Math. Physics 64, 35-40.

Pohjola, M.T. [1981], "Stable, Cyclic and Chaotic Growth: The Dynamics of a
Discrete-Time Version of Goodwin'’s Growth Cycle Model," Zeitschrift fur
Nationalokonomie 41, 27-38.

Rand, D. [1978], "Exotic Phenomena in Games and Duopoly Models," Journal of
Mathematical Economics 5, 173-184,

Reichlin, P. [1986], "Equilibrium Cycles in an Overlapping Generations
Economy With Production," Journal of Economic Theory 40, 89-102.

[1987], "Endogenous Fluctuations in a Two-Sector Overlapping
Generations Economy," Working Paper No. 87/264, Florence: European
University Institute.

Rockafellar, T.R. [1973], "Saddle Points of Hamiltonian Systems in Convex

Problems of Lagrange," Journal of Optimization Theory and Applications
12, 367-390.

[1976], "Saddle Points of Hamiltonian Systems in Convex Lagrange

Problems Having a Non-Zero Discount Rate," Journal of Economic Theory 12,
71-113.

Ruelle, D. [1987], "Can Non-linear Dynamics Help Economists?”, this v e,
Santa Fe Institute, New Mexico.
Rustichini, A. [1983], "Equilibrium Points and ’‘Strange Trajectories’, in

Keynesian Dynamic Models," Economic Notes 3, 161-179.



42

Scheinkman, J.A. [1976], "On Optimal Steady State of n-Sector Growth Models
When Utility is Diséounted," Journal of Economic Theory 12, 11-30.
[1984], "General Equilibrium Models of Economic Fluctuations: A
Survey," mimeo, Dept. of Economics, University of Chicago, September.
[1987], "Capital Accumulation and Asset Pricing," this volume,
Santa Fe Institute, New Mexico.

Simonovits, A. [1982], "Buffer Stocks and Naive Expectations in a Non-
Walrasian Dynamic Macromodel: Stability, Cyclicity and Chaos,"
Scandinavian Journal of Economics 84(4), 571-581.

Stutzer, M. [1980], "Chaotic Dynamics and Bifurcation in a Macro Model,"
Journal of Economic Dynamics and Control 1, 377-393.

Summers, L. [1987], "Some Stylized Facts About Business Cycles," this
volume, Santa Fe Institute, New Mexico.

Torre, V. [1977], "Existence of Limit Cycles and Control in Complete
Keynesian Systems by Theory of Bifurcations," Econometrica 45, 1457-1466.

Woodford, M. [1987], "Imperfect Financial Intermediation and Complex
Dynamics," mimeo, June; forthcoming in Barnett, W., Geweke, J. and Shell,
K. (eds.), Economic Complexity: Chaos, Sunspots, Bubbles and Nonlinear-
ity, Cambridge: Cambridge University Press.

Yano, M. [1984], "The Turnpike of Dynamic General Equilibrium Paths and Its
Insensitivity to Initial Conditions," Journal of Mathematical Economics

13, 235-254.



