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1. Introduction

The 1980s have witnessed an increasing attention on the part of the
profession to endogenous, deterministic explanations of the erratic dynamic
behavior of many macro variables. Examples of this new line of research are
Benhabib and Day [1982], Benhabib and Nishimura [1979, 1985], Grandmont
[1985] and most of the works collected in Grandmont (ed.) [1986].

Central attention is placed on the notion of chaos as an appropriate
qualitative description of the observed oscillations. Empirically oriented
efforts (especially Brock-Sayers [1986] and Le Baron-Scheinkman [1986]) seem
to suggest that, indeed, some strange attractors may well be behind certain
data.

A sound economic theory for the emergence of chaos in pure exchange OLG
economies is provided both in Benhabib-Day [1982] and Grandmont [1985]. On
the other hand no reasonable economic arguments have been provided to justi-
fy chaotic competitive dynamics in optimal growth models with a
representative consumer. Benhabib and Nishimura [1979, 1985] provide an
argument for periodic cycles but do not address the existence of more
complicated phenomena. That they are possible and perfectly consistent with
the generally maintained assumptions is, however, an implication of the
general theory developed in Boldrin-Montrucchio [1984, 1986].

This paper attempts to fill this gap by providing a rationale to the
existence of chaotic Competitive Equilibrium paths within the context of a
simple aggregated optimal growth model with two sectors and an infinitely
living consumer. I show that the emergence of chaotic orbits is linked to
dynamic changes in the profitability conditions between the two sectors
which, in turn, have their origins in the technological structure of the

economy. In particular, it is proved that under certain simplifying



assumptions, such conditions can be expressed in terms of factor-intensity
reversal and high discounting. In the more general case a high degree of
impatience is still needed whereas the reversal assumption may be replaced
with the hypothesis of a uniformly larger capital/labor ratio in the con-
sumption sector together with a relatively high sensitivity of the price of
the investment good to changes in the output of the same sector for low
values of the aggregated capital stock. An analytic example that uses a CES
and a Leontief production function is used to illustrate the working of the
general theorems.

A few words of caution should be added about the notion of chaos we are
using. The two main theorems give sufficient conditions for "topological
chaos" (see below Definition 3). It is well-known that such behavior may
well be unobservable. This is a point well stressed, for example, in Grand-
mont [1987]. The existence of "observable chaos" (see below Definition 4)
cannot be generally proved for this class of models due to unavoidable
computability constraints that are briefly discussed in the main text. I
provide a corollary which shows that, under regularity assumptions,
observable chaos may be derived.

The paper goes as follows: Section 2 describes the model and
characterizes the Dynamic Competitive Equilibrium. Section 3 derives a
standard Dynamic Programming problem from which the Competitive Equilibrium
can be computed. Section 4 contains the main theorems as well as the

applications to our example.



2. t o) titiv b n o-Secto m

2.1 The Model

We deal with a competitive economy where a pure consumption good and a
pure capital good are produced and traded over time. Only one representa-
tive agent exists. He lives forever and takes as given the sequence of

triples {wt,r }, t =0,1,2,... denoting the labor wage rate, the gfoss

t* e
capital rental and the price of capital in every period t. They are
expressed in units of the consumption good which has the price fixed at one
in all periods. Our price system will then be a current-value one at every
time t. We assume perfect foresight.

The preferences of the consumer are described by a standard utility

function u(ct) depending on the current level of consumption:

Ul) u 1is an increasing, concave function from [0,«) into [0,), 02

on (0,x),

In each period the consumer is endowed with one unit of labor time,
which he supplies inelastically at the current wage rate, and with an amount

kt of capital stock which is left over from previous consumption-saving

decisions and that he supplies inelastically to the productive sectors. At

any point in time his budget constraint is then:

(1) e, + q.lk,y - (L-wk] ~rk +w

t+1 t

where 4 1is the capital depreciation rate. Given the initial capital stock
ko the problem of the consumer amounts to pick up sequences of consumption

{c,.) and gross saving (k - (l-p)kt) to maximize the present value of

t t+l

his lifetime utility under the period-by-period budget constraint (1).

Formally we write:
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(PC) Max E: u(e )6 s.t. (1) all t=0,1,2,... and a given k_.
t=0

Here & denotes the discount factor.

| On the production side we assume the existence of two industries which

are distinguished because of the different technologies available and dif-

ferent outputs. They can be imagined as being composed of a large number of

perfectly identical competitive firms. Constant returns to scale are

assumed to hold in both sectors. We summarize this with two production

functions:

2) yo = Fat,eh, ¥ - Falad

where the superscript "1" denotes the consumption sector and "2" denotes
the capital good sector; ki, 11, i =1,2 are the quantities of capital and
labor used as inputs in either one of the two industries. With regard to
(2) we state:

T1) Fi, i =1,2 is linear homogeneous in its arguments. Also F2(0,x) =0

for all x in R+.

T2) Fi, i=1,2 1is an increasing and concave function from [0,®) x [0,=)

into [0,x), of class 02 in the interior of its domain. Fl is

strictly concave in each separate factor.
The following hypothesis is also useful:

T3) There exists a k € (0,o) such that Fz(k,l) < pk for all k > k and

Fz(k,l) > pk for all k < k.

Firms take the price sequence (wt,rt,qt) as given. Their optimal
decision problems reduce to the choice of factors-demand sequences {ki,lz}

which maximize the present discounted value of the stream of future profits.



Therefore the consumption good sector solves:

1 1 1 1 1 1,1 .1
(PF) Max yt - rtkt - wtlt s.t. Ye < F (kt,kt), all t,
and the capital good solves:

2 2 2 2 2 2,2 ,2
(PF™) Max 9.5, - rtkt - wtlt s.t. Ye <F (kt,lt), all ¢t.

Given this description of agents’ behavior it is natural to define a

Competitive Equilibrium (with perfect foresight) in the following way:

Defin : An Intertemporal Competitive Equilibrium (ICE) is given by

1 2.1.2 1 ,2
price sequences (wt,rt,qt} and quantity sequences {yt,yt,kt,kt,lt,£t,ct,kt)

such that:
a) {ct) and (kt} solve (PC) given {wt,rt,qt};
b 1.1 1 1 .
) yt’kt and lt solve (PF") given {wt,rt), all t=0,1,2,...;
2 .2 2 2 .
c) yt’kt and lt solve (PF”) given {wt,rt,qt}, all t=20,1,2,...;

1 2 1 2 1 2
d) C. = VeV ™ kt+1 - (l-p)kt, kt - kt + kt’ 1l = Zt + Et,

all t=20,1,2,....
The existence of such ICE can be proved by standard arguments.
Moreover we can write down an infinite-horizon maximization problem whose

solutions are ICE for our two-sector economy.

Proposjtion 1: Consider the economy described by (PC), (PFl) and (PF2)
under assumptions Ul) and T1)-T2). Consider a set of quantity sequences

satisfying Definition 1. Then they also solve the following problem:

[

t 2

(P1) Max }; u(ct)6 s.t. . < T(kt'yt)
t=0

2
ke,q = (L-mk_ + ¥,



where:

2 1 1,1 ,1 2 2,2 2
(T) T(k,,yp) = Max y_ = F (k. 2,) s.t. ¥y, S F (kL)

1 2 1 2 i i
kt = kt + kt, 1= zt + zt, 2t 2 0, kt =20, 1 1,2.

The reciprocal is also true.
We omit the proof of this statement. It can be easily derived by .

adopting the arguments of Becker [1981].

2.2 Qptimal Sequences

Before moving ahead in the analysis of the intertemporal problem (Pl)
let us discuss the nature of problem (T). The existence of a solution is
guaranteed by standard arguments. The nature of such a solution has been
extensively studied in the literature and we will make heavy use of the
existing results in the sequel. The reader is referred to Kuga [1972],
Hirota and Kuga [1971] and Benhabib and Nishimura [1979] for the proofs.

Let’s denote the chosen input levels with: kl(k,y), ll(k,y), kz(k,y),
22(k,y). These will be continuously differentiable functions under the
maintained assumptions. The Production Possibility Frontier (PPF) T(k,y)
is then equal to Fl[kl(k,y),ll(k,y)]. It turns out to be concave and,
under some weak technical conditions, twice continuously differentiable. In
particular, for interior values of ki,li we have

1.1 ,1 2,,2 ,2

(3) T, (k,y) = ot ahy = qF2 2% 2 0
) Ty(ky) = -Fjat ah/mad e s 0 g - 1,2,

Additional information on the nature of T can be obtained by exploiting
some duality relations. As this is also very standard we summarize here
only the essential results.

From problem (T) one has:



(5 r(k,y) = Ty(k,y) and q(k,y) = -T,(k,y)

where, we recall, the price of the consumption good is taken to be the

numeraire. The Hessian matrix of T can then be written as:

Tll‘ T12 dr/dk ar /3y

(6) -

T21 T22 -3q/3k -3q/8y

Define the cost function which solves the dual of T as: p = p(w), where
Pp=[l,q] and w = w/r. In extensive form we can write:

1l = all(w)r + a21(w)y

(7)
q= alz(w)r + 322(w)w

where the a_ . ’'s indicate the cost-minimizing input coefficients of the two

13

sectors. By totally differentiating (7), using the necessary conditions for

cost minimization and the fact that dw/w = dw/w - dr/r in order to simpl-

ify, we get:
dq _ ) 2
(8) aw ~ 1820817 - 89891
From the assumption T € C2 we have T12 - T21, and therefore:
) 8r | 9q _ _9q fu
ay 8k dw 3k °
Therefore (6) can be written as:
ar aq dw
T T12 ak " %0 3k
(10) -
T T _9q v _ %
21 22 dw 3k ay

which can now be completely signed:

2
(11) Ty, = 3r/0k < 0, T,, = -39/8y < 0, T, T,, - (T)))" 2 0

1



and, given that dw/dk > O (see Intriligator [1971] p. 240):
(12) T12 = -(8q/dw) (8w/dk) 3 0 according to (8).

The interpretation of the aij's implies that T12

the capital good sector is more capital intensive than the consumption good

will be positive when

sector and negative in the opposite case. T12 will vanish when both
sectors have the same capital intensity for a given factor-price ratio.
Assumptions T1)-T3) do not restrict our economy to either of the two
patterns. Which one of the two situations will turn out true at a given
point in time depends on the relative degrees of convexity of the unit iso-
quants of F1 and F2 together with the prevailing factor-price ratio at
that time. Because the latter depends, in turn, on k and y in the
general dynamic problem the sign of T12 can change along the chosen
optimal accumulation path.

The case in which T12 can be either positive or negative is in fact
considered in our example.

Example: In our simple example we will use:

1
rret, by - [ak‘l’ + <1-a>2’1’]" a€ (0,1), pe (-=1)

k
F2(k2,£2) - min{lz,;g} vy € (0,1).

Notice that F2 is not of class C2, this choice has been dictated by
computability reasons. Had we chosen F2 to be, for example, a second CES
we would have not been able to work out an explicit form for T. The sake
of simplicity also recommends: u(ct) -c.. Problem (T) now is

1

» k-k
max [ak{ + (1l-a) I{] s.t. y =< min{1-£ ,———l

1



The straightforward solution gives a PPF of the type:

1

P
(13) T(k,y) = [a(k-1y)p + (l-a)(l-y)p]

Such a T 1is of class 02 on the interior of its domain, which is the set:
D - {(k,y) € [0,1] x [0,1]; s.t. O <y =<k/y}. It is also strictly con-
cave in its second argument everywhere on D but the vertical line x = 7.

Let us now turn our attention to the intertemporal problem (Pl). Given
any initial condition a unique optimal solution to (Pl) exists, which is
also supported by a sequence of competitive prices. McKenzie [1986] gives a
proof of this under conditions much weaker than ours. For heuristic

purposes we consider here the associated Lagrangian:1

1 2
(14) L= ) (u(ey) + PEITGey) - ] + BRICL-mky + v, - kg 1060
t=0

The first order conditions for interior solutions are:

(15a) u'(e,) = py
1 2

(15b) P Tyk,,y) = -p,

(15¢) pZ . = p2/6(l-p) - [Pl Ty (K, ,y. . )1/(1-m)
t+1 t t+171V e+l e+l

(15d) c, = T(kt,yt)

(15e) ko= -pdk +y,

It is easy to see that (15a-d) together with the "dated" version of (5)
will completely "price" our competitive economy. By construction these

prices will be current value prices. Set pt =1 and pi = q,_ all ¢,

t
then the sequence of Lagrange multipliers {wt,rt,qt} solving (Pl) and (T)

will be the competitive prices associated to the ICE quantities
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1,2 ,1 2
{c Y kt Yo kt kt lt Zt} Finally, by massaging (l5a-e) the Euler equation

for the interior optimal paths (kt} can be derived:

(16) u'[T(kt’kt+1 - (1'#)kt)] T2(kt’kt+1 - (1'#)kt) +
+ 6 [T(ky g0k - (I-m)k O] o
s ATy (kg ok = (omdk ) - (-m)Tylk g0k - (L-mdk4)) = O

We conclude this part by stating (without proof) the following well-known

proposition:

Proposition 2: Let u, F1 and F2 satisfy conditions Ul) and T1)-T2). If

there exists sequences (c } satisfying (15a-e) plus the transversal-

’yt t

ity condition: 1lim 6tq k, =0 for t -+ o, then {c_,y,,k_) solves (Pl).
y £t ‘ e Y%

3. Dynamic Programming
3.1 v ction and the Optimal Policy Function
The previous discussion should have clarified the economic content of
the problem:
©

() W (k) = Max XV(k X 1)6t s.t. (k.

e Key 1) €D, ko given in K
t=0

tt+

where:

Al) D 1is a compact and convex subset of Ri. We assume: (0,0) € D and
(0,y) ¢ D all y > 0.

A2 V: Do~ R+ is a concave function, strictly concave in its second
argument, continuous on D and 02 on the interior of D. We assume
Vl(x,y) 2 0 and V2(x,y) < 0 all (x,y) €D.

A3) The discount factor § 1lies in ([0,1).
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Let us relate Al)-A2) to Ul) and T1)-T3). T3) implies that for all
k > k: T(k,uk) < 0, and for all k < k: T(k,pk) > 0, hence production of
capital will be limited to the interval K = [0,k]. The feasible values

(kt’k of initial stock-final stock pairs will belong to D c K x K. De-

t+1)
note as y = f(k) the solution to T(k,y) = O, the set D is defined as:

D= {(k,k') € KXK, s.t. (1-pk < k' < (1-p)k + £(k)}

which is obviously compact and convex. The second part of Al) follows
directly from T1l). Finally A2) comes from setting V(k,k’') =
u[T(k,k'-(1-p)k)] and Ul) and T2). As we want to concentrate our analysis
on the features of the model which are implications of different technologi-

cal assumptions we make the simplifying hypothesis:

Ul) The utility function has the linear form: u(ct) -c,..

It is worth stressing that Ul) is of no harm to the generality of the
analysis. All the results can be replicated, with minor changes by adopting
a generic utility function. The Dynamic Programming approach to the study

of (P) considers the equivalent problem:
(17) Wa(ko) = Max {V(ko,kl) + 8W6(k1), s.t. (ko’kl) € D)

A solution to (17) is a map r.: K -+ K, with graph contained in D.

5
We call this map the (optimal) policy function of (P). The whole sequence

of optimal capital stocks solving (P) will then be described as the

Dynamical System: kt+1 - ra(kt). We will study the asymptotic properties

of the accumulation paths by means of the map Ts
To enhance the economic significance of what follows it is worth

pointing out that the knowledge of the optimal sequence {kt} is enough to

deduce the paths over time of all the price-sequences and the quantity-
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sequences listed in the Definition of an ICE in Chapter 2. In particular,
one would like to know how the capital stock price evolves over time. In
fact stock prices are much more easily observable than quantities, which
makes it possible to test the implications of the model. The problem has a

simple solution.2

Defin (s) : Let f: X-+X and g: Y-+ Y be two maps, with X and Y
any pair of topological spaces. We say that f and g are topologically
conjugate if there exists a homeomorphism h: X - Y such that: h « f =g »

h. The homeomorphism h is called a topological conjugancy.

Theorem 1: Assume r: K-+ K 1is an interior solution to (P) under Al)-A3).
Let #: [0,o) + [0,») be such that U1 - ﬂ(qt), with q, defined as in

(7) above. Then r and # are topologically conjugate.

Proof: By the definition of 9, and the result of Benveniste and

Scheinkman [1979] it is obvious that:

Qe = W' (ki 90,

where W’ 1is the first derivative of the value function. Also 9.1 =
§W (kt)’ and being kt+1 optimal given kt we can write:

Qe q = W k), qp = §W [r(k))]

Because W 1is strictly concave, W’ 1is a homeomorphism from K into

[0,o). Hence

' ' -1
qt - 9(qt_1), with 6 = 6W T (W'é) Q.E.D.

Corollary 1: Under Al)-A3) if k* 1is an Optimal Steady State (0SS) for

then q* = §W'(k*) 1is an 0SS for 06, and if {kt(ko)} is an orbit

with initial condition ko, then {qt} - 6{W'[kt(ko)]} is an orbit

1'6,

of 76
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for 96. In short, the dynamics of kt over K 1is identical, up to a

monotonically decreasing homeomorphism, to that of q_ over R+.
Proof: It follows from Theorem 1 and Proposition (A.l) in Appendix A.

Remark 1: The assumptions V € C1 and Ts interior are critical to obtain
the result. In fact, if differentiability of the value function W6 is not
guaranteed we have to use the supergradient set of Ws(kt) to obtain the
price q,- But the supergradient correspondence, even if monotonic, does
not need to be lower-hemicontinuous. Therefore, we cannot claim the exist-

ence of a continuous, monotonic selection that realizes the topological

conjugancy between prices and quantities in the non-differentiable case.

Example: Problem (P) for our model economy is:

© 1
Max Z [a(k (L+y-7m) - 9k )f + (L-a)(L-ky, - (w17 6
t=0

t

s.t. (kt’kt+1) €D
where:

D= ((x,y) € [0,1] x [0,1], s.t. (l-w)x <y =< (l-p)x + ’—7‘}

It is apparent that we will not be able to put it in the form (17), essent-
ially because the nonlinear structure of our V makes it impossible (to the
author) to find an explicit form for the value function Ws(ko)'
Consequently, we will not compute the policy function for our example. This
is generally the case for this class of problems when non-linearities are
introduced. It explains why, in the theoretical part, we search for
information on the

L)

particular from the associated Euler equation.

that can be directly computed from the V, in
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4, tic amics

4.1 Optimal Cycles and Optimal Chaos

It is well-known that the dynamical system Ts which solves (P)
exhibits regular behaviors for certain parameter values. The Turnpike
theorems (see McKenzie [1986]) assure that, for any V satisfying (A.2)
there exists a value of the discount factor close enough to one that guar-
antees that all optimal paths, from any initial condition, will eventually
converge to a unique steady state. The point of our research is to show
that, in general, this is not the case and érovide conditions under which
very irregular dynamics are optimal. The work of Benhabib and Nishimura
[1985] gives sufficient conditions for the existence of optimal period-two
cycles. In the two-sector setup they amount to a consumption-good sector
which is more capital/labor intensive than the investment sector in an
appropriate neighborhood of the steady state, together with an appropriate
value of §. This is Theorem 1 in their paper. It exploits the fact that
the r

6
the value -1 when the discount factor passes through a threshold. This

is downward sloping, with a slope at the steady state that crosses

creates the period-two cycle by means of a flip bifurcation. In any case a
monotonic policy function cannot produce orbits more complicated than that,
as can be easily checked.

Therefore, we need to know what determines the slope of the policy
function. The answer is again provided by Benhabib and Nishimura [1985] in

their Theorem 2:

Theorem 2: Let {kt) be an optimal path. Let (kt’kt+1) € int(D) and let

Al)-A3) hold. Then:
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i) If Vlz(x,y) >0 for all (x,y) € int(D), kt < kt+1 implies kt+1 <

kt+2' If (k

(i.e., r

kt+2) € int(D), kt < kt+1 implies kt+1 < kt+2

t+l’

5 is strictly increasing on interior segments of K).)

ii) 1f Vlz(x,y) <0 for all (x,y) € int(D), kt < kt+1 implies kt+1 >

kt+2' If (k

(i.e., r

kt+2) € int(D), kt < kt+ implies k > kt+

1 t+l 2

is strictly decreasing on interior segments of K).

t+l’
]

Proof: See Benhabib and Nishimura [1985] Theorem 2.

In our model we have:

t+l
Equation (12) implies that we have to assume either a factor intensity
reversal and a large negative magnitude of T12 relative to (1-p)T22, or
a more capital intensive consumption sector with relative magnitudes of le
and (1-p)T22 such that (18) has opposite signs over different subsets of
the interior of D. For the sake of simplicity we will take the first road

in its most extreme version:

A4) The PPF T 1is derived from F1 and F2 satisfying T1)-T2) and such
that there exists one, and only one, factor-intensity reversal.

Moreover, the depreciation factor u equals one.

Under (Ul) and A4) we have T(kt,k - V(kt,k Then we can prove:

t+1) t+1) :

Lemma 1: Under (ﬁl) and A4) if (k*,k*') € D are such that Vlz(k*,k*') =

0, then Vlz(k*,k') = 0 for all k' feasible from k¥*.
Proof: See Appendix A.

All in all we have:
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Proposition 3: Under Al, A2), A4) and (U1) the following is true: Ts is

increasing on [0,k*] and decreasing on [k*,k] for all § € [0,1).

Proof: By Lemma 1 V12 = 0 only along the vertical line kt = k* in the

(kt’kt+1) plane. Using Theorem 2 and the fact that 18(0) = 0 from Al),

if Ts is not identically zero on K it must increase in [0O,k*] and

decrease in [k¥*, k]. Q;E.D.

Example: Our pair of production functions clearly satisfy the first part of
A4); in fact any pair of distinct CES production functions exhibit factor

intensity reversal as long as they are not both Leontief, Cobb-Douglas or

linear. If we set also u =1 then our V(kt’kt+1) becomes
1
- 4 . - PP
[atk -7k , )7 + (1-a)(1-k )17,
The second derivative V12 is zero for kt+1 = 1 or for kt = 4, positive

on the interior of D for all kt € [0,v) and negative for all kt € (v,1].

Lemma 1 is therefore also satisfied with k* = y, (the boundary value kt+1

= 1 does not matter here). Simple manipulations of the Euler equation:

1,

(19) -[ak,_,-vk)”? + (1-2)(1-k)P)? -{(1-3)(1-1<t)"’1 + ay(kt_l-—,kt)"'l) +

1a

P ) ) PP . ) p-1 _
+ 6a[a(kt-7kt+1) + (l-a)(1 kt+1) ] (kt 1kt_1) 0
will show that the unique, interior steady state k(é) can be expressed as

1

l-a 1-py-1
v fea 5]

Therefore for 6 € [0,7] we have no interior state and for 6 € (v,1) we

have a unique interior steady state which is on the upward sloping branch of
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T for § < y(1 + (l-a/a)-yp) and on the downward sloping one for § > (1

)
+ (1-a)/a-1p), (see Appendix B for the computations). Some additional
algebra will show that there exists a pair of values of § greater than
(1 + (l-a)/ayp) but smaller than one at which Theorem 1 of Benhabib-
Nishimura [1985] is verified, so that our model economy exhibits dynamic

competitive equilibria that are cycles of period-two. Once again, the

algebra is in Appendix B. We start our search for chaos by defining it:

Definition 3: We say that Tt K + K has topological chaos when there

exists a period-three cycle for Ts on K.

I1f Ts

cycles of any other period, and by Li and Yorke [1975], there exists a

has period three then, by the Sarkovskij theorem it has also

nondenumerable set S C K and an € > 0 such that for every pair x and

y in S with x = y:

lim sup |r?(x) - r?(y)| 2 €
and

lim inf 'T?(x) . r?(y)| - 0.

The latter is a weak form of sensitive dependence on initial
conditions. It is weak because: a) given S we do not need to be able to
pick x and y arbitrarily close to each other, and b) even if uncount-
able the set S can have Lebesgue measure zero in K. A stronger form of

chaos,3 that we may call "observable chaos," will satisfy:

Definition &4: f6: K - K has observable chaos if there exists a probability
measure u on K, which is invariant with respect to T absolutely

continuous and ergodic.
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Unfortunately, it is almost impossible to check if Ts satisfies
Definition 4 without knowledge of its functional form. Because this is the
case in most of the applications of our theory, we will concentrate our
attention on topological chaos (however see below Corollary 2). The follow-

ing Lemma is crucial to our analysis. It is a well known result form the

theory of one-dimensional discrete dynamical systems.

Lemma 2: Let r6: K - K be continuous. Then r has cycles of period

§
three if and only if there exist distinct intervals Kl Cc K and K2 C K,

such that:
rekh) 5K and r (k%) > (KD,
Our strategy is that of looking for computable conditions on V such

that Lemma 2 is satisfied by the associated policy function. In the first

case we need to replace Al) with the following:

Al) D is a compact and convex subset of K x K, such that
i) (0,0) € D, and (0,y) € D implies y = O.
ii) (k,0) € D for all k € K.

iii) There exists a kl < k* such that (k,k) € D for all k=2 kl.

The implications of Al) on F1 and F2 should be clear. The only
stringent condition is iii).

We need three Lemmas.

Lemma 3: A path (k%) such that Rel int P(k:_l) N Rel int F(k¥+l) * ¢
for all t, with I defined as: I'(x) = {(y € K, s.t. (x,y) € D} is an

optimal solution to problem (P) if and only if:

V(kt_l,y) + 6V(y,k§+l)
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is maximized at y = kt for all t =0,1,....
roof: See Appendix A,
Lemma 4: Under Al), A2), A3) and A4): fs(i) = 0 if and only if:
V(k,k) + 6§V(k,0) is decreasing in k.
Proof: Apply Lemma 3.

Lemma 5: Assume rs(ﬁ) = 0 for given §. Then under Al), A2), A3) and A4)

TS(k*) = k if and only if:
V(k*,k) + §V(k,0) 1is increasing in k.
Proof: Apply Lemma 3.

Remark 2: The assumption of V € 02 implies that Lemma &4 is satisfied for
all § = |V2(E,0)|/V1(0,0), whereas Lemma 5 is satisfied together with

Lemma 4 if 6§ € C(V), which is defined as:
C(V) = (6 € (0,1), s.t. [V,(kxK)|/V,(k,0) <6 = |V,(k,0)[/V)(0,0))

It is easy to check that strict concavity of V in either one of its two
arguments will bound C(V) away from § = |V2(k*,0)|/V1(0,0), which is the

largest value of § which makes identically zero. At the same time

)
there is nothing in our model that assures C(V) 1is not empty. Hence we

must assume it explicitly:
A5) V satisfies A2), A4) and is such that C(V) 1is not empty.

We summarize all this in the following form:

Theorem 3: Under Al), A2), A3), A4) and A5) a map Ts which solves (P) is

topologically chaotic if & € C(V).
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Proof: Lemma 4 implies rs(ﬁ) = 0, Lemma 5 implies rs(k*) - k. We know

that 16(0) = 0 in any case. Al) guarantees that graph(rs) c D. Set Kl b

[0,k*] and K2 = [k*,k]. The theorem follows from Lemma 2. Q.E.D.
Corollar : Under the Assumptions of Theorem 3 and the regularity hypothe-
sis that Ts has a negative Schwartzian derivative everywhere on K for

§ € C(V), the dynamical system r exhibits observable chaos.

6
Proof: Notice that '5['5(k*)] =0 for 6 € C(V), that is the unique
critical point is mapped onto the unstable fixed point at the origin. For a

theorem of Collet and Eckmann4 this implies that r_. has no stable periodic

é
orbits and in fact displays a unique invariant, ergodic and absolutely

continuous measure on K. Q.E.D.

Example: Even if Theorem 3 cannot be applied directly to our V, a simple
limit argument given in Appendix B can be used to prove that, indeed, its

conclusions apply when p 1is negative and the triple of parameters satisfy

1

the relation [a-az(l-vp)]lp

[L-a(l-9)] > 1. As shown in the Appendix the
set C(V) in this case is:

1

1
p p

CV) = {6 € (0,1), s.t. (l-atay’)’ <=6 =< a

[1-a(1-7)]).

Notice that, for a given a, the upper bound may be made very large if =«
is very close to zero and p converges to minus infinity. For "non-

extreme" values of (a,y,p) the following intervals may be computed:

p=-1, a= .6, y=.1: 156 < § < .276

Al(.25) - -2.67, Az(.25) - -1.49
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p=-2, a= .6, y=.1: .128 < § < .356

.35) = -1.6, Az(.35) - -1.77

p= -5 a=.6, y=.2: .221 <6 =< .469

.46) = -1.52, Az(.46) = -1.42

p=-10, a=.5 «y=.2: .214 <6 < .559

.55) = -1.41, Az(.55) - -1.28

p=-20, a= .4, y=.2: .209 <§ < .649

.64) = -1.3, Az(.64) - -1.1

The pattern should be clear enough. In particular it is striking to find
out that for economies with low elasticity of substitution (i.e., p < 0
and large in magnitude), chaos may be obtained for non-extreme values of the
other relevant parameters.

Nevertheless the conditions of Theorem 3 are not always easy to
compute. It may be surprising to discover that linear homogeneity of the
production functions simplifies the search for chaotic accumulation paths.

We have:

Lemma 6: Under Assumptions Al)-A4) if:
Vz(k,k*) + Svl(k*,k') - 0

has a solution k = G(k*,k'),l then G is independent from k’'.

ok 8V12(k*,k')
Proof: By the Implicit Function theorem: w - _VZZTETE;T_' By Lemma 2
Vlz(k*,-) = 0 independently of the second argument. Q.E.D.

Remark 3: A way of restating the Lemma is: the preimage of the critical

point k* under the policy function r, is independent from the image of

)
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k* under '6'

We can now state our last theorem.

Theorem 4: Consider problem (P) under Al)-A4). Assume there exists an
interval C(V) ¢ (0,1) such that for all § € C(V) the following condi-

tions are satisfied at such §:

i) V2(x,k*) + 8V1(k*,-) - 0 has a solution kl € (0,k*)
i) Vy(x,ky) + 8V, (ky k*) = 0 has a solution k, € (k*, k]
iii) Vz(x,kz) + 6V1(k2,k1) = 0 has a solution k3 € R+

Then 7

5 has topological chaos.

Proof: Notice that if k* has any pre-image other than itself, k1 < k*

must hold. Therefore i) implies that: M = rs(k*) > k*., We do not know if

k2 < M. This can be detected from iii). In fact, k2 > M would imply that

k2 has no pre-image. Hence kl - rs(kz) > TS(M)' Now set I1 - [kl,k*]

and 12 = [k* ,M]. Then: 76(11) = [k*,M] = 12

[kl,M] = (11U12)' The theorem then follows from Lemma 2. Q.E.D.

and 16(12) - [rs(M),M] >

Remark 4: This theorem is not much more than a computational device;
nevertheless a very useful one when the direct criterion of Theorem 3 fails.
Our example clearly fits both theorems so that we will not go through other
computations here. If we set p = 0 then we have the Cobb-Douglas case,
which does not fit the conditions of Theorem 3. Jose Scheinkman [1984]
first conjectured that chaos may exist in such a case. The computations
contained in Boldrin-Deneckere [1987] show that he was right, as it

satisfies the conditions of Theorem 4.
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5. lusio

In this paper we study the Dynamic Competitive Equilibrium of an
aggregate, neoclassical, two-sector model under the hypothesis that all
markets clear at each point in time and that all agents are identical maxi-
mizers with infinite perfect foresight. We concentrate on the technological
side of the model and show that a source for endogenous sustained oscilla-
tions may be found in the changes of relative profitability between the two
sectors. This, in turn, is brought about by shifts in the relative capital/
labor intensities. We adopt the idea of chaotic dynamics as a qualitative
representation of sustained, apparently stochastic, oscillations. Two sets
of conditions are obtained under which the optimal accumulation paths (and
the related competitive prices and quantities sequences) are chaotic. The
theoretical results are applied to a simple example: it is remarkable that,
even in such a restricted and highly stylized framework, chaos appears for
parameter values wh;ch cannot be rejected as "unrealistic" on a priori
grounds. In particular, we show that the idea according to which
oscillations are optimal only when the discount factor is extremely small
(i.e., the "rate of interest" is of the thousands-percent magnitudes) is not
true in general. In fact as the degree of factors substitutability in the
economy decreases, chaos and cycles appear for discount factors "fairly
large".

It is clear, nevertheless, that such an abstract and overly-simplified
setup cannot be proposed as a complete macro-model. It simply shows that

there is room for an endogenous explanation of Competitive Business Cycles.
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Footnotes

*A preliminary version of this paper was circulated in August 1986
under the same title as Technical Report #502 of the Institute of Mathemat-
ical Studies in the Social Sciences, Stanford University, Stanford, CA. I
am very grateful to the Institute and to Professor Mordecai Kurz in particu-
lar, for the kind hospitality and financial support provided during the
Summer 1986. Financial support from the A.P. Sloan Foundation through a
Dissertation Fellowship is also gratefully acknowledged. I am indebted to
Jess Benhabib, Raymond Deneckere, Lional McKenzie, Luigi Montrucchio, Paul
Romer and José Scheinkman for several helpful discussions, criticisms and
suggestions that greatly improved the article.

1See Dechert [1978]) for an exact justification of the use of this
formalism in our class of models.

2The problem was posed to me by Jose Scheinkman.

3See Grandmont [1987] for a discussion of the relevance of these two
different forms of chaos in economic modelling.

41 do not report here either the text of the Theorem nor the intuition
behind it in order to avoid a long technical digression. As a matter of
fact the results we are using come from the work of various authors, among
whom are the named Collet and Eckmann. A statement, without proof, can be

found in Grandmont [1987] as Theorem D.1.9.
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APPENDIX A

Proposition A.1: If two maps f: I - I and g: J -+ J are topologically
conjugate through the homeomorphism h then for every invariant set C C I,

h(C) ¢ J 1is invariant and for every invariant set C' C J, h'l(C') cl is

invariant.
Proof: Trivial. Q.E.D.

Corollary 1 follows from the fact that 0SS’'s and orbits of Ts are

invariant sets for 76'

Proof o : Consider an Edgeworth box for problem T when the

capital stock is k¥, and there exists a level of future capital stock k*l

1

1
such that v12(k*’k* ) = 0. Let c* = T(k¥, k¥ ) and y* = k*l - (1-p)k*.

The two isoquants of F1 and F2 associated to c* and y* are tangent

1,1-21) at which the two sectors have the same

at a point (kl,ll), (k*-k
capital intensity. Such a point must be on the diagonal of the box. Linear
homogeneity implies that all the points on the diagonal are points of tan-
gency for some isoquants (c,y) with 0 < c < T(k*,0) and 0 <y < f(k¥).

The PPF then coincides with the diagonal in this case and, therefore,

Vlz(k*,y+(1-p)k*) = 0 for all y. Q.E.D.
Pro f : Necessity is obvious. We will prove sufficiency by
showing that our condition implies that there exists a price sequence (qt}
such that:

(A1) UG RUREINE RIERR S A IR e ek

for all (x,y) € D. The latter, together with the transversality condition
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which is trivially satisfied in our model, has been shown in McKenzie [1974]
to be sufficient for optimality of {kg), extending a result of Weitzman

[1973] to the discounted case.

From our hypothesis we have that:
V(kE_ kE) + SV (k¥ k¥ 1) 2 V(kE 1.7+ §V(y, k¥, 1)

-1
%*
for all y € Rel int P(k:_l) N Rel int T (ktfl) " ¢
Set G(x) = V(k:_l,x) + 6V(x,k§+l). The last inequality means that
zero is a supergradient of G at k:, i.e., OE€ BG(kg). By Theorem 23.8
of Rockafellar [1970], we have also that 0 € [82V(kt_1,k§) + 661V(k§,k§+1)]
and therefore there exists a sequence of vectors {qt) such that “q,1 €

62V(kt_1,kt), q, € 661V(k§,k*

t+1)' This in turn implies: (qt/6,-qt+1) €

6V(k¥,k§+l) and by definition:
V(g kg ) 2 VOLY) + qukg-x) - 8q, (K -y)
which is equivalent to (Al). Q.E.D.

APPENDIX B

The first and second order partial derivative of our PPF are easy to
compute. We leave it to the reader. The Euler equation at an interior
steady state k reduces to:

1,

[a(k-7k)? + (1-2)(1-0P1P  [(S-yate-yi)® ™t - (1-a)(1-R)P7] = 0

from which (20) may be obtained after a few manipulations. We are
interested in parameter values at which the steady state k(§) lies on the

downward sloping arm of i.e., it is larger than <. This is necessary

1'6,

in order to obtain cycles and chaos. From (20) one has:
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,
(0,7) for v <6 < 7[1+ llﬂ}
. ay’

k(5) € 4
(v,1) for 7[1+ lli] <5<1
\ av’

In order to guarantee that (1 + (1-a)/ayp) is less than one, we need to
impose 1p(1-1)/1 > (1-a)/a, which is understood from now on.

To consider the local stability of k(§) and the possibility of
period-two cycles bifurcating around it, we have to compute the pair of

eigenvalues associated with the linearized Euler equation in a neighborhood

2

of k(6§). These are the roots A or: 6§V, A" + (V22+6V11)A +V,, =0,

12 12

where V,, = Vi (k(6),k(8)), 1i,j = 1,2. 1In our case this reads:

ij h|
| 2
A-k(8) 2 [[1-k(8) 1-K(8) _
§ Tk A [[1-k(6) +5]* Y1) ~ O

The two eigenvalues are:

A= (1-k(8))/(v-k(8)); A, = (1-k(8))/(1-k(6))6.

Substituting (20) in the latter will give:

1 1
1, 1-p

- (1-a) . RPES § SR F-YC 2]
S I - M52 )

v1-a)t? - [a(s-m]t?

For values of § 1larger than vy, A, behaves as:

1
((1—,+w) for 1<6<1[1+-1-_—a-]
Y ar®
A €{(-1,00 for v+ )P ER < s
(-»,-1) for 7[1 + lif] <6<y + (Ley)top L2
{ ay” 2

The behavior of A, is analogous even if not all the critical values may be
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explicitly computed. Anyhow A2 is a decreasing function of & in the
interval [v,1), with Az(y) = 1 and A2(1) < -1 for a>[1+ (1-v)/
(1-1)1-p]-1. Assuming that (a,v,p) satisfy the latter inequality and

denoting with 600 the unique solution to AZ(S) = -1 we have:

)
(0,1) for vy < § < 1[1 + 129]
ayp

Aje = {(-1,0) for 1[1 + llﬁ] <§<8°°
&’yp

((-w,-1) for 6°° < &

To prove that there exists a period-two cycle for some value of § > v(1 +
(1-a)/a7p) we adopt the sufficient conditions given in Theorem 1 of
Benhabib-Nishimura [1985]. They amount to showing that there exists a 5°
and an interval [6-,8+] in [y(1 + (1-a)/a7p),1) such that B(§) = V22(6)

+ 6V11(6) - (1+6)V12(6), satisfies:

r

>0 for 6 € [6§ ,8%)

B(§): {=0 for & = §°

<0 for § € (5°,67)
where Vij(S) - Vij(k(S),k(S)), i,j = 1,2.
For our model B(§) reads:

B(§) = f(k(S),k(S))[(k(S)-v)2 + 6(1-k(6))2 + (146) (v-k(8)) (1-k(8)) ],

where the function f 1is always negative. Therefore we have:
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50 for 1[1 + l——:] <6< 6°°

ay

-0 for & = §°°

B(§) : {<0 for &°° <6< &°

20 for §=80 =+ (umiTP L2
>0 for & > §°
1
1-p
where §°° solves: § + 7 = [—1;2——] , 1i.e., it is such that
a(s-v)

2, (6% = -1.

Therefore cycles of period-two exist both around §° and §°°. To
verify that our example also satisfies Theorem 3 may seem not immediate
given that [a(x-yy)p + (l-a)(l-y)p]l/p is not sub-differentiable at the
points (v,1) and (1,0). Nevertheless, one may take a sequence of posit-
ive numbers {x ) in a neighborhood of 1 and such that 1lim x = 1 for

n - «» and consider the sequence of artificial problems:

1
[} -_—
p p)? .t
(Pn) max E: [a(kt-ykt+1) + (1-a)(1-kt+1) ] §
t=0
X
s.t, (kt’kt+1) e D= {(x,y) € [O,Xn] X [O,xn] s.t. O0=<sy= ;)

Then it is easy to see that the policy function associated to the nth

problem will satisfy rn;(y) - X and rns(xn) -0 for 6§ € Cn(V) where
Cn(V) is the appropriate interval gssociated to (Pn). As L > T uni-
formly when x - 1 we may conclude that also for our model economy there
exists a set C(V) of values of § that imply 16(1) = ] and 16(1) = 0
for 6 € C(V). The upper and lower bounds of C(V) can in fact be directly

computed as limits of those for Cn(V).



c(V) = {6 € (0,1), s.t. (l-atay

for p € (-«,0).
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Notice that C(V) might well be empty.

satisfy:

[a-az(l-v”)]'

1

[

| [l-a(l-9)] > 1.

1

P

1
P

Py <6 <a

It is not such, when

[1-a(1-6)]}

(a,p,7)
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