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1. Introduction

Time series are usually decomposed into trends and the remainders (consisting of cycli-
cal, seasonal, and residual components, or simply cyclical and residual) because trends convey
information distinct from that to be culled from cyclical components. In macroeconomic time
series, for example, policy-makers may be primarily interested in their trend behavior, while
those concerned with business cycles are more interested in cyclical components, such as phases
of business cycles than trends. Another reason for singling out trends is that they may have
simpler dynamic structure than cyclical components in the sense that a small number of “‘com-
mon’’ factors are responsible for a larger number of trend components, as in macroeconomic
time series where there are reasons to suspect or expect from economic theory for a set of ma-
croeconomic variables to behave generally in the same way, at least in longer-run time horizon,
i.e., aside from short-run (individual) variations. Here again one needs to separate ‘‘trend’’ com-
ponents, and seek a set of a small number of common factors that may *‘‘cause’’ a larger number
of macroeconomic variables to change, and to extract ‘‘common’’ trend components from these
macroeconomic time series. Granger’s notion of co-integration (1983) is one way to formalize
this idea of common factors.

Time series are often transformed to render them weakly stationary for a technical reason
that currently available modeling methods can more efficiently handle weakly stationary time
series than nonstationary ones. One transformation takes differences of the logarithms of data
series. A serious drawback of this common practice is that longer-run information of time series
is lost in the process of rendering them weakly stationary. Recent interests in modeling econom-
ic time series without prior detrending is sparked by the seminal works of Beveridge and Nelson
(1981) and Nelson and Plosser (1982), who posited a model of time series with separate and ex-
plicit equations for random trends. Harvey (1984) also used models with explicit random trend
dynamics. Random trends are provided for by specifying that the first difference is weakly sta-
tionary. In other words, random trend dynamics are hypothesized to have a unit root. By now a
number of studies is available which examines the question of unit roots in the economic time
series, such as the US real GNP series, See Clark (1987), Perron and Phillips (1987), for exam-
ple. In multivariate time series, however, this approach posits the same number of unit roots as
the number of component series with ‘‘trends’’, which often results in too many unit roots. A
transformation which extracts a smaller number of common trends than this approach is needed.

This paper proposes an alternative modeling procedure for separating out trend dynamics
from those for the cyclical and residual components without constraining the components of
time series to have unit roots from the beginning, and thusallow for easy determination of the
presence (and the number) of common factors. The idea is based on the notion of dynamic
aggregation which was originally suggested as a way for building simplified dynamic models for
control purposes, see Aoki (1968). We build time series models in two sequential steps. In the
first step state space models for trends are built followed by a second step in which state space
models for the residuals of the first step are constructed. In each of the two steps, state space
modeling algorithms recently proposed by Aoki (1983, 1987a) is employed. Aoki (1987b) has
recently pointed out that Granger’s co-integration and the idea of error correction mechanism,
originally proposed by Sargan (1964) are derivable from the common notion of aggregation of



dynamic models.

The procedure will not require prior detrending as in Stock and Watson (1986), and will
determine co-integrating factors, when some of the components of the vector-valued time series
contain common trends. This paper also discusses why this two-step procedure may be superior
to a single state modeling strategy, especially when trend components contain random walk
components. Section 2 is a brief description of the dynamic aggregation procedure originally
employed in Aoki (1968). Section 3 describes how to construct state space models in two stages
following the suggested scheme in Section 2. Section 4 clarifies the differences in the extraction
of trends in Beveridge Nelson and the state space models. Some examples are presented in Sec-
tion 5 and the concluding Section 6 elaborates on the reasons why one might wish to employ the
suggested two stage procedure.

2. Dynamic Aggregation

The dynamic aggregation procedure in Aoki (1968) starts by classifying dynamic modes
of a model x,,; = Ax, +v,, ie., eigenvalues of the transition matrix A into two classes and
transforming the coordinates to put A into a block triangular representation. Although many di-
chotomized classifications are possible, here put all eigenvalues with magnitude greater than
some critical number into class C, and the rest in class C,. Thus C; contains unit roots and
those roots of the characteristic polynomial near the unit circle in the complex plane. Suppose
that A is n X n and that there are k eigenvalues in C; (counting multiplicities). Let n x k ma-
trix T form a basis for the right invariant subspace of linearly independent columns of A associ-
ated with the eigenvalues in C,. IfAt; =;A;,i =1...k,thenT =[¢,.. .5 J and A= diag (A,
... M), for example. Let S be an n X (n — k) matrix of linearly independent columns forming a
left invariant subspace of A associated with class C,. They satisfy,

AT =TA
S’A =NS’ ¢Y)
and we normalize T and § by T'T =1, and S’S =1,_;. These two matrices are orthogonal
S'T=0.

because S’AT =S'T A and S’AT =NS'T implies 0=S'T A~ NS'T and A and N have no eigen-
values in common. See Householder (1965, p. 168). Express the state vector x, using the
columns of P and S as basis vectors, i.e., let

x =8z, +TT,
in the model x,,1 = Ax, + U, ie., Sz,41 + T4y = T AT, + ASz +v,, where the first equation in
(1) is used. The vector T, is the set of new coordinates related to slower dynamic modes and z,

refers to the coordinates representing faster dynamic modes. Multiply this relation from the left
by T’ to see that

T =At +T'ASz, +Tv,. @
Multiplication from the left by S’ yields



2,1 =Nz; +S'v,. 3

The matrix N has eigenvalues of class C, only, i.., they are all asymptotically stable eigen-
values by choice. Jointly written, the state space model has the recursive structure

T4 ATAS| |G T’
Note that the term T’AS explicitly shows how the state vector for short-run dynamics affect

longer run dynamics. The model specification is complcted by specifying that the data vector y,
is related to x; by y; =Cx; +v,. The data vector y, is {elated to the new vectors T, and z, by

=CTt, +CSz, +v;. : )

Eq. (5) shows how the data is decomposed into slower modes, i.e., trend (-like) movements
CT 1, and the rest CSz, + ¢,, i.e., cyclical component plus innovations on observations.
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3. Modeling Procedure

The previous section suggests a procedure to construct a model with a block triangular
transition matrix. Since the dynamic matrix of time series in unknown, we do not know how
many eigenvalues are in C;. The data determines the dimension of the vector 7,. In the algo-
rithm of Aoki (1987a), the ratio of singular values of certain Hankel matrix is one important in-
dication of the size of n. First, trend models is estimated

T4 = AT, + Gy :
{ y.=DT, +u é}* | (6*)
where 4, stands for CSz, + v, in (5), followed by a n;odel for short-run behavior
2,1 =Fz, +Je,
{ u, =Hz +e,. @)

Note that u, is weakly stationary since the dynamics for z, are stable by construction. In (6) ¥, is
usually (highly) serially correlated but e, in (7) are not serially correlated.

When 1, is chosen to be scalar, (6) is

+ For completeness the model matrix estimation method in Aoki (1983, 1987a) is outlined in the Appendix.

* A seemingly more general model x,,, = Ax, + v, ¥, = Cx, + w,, where u, and w, are serially uncorrelated, can be
put in the assumed form where cov A(G’ I), and A= cov e by spectral decomposition. See Aoki

(1987, p. 67).

wl =



T =AT +8 U
Y, =dT + U, ®)

where g and d are p-dimensional column vectors where p = dim y,. The connection with
Granger’s notion of co-integration is now clearly seen from (8). Any vector v orthogonal to d
will nullify the dynamic mode with eigenvalue A since V’y, = V', is governed by the dynamics
(7) and has no eigenvalue in C, i.e., V'y, is weakly stationary, even when some components of
y; have unit roots.

If the dimension 2 is tried, then the matrix A in (6) is 2 X 2. When it has two real eigen-
values one can decide then whether the trend dynamics has one dominant eigenvalue or two.
When the data y, contains a single common trend variable, this fact becomes apparent when the
eigenvalues of the matrix A is calculated. The matrix A can be put into Schur form to exhibit
this fact explicitly as |

A=U®OU’, UU=I,

where
7\.1 *
0 7\2 . ).1 >)\/2.

If A is judged to be significantly larger than A,, then there is one trend factor. If A; and A, are
sufficiently close to each other, then there are two common factors. Define i, = Ut,. Model (6)
is transformed into

0=

Kl sk
H+1=] o A M+ UG u,
Y =DU W, +u,.

The first column vector of DU now corresponds to the vector d of (8) since it shows how the
first component of J, is distributed among the components of the vector y. Usually dim y, is
larger than dim p,. Thus DU is a disaggregation matrix which distributes the effects of y,
among y,. To allow for the possibility of a real eigenvalue and a pair of complex eigenvalues in
the trend dynamics dim T, =3 should also be considered. Too high an initial choice of the di-
mension of T, causes no harm since the Schur decomposition tells us if the eigenvalues are all
equally large and the column vectors of DU tells us if the components of the vector T, are equal-
ly important in y,. If not, some of the modes in (6) can be easily lumped together with (7). We
return to this point in Section 5 where an example is dmcussed

Eq. (6) and (7) imply that the transfer function from e, toy, can be factored as
Ye=[I+D (gl -A"'G 14
=[I+D@@ -A'G1[I+H(g -FyVJile

where ¢! is the lag operator ¢y, =y,_;. The first factor of this factorization corresponds to
the slower dynamics, i.e., lower frequency factor, the second to the factor dynamics, i.e., fast fre-
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quency factor. This modeling method in effects factors the transfer function into a low frequen-
cy factor and a high frequency one as shown.

Since the residuals in (6) are usually correlated, unlike the modeling situations for weak-
ly stationary, 4, is not an innovation vector. To show that the Riccati equation used in the algo-
rithm of Aoki (1987a) is well-defined, consider the model with a scalar 7, as an example.

Rewrite (8) as
T = Xtt +2'y,

by substituting ¥, out from the first equation, where Lis equaltoA-g'd. If kZ_‘.o X"R,,,k', con-

verges for all ¢, where R, i, = E(y;4y";) is the covariance matrix of the data vector, then the
covariance matrix of T, is well-defined and Aoki’s algorithm (1987a) can be applied to estimate
Aandg’. *

Similarly, rewrite (7) as
2, =F —JH)z, +Ju,.

Then, the covariance matrix II= cov z, is well defined, and the subscript ¢ is dropped from I1
because z process is weakly stationary if all the eigenvalues of F — JH lie strictly inside the unit
disk. Let F =F —JH. The matrix F is the dynamic matrix in the Kalman filter for (7). It is
known that if (7) is observable Fis asymptotically stable. To see the importance of this condi-
tion, consider solving the Riccati equation for IT by an iterative procedure, where I1= FIIF +
JUyJ’ and where Ug= cov u =H I'IH + 4, and where A= cov ¢;. Supposing that IT exists,
denote Hk l'IbyPk Then Pk+1—FPkF or

vec P, = (F" ® F)vec P, 1,2, -
Therefore, the equation converges as m is increased if and only if all the eigenvalues of F lie in-
side the unit disk as claimed.

The above description shows that the proposed two-step procedure will construct state
space models even when the data vector contain unit root components, i.e., even when A in (7) is
one, provided 4 is less than one in magnitude. A sufficient condition is that the unit root is an
observable mode of the model.

4, Decomposition into Trends and Cyclical Components

Beveridge and Nelson (1981) posit that a univariate y, is governed by

* For example, if y, is a pure random walk, then R,x, =R, + ko> The sum Z;k R converges if the magnitude of
4 is less than one.



R =yat+A@ e (10)
where ¢ le, =¢,_; and
A@h=1+ag7 +ay 7+ -

such that %a,-z < oo, The coefficients in the Wold decomposition representation (10) are the im-

pulse (dynamic multiplier) responses. For example a3 in Ay, =A(q ~1ye, tells us how much the
shock three period earlier, e,_s, still affects Ay,. This class of models has been proposed by
Beveridge and Nelson (1981) and used by Nelson and Plosser (1982), Cochrane (1986) and oth-
ers. This section demonstrates the difference in the decomposition of time series by this and
state space methods for a univariate {y, }.

By rewriting (10) as
Ye—=YNa=Ae +[A@H-AD]e,

where

A()=XZ5a; <o
is assumed, one can integrate this equation. Decompose y, into y, +y,, where

Ayy =A (e, an
and

Ayy =[A@H-AM]e, (12)

where Ay, =y; — Yi-1-i =1, 2. Eq. (11) immediately shows that y,, is a random walk because
Yu=—JYua= (l—q"l)yl, =A(De,,

- or

_AQ

= l-—q'l

Y1 €

=A(l)e +e_y+e o+ ). (13)

It is the integral of past disturbances. This term represents the random trend in Beveridge-Nelson
decomposition.

Solve y,, from (12) as

-1y _
_AQH-AQ), a4)
1-¢
When the spectral density function of Ay, is rational, Ay, can be regarded as an output of a
finite-dimensional state space model driven by a white noise sequence. The impulse responses
{a;} are then characterized by finite parameter combinations. When a; = h'Fi-lg,i21,a4=1,
we use

Y



Al Y)=I+h'(qg -F)g.
Then

A@gH-A -
(q ) = (1) =_H(q 1) (15)
1-q
where H(g™Y)= h’( - Fg~)"'(d —=F ) 'g. To see this directly let A(¢™") = Z5'a;q ™" and ex-
press

A@hH-A(=ay@ - D+axg - D+asg” - D+

=(q1-1) [a1+a2(q'1+ 1)+a3(q“1+q'l +1)+...]
since {a; } is absolutely convergent, and note that
a,+as+az+...=h’I+F +F%+. . )g=h"0d -F)g.
All other the term are similarly expressed in closed forms as

a,+az+as+ - =h'FI-F)g,
and
| ay+ag+ - =h'F¥] -F)lg etc.
Thus
A@NH-A)=@1-Dh'U+F +F2+ --- ) ~Fg™)'g

=@ -Dh'd -FY'd -Fz g
=@ -Dh'U -Fg ™y

where —

y=({-F)g
From (14) and (15)

Y =-H(g Ve, =—(are, +ase, 1+ - )
Since covyy = Zf°a,-2 < oo, y,, is weakly stationary. Note that e, appears both in y;, andiny
in the Beveridge-Nelson decomposition.

The state space model decomposes y, differently into two components. In the state
representation, the eigenvalue A= 1 is not imposed in the model. When (random) trends have
one-dimensional dynamics, the model takes the form of (7) and (8) ore written jointly as

e [l

y=ct +H’z +e, (16)
‘where e, is serially uncorrelated. Eq. (16) shows that y,,_;, the predictable component of y, at



time ¢ — 1, consists of trend part
Y11= C i1

and cyclical component part
Yui-1=H 'z .

By defining y,, =¥y, and Yo =Y 21,1 + €, We decompose y, as the sum of yy, and yz
where the former is a predictable process. To relate this to the lag-transform (9), which in this
case is equal to

y=[1+cU =AY 'g’q 1 1+H U -Fgy g e,
define
y1=cU —Ag)lg'q [1+H'A -Fgy g e
and
Yo=[1+H' (I -Fg~ Y lg']e.
To compare with the Bcveridge-Nclson procedure, suppose that A= 1. Then
—15;'1:1— [1+4H'I -Fg Y Uqg'le
or
Yi-—Yu-1=cg’le_1+H'Je,_y+H'FGe; 3+...]
and
yy=e+H'Je,_+H'Fle o+ - -
Note the difference in the timing of e. The latest innovation is assigned only to yo,. In other
words, the trend component of the state space model y;, lies in the subspace spanned by ¢;_y, . .
,i.e., is a predictable process in the sense of Doob decomposition of an arbitrary stochastic pro-

cess [Kopp (1984, p. 66)] and y,, is a martingale process. Bevcndge—Nelson decomposition
does not have this ‘‘canonical’’ property.

s. Examples
The Ex Ante Real Interest Rate in the USA and West Germany

Ex Ante real interest rates are calculated as
re =k =Ty
where
Rt1¢-1 = Prig-1 ~ Pr-1

and where p, is the logarithm of the cost of living index or consumer price index for the month
t, and p,,,_; is the forecast of p, formed at time ¢ — 1. In this paper only the history of p;_1, P;-2
. is used in forming the conditional estimate p;|,_;.



Figure 1 is the plot of the r, series for the USA and West Germany from March 1974 to
September 1984. We note that the real interest rate in Germany started to increase about March
1979 and stayed high. The US counterpart also increased in the same time span.

A trend the model with n =2 has the eigenvalues .981 and .570. This is a clear indica-
tion that there is one eigenvalue responsible for possibly nonstationary characteristics of the two
series. Although the residuals are not too highly correlated, they are still significant. The first
two lag covariance matrices of {, } are:

1.60 | \
lag0 | _ o085 .105]" |

122
lagl | o079 031]°

[ -.071
lag2 | 054 025
The long-run (trend) dynamics are modeled by

Y, =D1, +u,
where P
9765 —.0549 , .
A=|_0349 5750| = .
L N
where 'J
[ 9963 .0856 9812 —.0200
U= | 0856 9963 | * = o 5703 |
[ 043 238
G=| 471 —-.408
and
[ 2910 1.1825
DU =| 3788 1.1702] -

Only one of the tv-vo dynamic factors is associated with the slow dynamic eigenvalue A, =.9812.
After some sensitivity experiments, the residual series {u,} is further modeled by a second order

dynamics.
-.301 312
F=1 510 511

with eigenvalues — .469 and .674. The e, series has an excellent residual characteristic, as



shown by the first three residual sample covariance matrices:

1.57
lag0 | _ 100 076] "
025
lagl | _009 .003] "

[ —.032
lag2 | 008 .0002] -
The covariance matnx of the inno;ation vector,
[ 1.590
cove = - 093 081

shows that the US innovation is much larger than that of Germany. Note that eys and eg is
correlated with the correlation coefficient of about —.26.

The US M1 and CPI

The monthly bivariate series for logarithms of the US M1 and CPI (consumer price in-
dex) is used to illustrate the procedure. From January 1975 on, with 117 data points, when a
two-dimensional trend dimension is chosen, the method estimates the dynamic matrix A to be

977 —-.030
A=|_04 953
which has two real eigenvalues A; = .981 and A, = .948. When A is put into Schur form, the

trend model becomes

Hes1=| o 948

L

- [.193 .048
= et

[ 981 —.025
B +...

227 015

First, we note that A, is sufficiently close to 1 (statistically indistinguishable from 1) so that M1
and CPI has a common random walk factor for all practical purposes. Note that (.981)!2° =10,
i.e., after 10 years still 10% of the initial effects remain. The residuals are modeled by a two-
dimensional dynamics. The total model is specified as in (4) to have the dynamic matrix

977 —-.030 032 .009
A GH] —-004 953 012 012

0 F 0 0 943 -.125
0 0 .066 —.075

10



305  1.56]
G 39.77 -35.96
J| = 4230 3429
-917.07 4955
and )
[ 197  .020 .007 .002
[D, 1-11=| 257 _ 017 007 002]"

Second, the contribution of the second component of i, is an order of magnitude smaller
than that of the first component. Third, A, cannot be identified with 1 because the off-diagonal
elements of A have the same sign. This implies that A has two real eigenvalues, one of them is
strictly greater than the (1, 1) element of A and the other strictly less than the (2, 2) element of
A. Thus, A can’t have two unit eigenvalues, even when A, = A, The bivariate series can have at
most one unit root. Any vector v with v, / v, =—.227/.193 — 1.18 renders V'y, stationary.

An alternative model is a scalar trend model which is

T =9777, + 8y,

193
Ye=| 07| Wt

Note that .977 is the (1, 1) element of A and the first column vector of C as the disaggregation
matrix in this one-dimensional model. This is because the models are put in balanced form. See
Aoki (1987, Section 5.6) for the reasons. Scalar- and two-dimensional trend models mean dif-
ferent residual sequences to be fitted in the second stage. Figure 2 and 3 plot residuals with
n =1 and 2. The choice between the two must be made on the performances of the joint dynam-
ic model (6) and (7). The model that produces {e, } most closely resembling the white noise se-
quence should be chosen, which is the one shown above.

6. Concluding Remarks

One may naturally wonder why the same model can’t be obtained in one step using the
same algorithm. One reason that this does not yield ‘‘good’” models lies in the empirical fact
that model building algorithms need to deal with quantities with large disparate magnitudes
when data series contain random trend components. The ratio of the largest to the next largest
singular values of Hankel matrices may exceed 10° when these are significant random trend
components. In such situations trend components completely dominate small cyclical com-
ponents. Because the algorithm relies on the relative sizes of singular values of the covariance
matrix between the stacked future realization and stacked past data (Hankel matrix), models tend
to ignore those components of the data vectors with small variances when they show large
discrepancies in the variances (such as 10° to 1). For these two reasons, it is desirable to have a
two-step procedure in which the residuals from the first step may be rescaled before applying the

11



second step of the algorithm.

The first stage of the proposed procedure may be interpreted as a new transformation or a
new detrending scheme which better preserves trend information than taking the first differences
of the logarithms because it is not constrained to produce the same detrending factors as the
number of components of the data series.
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Appendix
This appendix summarizes the model building procedure in Aoki (1987)

The singular value decomposition of the covariance matrix between a finite segment of
the future realization and the past data of the time series is the basis of the recently developed
method by Aoki. This matrix is a Hankel matrix in structure when the vectors are stacked as
shown below:

Hy=EQ/ y.1") (1)
where the stacked vectors are constructed as

Y& =D Y Ve
and

Yo' = et Ye1” o Yi-x']

When applied to a weakly stationary process, the method constructs a dynamic factor
(state space innovation) model

X;41 =Ax,+Be, )
and
y; = Cx,+e,,
where all the eigenvalues of the matrix A—BC lie strictly inside the unit disk in the complex

plane by construction, and e, is weakly stationary innovation vector of the data, i.e., serially un-
correlated, e, =y,~E (¥, 1y,Z1 ), where E denotes orthogonal projection, Aoki (1987a, chapter 9).

To be self-contained we summarize the procedure used to estimate A,B and C of (2)
~ from the data set. See Aoki (1987a) for fuller account, and Havenner and Aoki (1987) for the re-
lation of the estimation method to two-stage least squares, the instrumental variable method, and
the (limited information) maximum likelihood method. The singular value decomposition is
used to approximate the Hankel matrix,

HK = Un 2,, V’n

where n is the estimated numerical rank of Hgx which is also the dimension of the state vector of
the model (2). The ratios of the singular values 0; /G, i =1,2, - determines n. Typically
in series with significant trend (random walk) component, » is 1 or 2.

Relative magnitudes of the first few (counting from the largest) singular values are used,
among other things, in selecting the dimension of the state vector of the model, n. In no case the
dimension should be so large as to render the model non-minimal dimensional, i.e., the model
should be observable and the dynamic matrix invertible, or the model should be both observable
and controllable. See Aoki (1987a, Chapter 5). When the y, series contains random walk com-
ponents, the ratios of the second largest to the largest singular values and the third largest to the
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first are usually very small, of the order of 10™ 2 or less, when the maximum lag length K is small
so that Kp is about the same as n or slightly larger in the first step of the process, 2 or 3, for ex-
ample. :

In the innovation model (2), we note that y,* is related to the state vector x, by
yt=0 x, +K e where ¢, is uncorrelated with y,_, , where O stacks C,AC,A%C --- andis
called the observability matrix in the system theory. The matrix K is of no concern here. There-
fore the Hankel matrix is equal to Hy =0 E (x, y,_1 ")

Its first p rows give the equation which involv,é’ the matrix C as
E(y, y,)=CE (xt Y- E 3
Note that the left side is a p xKp matrix made up of the sample covariance matrices
Ay Ag, -+, Ay, where Ag = E (34 ¥'s), k 2 1. Also the matrix A appears in
HA =E 0% 3710 =0AE (x; %21 . @

where the matrix H4 is the matrix Hy shifted left by p columns and the right-side p columns
filled in by sample covariance matrices Ak, -.- Aok -

Fix the coordinate system by
0=U,LE

]
(This puts the model (2) in the so-called balanced form. See Aoki (1987a, Sec 5.6). Assume
that rank O =dim x, (This is the condition that (2) is observable and reachable, ie., is the
minimal realization. See Lindquist and Picci (1979) or Aoki (1987a, Sec 4.3) for further detail).
By equating two factored expression of the Hankel‘t,x}atrix

He =U, 3 EV, v'
=0 E(x, y,.1")

we can solve for E(x, y,2;)=Q= Z,?& V’, in this coordinate system. Eq.(3) and (4) can now be
solved for C and A to obtain their unique estimates by

C=E@ ) =E0 1) Va 30"
and

A=0*EGh 3 ) Q =24 U EGL y7) Va T2

Here + denotes pseudo-inverse. Associateq with the model (2) is the Kalman filter with
21 E (x, ly,Z,) as its state vector, where E denotes the orthogonal projection. Since
Eelyo)=E@ 1 OR ¥

where
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R=EQ@_ »1)

the Kalman filter state vector summarizes the data vector y,_; by
Z-1=8 Yo

where

S =E(xt y‘:l ')R-1=QR—1.

From (2) and above B ¢, = 0, where
Oy =211 — A 2y
Finally B and A = cov e, are estimated by noting the relation
BA=Eoc,e', =T,
where ¢, =y, — C z,,_;. Finally the matrix A is related to the data covariance matrix by
A=Ay-CIIC’, 5)
where
N=E(z,-12"111-1)
=AIIA’+B AB’
=ATIA’+T(A-C TIC)IT. ©

Eq.(6) is solved for matrix IT using C and A of §3) agd 4). EcL.(S) determines A and B is es-
timated as G AL, (Alternatively 1= QR ', B =(M —d TIC") A where M =% U,," H
and where H¥ is the first block column (Kp x p) matrix of Hg.)
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