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Absgtract

In this paper we utilize recent advances in principal components
analysis to examine the question of international asset substitutability
for a small open economy. Specifically, we are interested in whether a
small open economy can have independent interest rates all along the
term structure. Based on Canadian and U.S. government bond yield data, we

find strong evidence of high substitutability between the two countries’
bonds of all maturities.



1. Introduction

In this paper we utilize recent advances in principal components
analysis (PCA) to examine the question of international asset sub-
stitutability for a small open economy. Specifically, we are interested
in whether a small open economy can have independent interest rates all
along the term structure. We test our approach using government bond
yields from the U.S. and Canada for the period 1972-1984.

The degree of international asset substitutability is important for
small open economies because it determines the extent to which the
country can have an independent interest rate policy. The simple Keyne-
sian model of the small open economy with fixed exchange rates predicts
that the potential for an independent interest rate diminishes as
domestic and foreign bonds become more substitutable. Edwards (1985)
noted that the absence of good measures of intermediate degrees of
openness means that many empirical studies simply assume an economy is
completely open or completely closed. Our analysis produces a simple
overall measure of the degree of asset substitutability.

There are various approaches to testing international asset sub-
stitutability, and they usually focus on a single, ’'representative’ asset
from each country. One approach is to extend the portfolio model devel-
oped by Brainard and Tobin (1968) to examine questions of substitut-
ability between domestic and foreign (or any alternative) assets (for
example, Boothe, 1987). Another is to test interest rate parity (for
example, Frenkel and Levich, 1975, 1981), and a third is to measure the
effect of foreign variables on the determination of the domestic interest
rate (Edwards, 1985, and Edwards and Khan, 1985).

However, most countries have assets of numerous maturities, and a
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single yield will not be representative of other points on the yleld
curve unless all assets along the yield curve are perfectly substi-
tutable. Studies supporting the preferred habitat or market segmentation
theories of the term structure (for example Modigliani and Sutch, 1967,
1968) indicate imperfect substitutability between assets of different
maturities. In the past, authorities have sometimes acted on this
assumption, for example in the so-called ‘Operation Twist' of the 1960s.
We think a useful measure of the degree of international asset sub-
stitutability must incorporate information from a number of different
points along the yield curve.1 Rather than simply repeat tests on assets
of every maturity, we seek to compactly summarize each country’s yield
curve by reducing the information in a set of bond yields of different
maturities to a smaller set of latent factors using PCA. We then apply a
new technique that allows us to comparing sets of rrincipal components
across countries. Although we are focussing on the question of inter-
national substitutability, our approach also provides some evidence on

the degree of domestic substitutability and hence of the term structure.2

1 Beenstock and Longbottom (1981) showed that the world term premium
(ten year bond yield minus three month yield) was a significant deter-
minant of the U.K. yield term premium for the period 1969-1978.

A related issue arises in regression tests of Brainard-Tobin asset
demand functions. The higher the degree of substitutability between
assets, the more collinear are their yields, and hence the less precise
the estimates of cross-price elasticities. In the case of assets of
different maturity, clearly the collinearity problem would be severe if
we were to include yields from every available maturity. An ideal
solution would be to find groupings of assets such that within-group
substitutability is high and between-group substitutability is low.
Alternatively, the latent factors in a set of assets of different
maturities contain all the information from the original data, but are
uncorrelated.
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PCA 1s one of a family of latent-variable techniques which also
includes factor analysis. Several previous studies have applied latent-
variable techniques to the domestic term structure and international
asset substitutability questions. A well-known problem with the analysis
of latent variables is that it is difficult to give economic inter-
pretations to the factors found because they generally do not correspond
to specific economic variables. Thus, researchers’ interpretations of the
latent factors may differ.

Hester (1969) applied PCA to a group of eleven yields on government
and corporate assets with maturities from three month to over ten years
and found that almost all of the variation could be explained by just
two factors, which he identified as the market rate and term structure.
Logue et al. (1976) using factor analysis, and found that most of the
variation in seven countries’ medium- to long-term government bond yields
over the 1958-73 period was due to a single "international" factor, which
was evidence of a high degree of integration across the countries.3 Logue
and Sweeney (1984) reported that there were two principal components in a
set of Eurocurrencies certificate of deposit rates for four maturities
from one to twelve months. They analyzed deposits in six currencies (U.S.
dollar, French franc, German mark, British pound, Swiss franc, and
Japanese yen) from 1977 to 1982 and interpreted the first component as
the ‘general market factor’' and the second as reflecting term premia.
Further analysis provided evidence of imperfect international market

integration. Simple time series regressions of each country’s first

They interpreted this factor as representing "an optimally
diversified international portfolio."
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component on the first U.S. component indicated only a weak relationship.
Similar regressions for the second components indicated no relation.
Furthermore, when separate PCA were done on the set of six countries’
rates at each maturity, four or five components were required to explain
most of the total variation.4

Geweke and Singleton (1981) developed a time series version of factor
analysis, called dynamic factor analysis. Singleton (1980a, 1980b)
applied the technique to the U.S. term structure and concluded that two
factors accounted for most of the variation in a group of five interest
rates of different maturities. His results indicated that the factors
were common to all maturities, which was evidence against the hypothesis
of market segmentation. Geweke and Singleton suggested that possible
interpretations for the two factors were real and monetary influences or
anticipated and unanticipated disturbances.5

The plan for the remainder of our paper is as follows. We begin with a
discussion of the interpretation of PCA applied to term structure data.
In Section 3 we present some stylized facts describing U.S. and Canadian
bond yields from 1972 to 1984. Our PCA results based on U.S. and
Canadian data are presented in Section 4. The paper concludes with a

discussion of the results and a brief summary.

This result is consistent with, but does not necessarily imply,
the existence of country-specific influences, ie. international market
segmentation. If the components were common to all currencies, then there
would be a high degree of integration among national capital markets.

Using a different method of analysis, multiple cointegration,
Stock and Watson (1987) also found two common factors in a group of four
U.S. interest rates of different maturity.
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2. Interpreting PCA Results for the Term Structure

In this section we establish some guidelines for interpreting the
results from applying PCA to term structure data. PCA is a data-reduction
technique and is discussed further in Appendix A.6 The basic idea is to
reduce a set of p input variables to k < p linear combinations of the
variables that account for most of the variation in the input group. The
linear combinations correspond to a rotation of the original axes in p-
space. The choice of a k < p corresponds to a reduction in the number of
dimensions.

An easy way to visualize this process is to think of points scattered
within a room, a three-dimensional space with axes running along the
floor and up a wall. PCA tips and rotates this room until the axes are as
close as possible to the scatter of points. The room’'s shape is main-
tained (i.e. the axes remain orthogonal); only its orientation in three-
space changes. To illustrate the problem of deciding the degree of
dimension reduction (i.e. the value of k), suppose the points in the room
lie on a diagonal line from one upper corner to the opposite lower
corner. The rotation of the room will result in one axis coinciding with
the diagonal. The original three-dimensional scatter can then be seen to
have one underlying dimension.

In practice we would find exactly one component (i.e. all but one
eigenvalue equal to zero) only in the case of perfect collinearity. More
commonly, all eigenvalues are non-zero but some are very small, indicat-

ing a subset of components explain most of the variation in input

6 PCA is also described in most texts on multivariate statistical

analysis. See, for example, Johnson and Wichern (1982) ..d Kendall et al.
(1983).
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variables. There is no universally agreed-upon criterion for determining
how many components to keep (i.e. the value of k) when no eigenvalues are
exactly zero. An ad hoc approach is to choose an arbitrary amount of the
total variation to be accounted for and to keep as many components as are
necessary to reach that total. In practice, criteria such as 80 or 90
percent are used. An alternative is to find a break in the sizes of the
eigenvalues (and hence in the contributions of each component to cumu-
lative variance) after which they become uniformly small. Only components
up to the break are retained. This is known as a scree test.

A less-arbitrary alternative, proposed by Eastment and Krzanowski
(1982), is based on cross-validatory analysis. The goal of cross-valid-
ation is to find the smallest number of components that provide a good
prediction of the original data. Therefore, components are added succes-
sively until there is an insignificant gain in predictive power, as
measured by what Eastment and Krzanowksi call the W statistic. They
advise that the kth component should be added only if the W statistic is
greater than 1. The details of this procedure are given in Appendix B.

We now consider the application of PCA to term structure data. Suppose
that the underlying model which generates bond yields of different
maturities nests the expectations and market-segmentation theories within
it. Let R(1,T) be the yield on a T-period bond at time 1. Denote the one-
period yield on a bond from time t to t+l by R(t). R(1l) is known at time
1, but future yields are represented by their expected values, E(R(t)).
The yield on a T-period bond i{s given by the geometric mean of the

current and expected future yields and a maturity-specific (market-



segmentation) factor (S):7
R(1L,T) = (L4R(1) (1+E(R(2))... (1+ER(T))) /T 1.0 + s(T) (1)

If all yields change proportionally, as in an expectations model of
the term structure, then one principal component would account for all
the variation in the group of yields.8 At the other extreme, if markets
for all maturities are segmented, then PCA would find as many components
as there are maturities. In intermediate cases, there may be components
common to subsets of maturities, so that there are groups of markets
segmented from each other. PCA does not distinguish among components that
are common to all input variables, those that are common to subsets of
two or more variables, and those that are specific to single variables,
although the correlations between variables and components provide
descriptive evidence. Factor analysis distinguishes variable-specific
factors from common ones, but does not discriminate between the common-
to-all and common-to-a-subset cases (again, factor loadings provide
descriptive evidence). Singleton (1980a, 1980b) found two common factors
in the U.S. term structure using dynamic factor analysis. Although he

found no evidence of maturity-specific market segmentation, his results

7 For simplicity, we can think of the maturity-specific disturbance
as a random shock. If markets for different maturities are segmented,
then each maturity class has its own independent shock. If there are sub-
groups of maturities with high within-group substitutability, then we can
think of each group as sharing a common shock.

8 This is not the same as saying that one economic variable drives
all the yields. There may well be many economic variables that go into
the determination of expectations.
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do not rule out segmentation between subgroups of maturities.glo

The idea of maturity-specific shocks can be easily expanded to deal
with domestic and foreign bonds. If the bonds of the small open economy
are perfectly substitutable for foreign bonds, then the open economy's
bond yields will be explained by the same factors that explain yields in
the other country.11 If we were to run PCA on the set of bond yields from
both countries together, then there would be collinearity between the two
halves of the data and k would be the same as in the single country
analysis. If the two countries had completely independent term structures
(le. zexo asset substitutability) then PCA on the both countries’ bonds
would yield a number of components equal to the sum of both countries’
components when analyzed separately. If a subset of components are common
across countries (ie. less-than-perfect substitutability) then running

PCA on both sets of bond yields jointly should result in fewer components

than the sum of the components found in the individual country analyses.

Note that this assumes that if the bonds along the term structure
are correctly aggregated with respect to maturity.

10 Stock and Watson (1987) also found two common factors, although

their technique did not capture specific ones. Hester (1969) and Logue
and Sweeney (1984) each found two principal components, but did not
identify them as common or specific.

1 Perfect substitutability does not imply that interest rates are
necessarily equal across countries. Rates may differ due to expected
exchange rate depreciation or taxes or transaction costs. If the term
structure of the forward premium were not flat, then expected exchange
rate changes could constitute an additional component in the two-country
analysis.



3. Data and Some Stylized Facts

Since the degree of substitutability between bonds along the yield
curve is an important issue in this paper, it is not appropriate for us
to analyze the yield data usually examined in empirical bond market
studies because it is pre-aggregated into an arbitrary set of maturity
classes. These arbitrary maturity classes are unlikely to satisfy the
condition that there be a high degree of substitutability between bonds
within the class and a lower degree of substitutability across classes.
Therefore, we employ alternative data sets for the U.S. and Canada, on
which we impose the least possible pre-aggregation. For the U.S. we
started with monthly data on outstanding Treasury bonds from the Centre
for Research on Securities Prices (CRSP).12 Bonds with special features
are excluded.

The data were aggregated in the following way. First we sorted all
bonds into 31 one-year maturitf classes, taking the unweighted average
yield for each class. Since there was not a bond of every (yearly)
maturity outstanding in every month, we grouped together the longest
bonds with the next longest bonds and continued adding shorter maturities
until we had a grouping which had at least one observation in every
month. We then began aggregating the next lower class and so on. The
result was eight maturity classes: 1, 2 ,3, 4 ,5, 6-9, 10-13 and 14-31
13

years. The raw Canadian data were exactly comparable to the CRSP data

and we used the same maturity groupings (again excluding bonds with

12 The U.S. data are described in the 1984 CRSP documentation.

13 See Boothe and Reid (1986) for a description of the Canadian

data.
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special features). We confine our analysis to the sample period 1972:1-
1984:12. The starting date avoids both the move to flexible exchange
rates between the U.S. and Canada and large-scale changes to capital
gains taxation in Canada. The end is dictated by the availability of
Canadian data.

PCA is based on the assumptions that the sample observations are
independent drawings from a distribution with constant mean and variance.
We therefore first determine whether these conditions are satisfied in
the bond yield data. It is well known that the variance of U.S. interest
rates rose substantially as a result of the October 1979 introduction of
monetary targeting by the Federal Reserve (see Spindt and Tarhan, 1987).
The variance decreased when the Fed reduced emphasis on monetary targets
in October 1982. This suggests three subperiods in the data. The top
panel of Table 1 reports the variances for the first differences of U.S.
yields in these three periods and the results of Bartlett tests for
equality of variances.14 The 1979-82 subperiod had significantly larger
variances than either the first or the third period. The third period
variances were not consistently equal to those in the first period
indicating three separate subperiods. The bottom panel of Table 1 give
the variances and Bartlett tests for the Canadian data. The patterns of
variances and test statistics are the same as for the U.S. data. There-
fore we will analyze the three subperiods separately in what follows.

The time series behavior of monthly bond yields is very close to a

random walk. In Table 2 we report the results of Dickey-Fuller (1981)

14 Extensive testing did not reveal any other structural breaks in

the sample. The qualitative conclusions from Table 1 apply to the levels
data as well.
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tests for non-stationarity (unit root tests). Based on these tests, all
series in the first period were non-stationary in level and stationary in
first differences. Although there are substantially fewer than the 100
observations used to compute the tables of Fuller (1976), the same
conclusion appears to hold for the second period. In the third period,
even first differences seem to be non-stationary, but this is based on
only 26 observations and may simply reflect the movement to a new, lower
equilibrium level for interest rates over this short period. We deal with

the high degree of autocorrelation in the monthly yields by differencing

the data.ls

The yield curves for the two countries varied substantially over the
three subperiods as indicated by the descriptive statistics for the two
countries presented in Table 3 and the yield curves plotted in Figures 1
to 3. In the first subperiod (1972:1-1979:9), both yield curves displayed
an upward slope on average, with long yields being substantially less
volatile than short yields. Both curves shifted upward and became flatter
over the period. The Canadian yield curve was higher and steeper than its
U.S. counterpart (50 basis points at the short end and 80 points at the
long end).

The second subperiod (1979:10-1982:9) was a period of substantially

increased interest rate volatility for both countries, especially at the

15 As Logue et al. (1976) noted, it is intuitively appealing to

examine differenced data rather than levels because international asset
substitutability implies that interest rates move together rather than
that they are equalized. When PCA (or factor analysis) is run on the
levels of a highly-autocorrelated series, the first component (factor)
tends to account for a larger percentage of total variation than when
the data are differenced. This result is illustrated in Logue et al. and
reflects the dominant trend component in the levels data.
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short end. On average, both yield curves became 'inverted’ in this
period. The Canadian curve was again higher and steeper than its U.S.
counterpart; this time by an even greater margin (120 points at the short
end and 90 basis points at the long end).

In the final subperiod (1982:10-1984:12) yield curves for the two
countries became less volatile, shifting downward and reverting to their
normal upward slope. Both curves were substantially steeper than in the
first subperiod, with the U.S. curve steeper than the Canadian one.

While the Canadian curve was higher at the short end (by approximately 70

points), the U.S. curve was higher at the long end (by approximately 20

points).

4. Testing and Results

In this section we present the results of PCA applied to term struc-
ture data for the U.S. and Can;da. We begin by considering the bonds of
each country separately, and then apply PCA to the bonds of both coun-
tries jointly. Next, we compare the Canadian and U.S. components directly
using the technique of Krzanowski (1979). As described in the previous
section, the data were differenced and the three subperiods were examined
separately.

Table 4 presents the eigenvalues of the covariance matrix for U.S.
yields to matqrity in the eight maturity classes, thg cumulative amount
of variation explained by each component, the correlation coefficients

between each variable and each component and the Eastment-Krzanowski W



13
st:at:istics.16 Recall that the signs of eigenvectors are arbitrary; any
row can be multiplied by -1 without changing the results.

The 90 percent cumulative variance criterion would suggest two com-
ponents in the first and third periods and one in the second. The W sta-
tistics tell a somewhat different story, identifying two components in
the first period and three in each of the other periods. The reason the W
statistic tends to indicate more components than the 90 percent criterion
is that any component which is relatively highly correlated with an
original variable can improve overall predictive power. Some of the
components beyond the 90 percent cumulative variance level have such
correlations. For instance, in the second period the correlations between
the third component and maturities 7 and 8 account for the W statistic
indicating three components.

The following patterns of correlation coefficients appear in all three
subperiods. The first component has by far the largest correlations with
all maturities. The shortest bonds (one year and less) load less heavily
on the first component and more heavily on the second. This difference
between the shortest bonds and other maturities is not surprising if we
assume that short bonds are the primary tool of monetary policy, so that
the short yield is exogenously determined. The large influence of the
first component on all maturities is consistent with the expectations
theory prediction that a change in the short-term interest rate (which

alters expected future interest rates) will affect all yields to some

16 For reasons of computational accuracy, the cross-products matrix

was used rather than the covariance matrix. The eigenvectors of the two
matrices are the same, so the principal components derived from them are
too. To get the eigenvalues of the covariance matrix from those reported
in the tables, simply divide by n-1.
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extent (as in equation (1)).17

The results from PCA on Canadian bonds in the same eight maturity
classes are presented in Table 5. The W statistics suggest slightly
different numbers of components than for the U.S.: three in the first
period, two or four in the second18 and two in the third. The Canadian
results show the same general pattern of correlations as the U.S.: (1)
high correlations between the first component and all yields, although
not quite as high for the shortest maturity and (2) the dominant cor-
relation for the second component is with this shortest maturity.

We next applied PCA to both countries together, i.e. sixteen bonds in
all.19 The results for the first six components are presented in Table 6.
(The eigenvalues and correlation coefficients for the remaining ten are
negligible.) In the first period, three components are required to
explain at least 90 percent of the variance, while the W statistic

indicates four components. In the second period, only two components are

required to reach 90 percent, although the eigenvalues do not become

17 The patterns in Table 2 suggest an alternative to the standard

aggregation of bonds into 1-5, 5-10 and over 10 year classes. We pursue
the question of optimal aggregation of bonds of different maturities in a
separate paper. ‘

18 The W statistic for the fourth component in the second subperiod
rises above 1.0 because of the component's correlation with yields in
the 10-13 year maturity class. This aberration can be traced to the
period of high interest rates in 1981 when the low-coupon bonds in this
infrequently-traded maturity class were priced at a substantial discount.
New, near-par issues at 10 and 20 years behaved differently because of
the differences in tax treatment for capital gains and interest income.
Since these special circumstances were short-lived, we treat the second
subperiod as having just two components.

19 The correlation between the fourth Canadian component and the 10-
13 year maturity class again contributes to a W statistic above 1.0, this

time at the seventh joint component. We continue to assume that it can be
ignored.
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really small until after the fourth component and the W statistic
suggests four components. The cumulative variance reaches 90 percent with
two components in the third period, but the eigenvalues drop off after
four and the W statistic also identifies four.zo

The fact that the total number of components retained in the joint
analyses is less than the sum of those retained in the individual country
analysis indicates that some of the components are common across the
countries. The correlation coefficient patterns support this idea. The
first component’s pattern of correlation coefficients is the same as that
for the first component for each country alone, with the shortest
maturity tending to have the lowest correlation. The second component is,
with one exception, positively correlated with Canadian yields and
negatively correlated with U.S. yields. This seems to suggest a country-
specific factor. The majority of the remaining retained components
concentrate on the shortest nnﬁurities, which suggests that they reflect
monetary policy, as in the individual country analyses.

From the number of retained components and their correlation patterns
we conclude that U.S. and Canadian bonds are highly substitutable. The
heavy loadings on the first component from all bonds in both countries
show that, to a large extent, yields in both countries move together.
However, the finding that the number of joint components is greater than
for one country alone and the second joint component's country-specific
correlation pattern are indications that substitutability is less than

perfect. We further explore the nature of the substitutability by

20 The consistency between the scree and W statistic criteria lead

us to have more confidence in them than in the arbitrary 90 percent
variance benchmark.
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directly comparing the two countries’ components.

From inspection of Tables 4 and 5, we see that the principal com-
ponents for the U.S. and Canada are similar, although not identical.
Krzanowski (1979) noted that, "visual inspection is not very trustworthy,
as two sets of components that are quite different in appearance may in
fact define the same subspace of the original multivariate space." (p.
709) Krzanowski showed how principal components from two groups (e.g. two
countries) can be compared by calculating the angles between the sub-
spaces generated by each set of principal components and constructing the
bisecting vectors. A pair of identical vectors would have an angle of
zero degrees, while a pair of unrelated components would have an angle of
90 degrees. This technique is described in Appendix C.

The sum of the eigenvalues of the cross-product matrix between pairs
of principal components is a measure of the overall similarity of U.S.
and Canadian components. The individual angles and the weights of the
input vectors in the bisecting vectors are indications of the nature of
the similarity. We applied Krzanowski's technique for comparing principal
components across groups to the first three U.S. and Canadian components
from Tables 4 and 5. (The number of components to be compared was
determined largely from the W statistics.) The comparison results are
presented in Table 7.

Looking first at the eigenvalues and corresponding angles, we find
that in each period the first two components are extremely close to each
other. Based on an unreported Monte Carlo study, Krzanowski interpreted
angles of less than 34 degrees as being small. In spite of the lack of

better criteria for determining smallness, it is clear that vectors
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differing by less than 6 degrees can be considered extremely similar. The
first component, which is virtually identical in the two countries,
becomes even more similar over time (the angle decreases from 3.05 to
0.67 degrees). The third component is clearly less similar across
countries, although it is far from orthogonal. The measures of overall
similarity are all over 2 (where 3 is the value for identical com-
ponents). The highest value is in the second period (when all three
angles between component pairs are relatively small). We interpret this
measure as telling us that the three pairs of components are similar in
at least two dimensions.

In order to determine the nature of the similarity between the U.S.
and Canadian components, we examine the sets of vectors closest to the
pairs of subspaces (the bisectors). Note that each entry in Table 7
gives the contribution of the given maturity class to the bisector and is
analogous to an eigenvector element (i.e. it is not scaled, as the
correlation coefficients in the previous tables are). The vector closest
to the first components from the two countries appears to put equal
weight on yields from all maturities, with slightly more emphasis on
shorter maturities. The vector closest to the second components has most
of its weight on the bonds with maturity up to one year, suggesting that
monetary policy accounts for this dimension of similarity. In the second
subperiod the patterns of the first and second vectors are more extreme,
with the first maturity class having substantially lower weight in the
first vector and substantially higher weight in the second vector. In all
three periods the longest bonds (10 years and up) have relatively heavy

weight in the vector closest to the third components. Looking back at the
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Joint PCA results in Table 6, we see that the long maturities have some
relatively large loadings on the third and fourth components, suggesting
that the differences in the countries’ issuance of long bonds may account

for some of the imperfect substitutability the results imply.

5. Conclusions

In this paper we have demonstrated in two ways that there is a very
high degree of substitutability between U.S. and Canadian government
bonds across the entire term structures for the two countries. First,
while there are up to three principal components underlying each coun-
try’'s domestic term structure, there are no more than four components
when U.S. and Canadian bonds are analyzed together. This shows that some
of the components are common across the countries. Second, when we
compared the first three U.S. components to the first three Canadian
components, we found an extreﬁely strong similarity in two of the
dimensions - the principal component vectors were less than six degrees
apart. Differences in the third dimension can be attributed to differ-
ences in the issuance of long bonds. We conclude that Canada, as a small
open economy, had very little scope for an independent term structure in
the 1972-1984 period.

Finally, we note the applicability of the techniques in this paper to
other research in finance. The method of comparing components across
groups has potential use in issues of domestic as well as international
asset substitutability. The cross-validation approach to determining the
number of components will be helpful in other latent-variable applica-

tions, such as the first step in testing APT models.



U.S. data

1972:1 - 1979:9
(n=92)
1979:10 - 1982:9
(n=35)
1982:10 - 1984:12
(n=26)

All periods equal
First=Second
Second=Third

First=Third

Canadian data

1972:1 - 1979:9
(n=92)
1979:10 - 1982:9
(n=35)
1982:10 - 1984:12
(n=26)

All periods equal
First=Second
Second=Third

First=Third
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Table 1

Sample Variances of Yield First Differences

Maturity Class:
1 2 3 4 5

0.38 0.18 0.12 0.09 0.07 oO.
3.26 1.99 1.53 1.27 0.99 O.

0.34 0.31 0.28 0.26 0.27 O.

Bartlett tests for equal variance
78.7 88.4 95.7 100.1 96.4 97,
66.8 83.4 92.6 98.3 96.3 97.
28.2 20.0 17.3 14.9 10.6 9.

0.1 3.4 8.0 13.1 20.2 24.

Maturity Class:
1 2 3 4 5

0.15 0.14 0.13 0.11 0.10 O.
1.97 1.53 1.40 1.38 1.10 O.

0.39 0.26 0.24 0.21 0.21 O.

Bartlett tests for equal variance
96.2 86.4 83.5 95.8 86.0 78.
93.9 82.6 79.5 90.9 83.2 75.
15.9 18.1 18.2 20.3 16.3 15.

10,1 4.7 3.9 4.7 6.5 4.

6

06 0
85 0
26 0
0 107.
1 106.
2

1 42
6

09 O
93 0
18 0
1 86.
3 83.
9 15.
9 8

7

.04 0.
.59 0.
.24 0.
1 105.
6 105.
3 7
.5 33.
7

.07 0.
.76 0.
.16 0.
0 120.
9 117.
0 17.
.1 17.

Bartlett test statistics for all periods equyal are distributed x2(2).
Statistics for two period comparisons are x (1).

Critical values:

2
Xy
X

5% 1%
(2) 5.99 9.21
(1) 3.84 6.63

04

63

21

04

78

14
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Table 2

Dickey-Fuller Unit Root Tests

U,

Maturity

differences levels differences

levels

1972:1-1979:9

NNV IT TN
WTON O™
VNN NN NN
[ R T T R R |
Ne=NT N0
MNOO et
NNMO N ONN
D D T R B B |
NONINVO VW
WO~V
O WO WM WWWWY
[ N R
NWOWOVO = =HNO
e WOWONOMO
= NN
[ T T I T R |

~ANMNITN O~

1979.10-1982.9

ST~ TN N
QOO MNMO®De
T IITNNIFIITIN
' 13 ) [ ] 1] ] 1 ]
FONNMNISIOWYO
N AN OOON®
NN N
[} [} [} 1 ] 1 ] 1] ]
NOMTOONWN
VONO~NO~N
Tnunununununn
[} [] L] ] L] 9 ] L]
O FITNONN
NOOMNNMN
NN NNNNN
(] 1 ] ] (] ] L] )

NN NON®

1982.10-1984.12

St ONA NSNS WVWO
NOAOONOONM
N N=NHNN
] ] ] ] ] ] 1 L}
NN ONM WO
NN VWONMNMNG
NONNNNNNN
] (] ] ] 1 L] 1
O N O O @ N O~
O N OO
NONNNNNNN
L] L] ) t 1] ....
T OO MM N T -
NOMNEMEO
NN NNNNN
(] L] L} 1] [] L] 1 ]
~OoNM TN O~ ®

-3.17

Critical value for n=100 at 95 percent, from Fuller (1976):
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Table 3
Descriptive Statistics: First Differences

1972:1-1979:9

maturity mean std. dev. skewness kurtosis
u.s 1 .086 .612 -1.3768 .2513
2 .062 .420 -.4099 .6888
3 .053 .343 -.3372 .8387
4 .048 .300 -.4522 1.3231
5 .043 .270 -.3055 1.0389
6 .039 . 248 -.1144 .5263
7 .037 .194 -.0452 -.0401
8 .034 .200 -.0757 -.1390
(.2513) (.4977)
Canada 1 .081 .387 .3576 2.4570
2 .073 .370 .1977 2.4720
3 .066 .362 -.0329 2.3130
4 .058 .330 -.0463 1.1615
5 .058 .312 -.1695 1.7621
6 .046 .305 .2760 2.9276
7 .042 .258 .2861 1.4442
8 .036 .205 .0313 1.3534
(.2513) (.4977)
1979:10-1982:9
U.s 1 .074 1.796 -.8189 .6736
2 .015 1.432 -.6188 1.1825
3 .045 1.256 -.6577 2.1839
4 .054 1.149 -.3362 1.1813
5 .058 1.018 -.4437 0.6797
6 .065 .941 -.3338 0.2724
7 .064 .787 -.4794 0.1256
8 .068 .805 -.4093 0.1863
(.3295) (.7681)
Canada 1 .033 1.41 -.5209 1.9935
2 .040 1.26 -.7745 '1.6704
3 .047 1.19 -.8718 1.7021
4 .054 1.16 -1.1298 2.1854
5 .060 1.04 -.7645 1.0287
6 .072 .95 -.7898 1.1599
7 .086 .86 -.1485 L7773
8 .051 .88 -.5012 1.0351

(.3925)

~~

.7681)
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Table 3 continued

1982:10-1984:12

maturity mean std. dev. skewness kurtosis
u.s 1 -.022 .579 .3210 .0012
2 -.040 .600 .0327 -.3292
3 -.042 .581 -.1441 -.0029
4 -.032 .559 -.0578 .0259
5 -.031 . 546 .1087 -.0849
6 -.008 .536 -.0679 -.3211
7 -.004 .527 -.1817 -.1l611
8 -.001 .481 .0231 -.4228
(.4479) (.8721)
Canada 1 -.103 .663 -.2439 -.4257
2 -.094 .555 .0871 -.0042
3 -.080 .522 .2164 -.2026
4 -.087 .507 -.3479 -.4467
5 -.077 .485 .6165 1.0251
6 -.068 .466 .0847 -.1087
7 -.072 .409 .2942 -.9112
8 -.063 .402 .2202 -.8223
(.4479) (.8721)
Notes:

1. Skewness and kurtosis are measure relative to the normal
distribution (ie. 0.0=normal). Standard errors are in parentheses.

2. The Jarque-Bera Lagrange multiplier test is usgd to test for nor-
mality. The test statistic is distributed as x (2).
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Table 4

Principal Components Analysis
United States - First Differences

explained 1

78.
93.
96.
98.
98.
99.
99.
100,

90.
98.
99.
99.
99.
99.
99.
100.

89.
98.
99.
99.
- 99,
99.
99.
100.

O WWOoONWO & CQOONNOON

OWWOVWoOBWULNOGO

1972:2 -
Correlation
2
-.88 .95 -
.48 15 -
.04 .23 -
.02 14
.01 .00 -
-.00 .05 -
.00 .03 -
-.00 .02
1979:10 -
-.90 .99 -
42 .03 -
-.05 .10
.01 .07
-.00 04 -
.00 .00 -
.01 .02 -
-.00 .00

1979:9

with maturity #:
3 4 5
.94 -.88 -.83
.29 -.41 -.44

.10 .04 .09
07 .18 .27
.05 .01 .05
14 -.04 0 11
.03 -.04 .14
.07 -.12 .05

1982:9

.99 -.97 -.96
.10 -.21 -.26
.07 .08 -.03
.04 .03 .00
.07 .00 -.03
.06 .02 .08
.02 .07 -.03
.00 -.01 .02

1982:10 - 1984:12

-.71
.70
.12
.00

-.01

-.00

-.00
.00

.98
.13
.16
.04
.03
.02
.02
.01

.99 -.99 -.99
.01 -.07 -.10
A4 -.06 -.02
.01 .02 .10
.03 -.01 .04
.01 -.05 .00
.04 -.03 -.01
.05 .02 -.01

.88
.35
.17
.07
.01
.13
.21
.04

.95
.28
.06
.11
.09
.02
.03
.00

.98
.18
.07
.02
.01
.04
.01
.04

.79
.29
.36
.25
.30
.00
11
.02

.93
.32
.16
.08
.01
.06
.04
.05

.97
.21
.10
.02
.06
.03
.02
.02

.74
.43
.26
.34
.27
.12
.07
.00

.92
.34
.17
.07
.03
.00
.01
.06

.95
.25
.18
.08
.02
.03
.01
.02

QOO0 OH~ COO0OOOOW

[N e N oo Roll LR

.86
.03
.85
.13
.00
.27
.00

.94
.07
.22
.21
.18
.32
.00

.57
.05
.42
.07
.08
.08
.00
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Table S

Principal Components Analysis
Canada - First Differences

1972:2 - 1979:9

explained 1 2 3 4 5

89.
95.
97.
97.
98.
99.
99.
100.

89.
97.
98.
99.
99.
99.
99.
100.

87.
84.
96.
98.
98.
99.
99.
100.

O WO~ O~NNNNVYWO N

O 0 H WN OO

-.90 -.98 -.98 -.96 -.97

42 .12 .01 -.12 -.16
-.14 .11 .16 .14 -.02
-.05 .10 .06 -.21 .01

.01 .01 -.08 .02 .06
-.00 -.03 .01 -.03 .16
-.01 .01 .00 .01 -.09
-.02 .09 -.09 .02 .01

1979:10 - 1982:9

-.83 -.98 -.99 -.98 -.96
.56 .05 -.10 -.18 -.22

-.06 .18 .08 .06 -.11
.02 -.07 .03 .09 .04

-.01 .01 .02 -.02 -.05
01 -.05 .04 .04 -.08

-.00 -.00 .04 -.05 -.01
.00 -.02 .04 -.01 .03

1982:10 - 1984:12

-.84 -.98 -.95 -.95 -.96
.54 -.05 -.15 -.07 -.16
01 -.13 -.23 .15 .00

-.02 .05 -.05 .25 -.04
.01 -.01 .03 -.01 -.20

-.01 -.06 .09 .08 -.04

-.01 .07 .03 -.00 -.06

-.01 .08 -.06 -.00 -.02

Correlation with maturity #:

.94
.24
11
.06
.17
.06
.06
.04

.98
.18
.07
.03
.03
.01
.06
.05

.96
.21
.04
.04
.14
.10
.09
.02

.93
.23
.20
.01
.17
.06
.13
.04

.95
.16
.12
.24
.03
.05
.02
.01

.95
.14
.13
.20
.05
.11
.05
.09

.89
.29
.19
.02
.14
.17
.19
.01

.97
.18
.14
.02
.13
.02
.02
.01

.92
.18
.29
.13
.03
.07
.11
.06

OCOO0OOrRO& QOOOCOmrN

[>=NeNoNeNoNeN J

.74
.28
41
.68
.15
.78
.00

.86
.50
.10
.00
.38
.18
.00

.39
.42
.73
.07
.35
.49
.00
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Table 6

Joint Principal Components Analysis of U.S. and Canada

Eigenvalue s$variance

explained
108.0 65.8
30.4 843
12.9 92.2
4.0 9.6
2.1 95.9
1.8 96.9
605.0 81.2
68.6 90.4
37.8 95.5
21.0 98.3
4.0 98.9
2.6 99.2

1972:2 - 1979:9

U.S. - correlation with maturity class:
1 2 3 4 5 6 7
.73 -.88 -.86 -.80 -.73 -.82 -.71 -
.54 -.34 -.35 -.33 -.35 -.30 -.30 -
42 .16 .32 .45 .49 .37 .32
.01 -.04 -.03 -.06 -.03 .04 .05
02 .12 .11 .03 .03 -.17 ~-.42 -.
.04 .24 .00 -.16 -.23 -.02 .06
Canada - correlation with maturity class:
1 2 3 4 5 6 7
.77 -.84 -.86 -.87 -.8 -.8% -.83 -
.46 .50 .46 .40 .45 .42 .40
.10 -.12 -.08 -.05 -.03 .00 -.03
.41 -.09 .00 .12 .17 .23 .23
.05 -.07 -.10 -.06 .02 .13 .12
.06 .04 .07 -.07 -.00 -.00 -.05 -

1979:10 - 1982:9

U.S. - correlation with maturity class:
1 2 3 4 5 6 7
.84 -.94 -.95 -.93 -.95 -.92 -.93 -
.39 -.33 -.27 -.24 -.16 -.18 -.09 -
.30 -.01 -.12 -.19 -.20 -.26 -.30 -
.20 .04 .07 .17 .18 .17 .09
.02 -.04 -.00 .01 -.00 .04 .03
.02 .03 .03 .02 -.02 .02 -.10 -
Canada - correlation with maturity class:
1 2 3 4 5 6 7
.76 -.94 -.93 -.92 -.91 -.92 -.90 -
32 .26 .32 .33 .31 .34 .30
.47 .07 -.03 -,07 -.12 -.10 -.08 -
.32 .02 -.09 -.17 -.18 -.16 -.13 -
.05 -.17 -.09 -.07 .10 .06 .13
.02 .06 -.01 -.08 -.03 -.01 .21

.75
.12
.40
.01

35

.11

.82
.37
.06
.27
.08
.08

.92
.08
.29
.15
.04
.12

.90
.36
.12
.12
.13
.00

7.75
4.80
1.48
0.41
0.69

.13
.55
.91
.51
.33

OO WL wos
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79.2
90.2
9.4
97.3
98.2
98.8
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Table 6 continued

1982:10 - 1984:12

U.S. - correlation with maturity class:
1 2 3 4 5 6 7
75 -.96 -.95 -.95 -.93 -.91 -.90
.20 -.16 -.24 -.29 -.34 -.40 -.42
.52 -.18 -.09 -.064 -.00 -.03 .06
.34 .01 .03 05 -.01 .04 .03
11 -.13 -.12 -.07 -.02 .04 .07
.02 .02 .03 .00 -.01 -.02 -.01
Canada - correlation with maturity class:
1 2 3 4 5 6 7
.74 -.91 -.85 -.91 -.92 -.90 -.91
.49 .36 .42 .24 .23 .28 .20
.21 .08 .20 .12 .20 .24 .28
41 -.09 -.17 -.02 -.08 -.14 .04
.02 -.06 -.07 .08 .03 -.08 .04
.02 -.01 -.10 .28 -.07 .07 -.10

.87
.45
.07
.08
.16
.04

.92
.08
.24
.01
.22
.03

6.35
1.31
3.25
0.57
0.49
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Table 7

Comparison of Principal Components for the U.S. and Canada
1972:2 - 1979:9

Eigenvalues of matrix 2 ¢ 0.9972 0.9914 0.7517
Angle between subspaces (degrees) : 3.047  5.322 29.890
Overall similarity : 2.74
Vectors closest to both subspaces -- weight on maturity class:
1 2 3 4 5 6 7
1 -.50 -.44 -.40 -.35 -.32 -.30 -.24
Component pair 2 .79 .08 -.13 -.29 -.28 -.28 -.22
3 .31 -.55 -.38 -.16 .10 .29 .46

1979:10 - 1982:9

Eigenvalues of matrix Z : 0.9998 0.9991 0.9166
Angle between subspaces (degrees) : 0.745 2.401 16.780
Overall similarity T 2.92
Vectors closest to both subspaces -- weight on maturity class:
1 2 3 4 5 6 7
1 -.19 -.41 -.42 -.43 -.37 -.35 -.29
Component pair 2 .97 .05 -.08 -.18 -.11 -.09 -.03
3 -.05 .59 .27 .23 -.26 -.25 -.42

1982:10 - 1984:12

Eigenvalues of matrix Z : 0.9999 0.9948 0.5791
Angle between subspaces (degrees) : 0.668  4.137 40.447
Overall similarity : 2.57
Vectors closest to both subspaces -- weight on maturity class:
1 2 3 4 5 6 7
1 .45 .41 .37 .36 34 .31 .30
Component pair 2 .86 -.03 -.13 -.17 -.20 -.24 -.21

3 -.19 .48 .54 -.10 -.01 -.05 -.33

.20
.25
.34

.30
.04
.47

.27
.25
.57
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Appendix A
Principal Components Analysis

PCA is a data reduction technique. Given a set of p variables, X.,...,X
the object is to find the k(< p) components which account for most o% the P
variation in the X’s. This is accomplished by first re-expressing the variables
as p orthogonal variables, known as principal components, and then determining
the minimum number of components necessary to adequately describe the X
variation.

First, consider population principal components. Arrange the input variables
in a 1xp row vector X', and let O be the variance-covariance matrix of X'. The
principal components, Y = Yl""’Y , are linear combinations of the original
variables: P

Yi - ai'X, (2)

with the pxl vector of weights, a,, chosen such that ai
for i » k.

Geometrically, the components are a new set of axes in p-space, chosen to be
the closest axes to the original data points by minimization of the distance
between the original observations and the linear combination a_X. This is
equivalent to finding the components that successively maximizé the variance,
given by

ai-l and Cov(Yi,Yk)xo

Var(Yi) - ai'ﬂai. 3)
The solution to the optimization problem yields a, equal to the eigenvector of
Q1 corresponding to the ith largest eigenvalue of {l. Note that normalization of
eigenvectors to have an inner product of unity means that the signs of the
eigenvector components are arbitrary. Any eigenvector can be multiplied by -1
without changing the meaning of the results. The new axes, like the original
ones, are orthogonal to each other, which is reflected in the zero covariance
between the components Y, and Y, .

Given that the a's are eigenvectors, Var(Y,)=u., the largest eigenvalue of
1. By construction, the sum of the variances of Y,'s is the same as the sum of
the variances of X,’'s: tr(Y'Y)=tr(X'X). The proportion of total variance
explained by the i%h components is thus u /tr(X’X).

The elements of each eigenvector are proportional to the correlation
coefficients between Y, and X,. Specifically, the correlation coefficient is
the element of a multiplied ﬂy Ju, and divided by the standard deviation of
X.. The patterns of the correlation coefficients often provides clues to the
interpretation of the components. Division by the standard deviation of X,
-assures that the same measurement scale is used in comparisons. The squaré of
each correlation coefficient is the proportion of variation in X, explained by
component i. J

Now consider calculation of sample principal components. Let there be n
independent observations from each of the p variables drawn from a population
with a constant mean vector and covariance matrix. Let X be the n x p data
matrix and denote the sample covariance by S. The ith principal component is
then Xa, is now the eigenvector of S corresponding to the ith largest eigen-
value.
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Appendix B
Cross-Validatory Analysis

Eastment and Krzanowski (1982) proposed a procedure for choosing the number
of components based on cross-validatory analysis. When p input variables are
reduced to k components, we can think of using the k-component model to predict
the original data points:

2

where & is the prediction conditioned on the k components and € is the
predictib& error. The predicted values are calculated by exploiting'lhe
relationship between the eigenvalue decomposition on which PCA is based and the
sigular value decompostition, X = WSV’ where W is the matrix of eigenvectors of
XX’', V is the matrix of eigenvectors of X'X and S is the diagonal matrix
containing the square roots of Ot' wi ¢ S and v_.. Eastment and Krzanowski
showed how to calculate this valle fot‘eah i and™j by deleting row i and
column j and using all other observations to form the prediction.

The basic idea of cross-validation is to keep adding components until there’
is an insignificant gain in predictive power. The gain in predictive power from
adding the kth component is expressed in terms of the sum of squared prediction
errors (denoted the SSE). Eastment and Krzanowski call this the W statistic:

W = (SSE from using k-1) - (SSE from using k)/dfl (5)
(SSE from using k)/df2

Xig =Xy * ey “)

where dfl=n+p-2K abd df2=-np-p-dfl. The numerator represents the marginal
predictive power of the kth component and the denominator represents the
average predictive power of all k. Eastment and Krzanowski advise that the kth
component should be added only if the W statistic is greater than 1. They show
that the conclusions from using the W statistic can be different from the
conclusions of more traditional criteria such as the cumulative variance
benchmark.

Although both the W statistic and the traditional criteria aim to determine
"the number of components to keep," they differ in a fundamental way. The W
statistic distinguishes only the number of predictable components. It does not
recognize purely random shocks as separate components. In constrast, tradi-
tional criteria count any factor contributing to total variance, whether
predictable or random.
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