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Abstract

Over the last few years, economists have successfully applied the
theory of contests to a broad range of econonic phenomena. In contrast to
standard neoclassical models, the reward to an agent in a contest is
dependent upon his relative, rather than absolute performance. For example,
in patent races, bidding for an object d’art, or competing in the political
arena for a franchise, it is the winner who takes all.

This paper examples several examples of contests and, in so doing,

develops the central theoretical insights of the recent literature.
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The last decade has seen very significant progress in the analysis of
strategic choice. One important strand of this recent literature examines
the equilibrium behavior of agents competing for an indivisible payoff.

Such "contests" take place in a wide range of environments. Interest groups
compete for political favors. Firms enter Research and Development races
knowing that there will be a monopoly patent for the winner. Animals
compete for a mate or territory. And, as a final example, buyers compete in
auctions for antiques and paintings.

In the following pages I have tried to illustrate the scope of the
contest model and to present, in some detail, the ideas behind the central
results. In so doing, my objective has been to provide not only the intui-
tion behind the results but also insights into the way they are derived.

Section I explores a model of competition for political favors.
Differences in preferences are known to all competitors however opponents’
strategies are unobservable. Then, in Section II incomplete information is
introduced not just about opponents’ play but also about their preferences.
The example studied is the "war of attrition." This has been used both by
biologists and economists to explain strategic competition which takes place
over time and which ends only when all but one contestant withdraw.

Section III turns to the theory of auctions. An extended example is
examined in order to illustrate the contrast between equilibrium bidding in
an open ascending bid auction and in a sealed high bid auction. Section IV
then presents the general contest model and the assumptions commonly
employed in the literature. This general structure is then used in Section

V to place in perspective the central results in auction theory.



I. The Pursuit of Public Payoffs

Partly to introduce basic concepts and partly because it is of
considerable independent interest, we begin with a simple model describing a
contest for some political payoff. In its simplest form, n agents con-
front the opportunity of influencing the outcome of a political allocation
decision. This decision will be to assign some valuable right (such as a
franchise) to one of the n agents. Each of the agents must decide how
large an outlay to make in an attempt to influence the outcome of the
contest in his favor. 1In contrast with bidding in an auction, all the
outlays are irretrievably lost. That is, they are used up in various
promotions, fund raising events, etc.

Let agent i outlay x, to influence the outcome of the political

i
contest in his favor. The probability that agent i will be the successful

contender is
Py(®) = py(xy,..oux )

where

n

Z pi(x) =1

i=1

and 1 is nondecreasing in x, and nonincreasing in x_,, jwi.

i

Of central interest to analysts of such political competition or "rent

seeking behavior" is the relationship between the value of the payoff and

the total value of the outlays 2?_1 xj, given the different valuations v,
(i=1,...,n) which agents assign to winning the contest. To make the

analysis as simple as possible we assume that the individual valuations v,
are known to all agents. We also label agents according to their

valuations, that is v, <v. < v. < . <V

1 2 3 n’



To evaluate the resource cost of political contestability, we require a
specification for the probability function pi(x). Here we assume that
contests are perfectly discriminating. That is, the political process
awards the prize to the individual making the greatest outlay in seeking to
influence the outcome in his favor. If more than one contender makes the
highest outlay the winner is chosen at random. Formally, the probability of

winning is then

0 if x1 is not a maximal element of
{xl,x2,...,xn)
p; (%) = 1
o if x1 is one of m maximal elements of
{xl,...,xn}

While we shall consider complete symmetry as a limiting case, we shall
focus on the effect of asymmetric valuations on the strategies of the
different agents.

Obviously this is rather an extreme model and Tullock (1980) has
correctly argued that a better assumption is that the probability of winning
rises continuously with an agent’'s outlay. Elsewhere (Hillman and Riley
(1987)) it is argued that the basic insights are not critically dependent
upon the assumptions of the model to be explored here.

In trying to predict the conclusions, the following two ideas make
useful starting points. First of all, in the early literature on rent
seeking (Posner (1975)), an analogy is made with bidding. Consider then
open bidding for the prize, as in the usual ascending bid auction. As long
as the asking price is below the second highest valuation, at least two
agents have an incentive to remain in the bidding. Therefore the bidding

continues until the price reaches the second highest valuation, Va-1'



There is a second argument suggesting that total outlays might be

Vo1 No agent ever has an incentive to spend more than his valuation.

Therefore agent n, by spending just a bit more than Vi

1 The problem for agent n, however, is that

can guarantee
himself a payoff of Vo Va-
each agent must choose his own outlay prior to observing others’ outlays.
That is, even though there is complete information about preferences, each
agent must try to make an inference as to what his opponents’ strategies
will be. If agent n says he will spend Va1’ another agent might reason
as follows. "If I were to believe agent n there would be no point in
competing. My best response would be to stay out of the contest. But,
knowing this, agent n would then have an incentive to make only a very small
outlay and achieve a much larger payoff. Since agent n has this incentive,
he is just bluffing when he says he will spend vn-l'"

In game theoretic terms, the strategies chosen by each of the n
agents are equilibrium strategies if and only if, for all i, agent i's
strategy is his best response given the strategies of the other n-1
agents. For our example, each of the other agents’ best response to agent
n's strategy of spending V-1 is to stay out of the contest. But then
agent n’'s best response to agents 1,...,n-1 1is to spend some very small
amount and not Vi1l From all this it seems reasonable to conclude that
agents other than agent n will make positive outlays and that agent n will
not spend as much as Vo1

The next point to be made is a technical one. In order to write down a
mathematical expression for each agent'’s expected payoff, it is helpful to
be able to rule out certain strategies. Specifically, we now argue that no
agent will, in equilibrium, ever spend a positive amount B with a strictly

positive probability. That is, equilibrium strategies are continuous mixed



strategies.

To see this, suppose agent i does spend B with strictly positive
probability. Then the probability that a rival agent j beats agent i rises
discontinuously as a function of xj at xj = B. Therefore there is some
€ > 0 such that agent j will bid on the interval [B-¢,8] with zero
probability, for all j»i. But then agent i is better off spending (B-¢)
rather than 8 since his probability of winning is the same, contradicting
the hypothesis that X, = B 1is an equilibrium strategy.

Given this result, it follows immediately that if there are just two
agents, they must have the same maximum spending level. For if x is agent
1’s maximum spending level, agent 2 wins with probability 1 by spending x
and vice versa.

A similar argument establishes that the minimum spending level is zero
for each agent. To see this, suppose to the contrary that agent i spends
less than 8 with zero probability, where g > 0. Then any spending level
between zero and B yields a negative payoff since the probability of
winning is zero. Since other agents can always spend zero it follows that
no other agent will spend in the interval (0,B8). But then agent i could
reduce his spending level below g without altering the probability of
winning, contradicting the hypothesis that agent i could, in equilibrium, do
no better than take B as his minimum spending level.

Given these results, if we define 1 - Gi(x to be the probability

i)

that agent i spends more than x then Gi(x is continuous over (0,«).

i’ i)
If 0 < Gi(O) < 1 then agent i spends a strictly positive amount with
probability less than 1. His remaining alternatives are to spend zero or

stay out of the contest. Where it is important to make the distinction

between these two alternatives we shall do so. One point to be made is that



if one agent spends zero with positive probability, no other agent will do
so. The argument is similar to those made earlier. If two agents spend
zero with positive probability they force a tie with positive probability.
With an arbitrarily small positive bid one agent can therefore increase his
win probability by a finite amount.

To summarize the above arguments, we have established that

(1.1D) Gi(xi) is continuous over (0,«)

(1.2) Gi(xi) >0 for all xi >0

(1.3) With only 2 active agents the maximum spending levels are the same
(1.4) At most one agent spends zero with strictly positive probability.

We are now ready to characterize the equilibrium bidding strategies.
To begin, we consider the two agent case with v1 < v2. Given condition
(1.1), for all positive spending levels the probability of a tie is zero

therefore agent 1's expected payoff is

(1.5) y. = {probability] f[value of spending
) 1 of winning prize level

- Gz(xl)v1 - x1 .

Similarly, agent 2's expected payoff is

(1.6) U2 - Gl(xz)v2 - X

9
Since agent 1 has the option of staying out of the contest, he will, in

equilibrium, never spend more than his wvaluation and so incur a sure loss.

Agent 2 can therefore guarantee himself a profit of Vo o vy by spending
vy It follows that agent 2's equilibrium expected payoff must be at least
Vo T V- Then, from (1.6), G1(0) > 0. Moreover, since agent 2’'s expected

payoff is strictly positive, he enters the contest with probability 1. We



now show that the equilibrium expected payoff for agent 1 must be zero.

For, if not, from (1.5)
G2(0) > 0.

Moreover, with a strictly positive expected payoff, agent 1 also enters the
contest with probability 1. But with both Gl(O) and G2(0) strictly

positive and both agents always competing, both agents must spend zero with
strictly positive probability. But this contradicts condition (1.4). Then

agent 1’s equilibrium payoff is zero and so, from (1.5)

)
(1.7) G, (%)) = v, x

€ [0,v

2 1]

That is, agent 1’s equilibrium mixed strategy is to spend according to the

uniform distribution over [0,v1].

Since both agents have the same maximum spending level Vi, we know
that V1 is in support of agent 1's bid distribution. Moreover Gl(vl) =

1. Setting x, = v

2 in (1.6) we obtain

1
(1.8) U2 - Gl(xz)v2 - x2 -V, - vy

Rearranging, it follows that agent 1's equilibrium mixed strategy is

A4 X v vV X
(1.9) Gl(xl) - [1 - ‘71—] + ;,-—1- - [1 - v—]‘] + [;l] ;l
2 2 2 27 1

Note that agent 1 makes a strictly positive bid with probability
1 - Gl(O) - vl/v2 <1

The most natural interpretation of this result is that agent 1 stays out of
the contest with probability (l-vl/vz) and enters with probability Vl/v2'

From (1.9), conditional upon entering the contest, agent 1 also adopts a



uniform mixed strategy over the interval [O,vl].
It is now easy to compute expected total spending. Agent 2's spending

is uniformly distributed on ([O0,v and so his expected spending is

1!
(1/2)v1. Conditional upon entering, agent 1's spending is also (1/2)v1.
Multiplying the latter by the probability of entry, vl/vz, expected total

spending is therefore

1 1 (1 1 1
(1.10) E{x1+x2} -3 Vl + 3 Vl[v—z] -3 [1 + g]

We conclude, therefore, that only for the limiting case, when differ-
ences in valuations approach zero, is it true that expected total spending
equals the second highest valuation.

Having examined the 2 agent case it is easy to characterize equilibrium

with more than two agents. Suppose agent 0 has a valuation v. where v

0 0

< vy <, Suppose agents 1 and 2 assume that agent O will always remain
inactive. They will therefore spend according to (1.7), and (1.10). We now
show that, given such spending behavior, agent 0 will indeed wish to remain
out of the contest.

If he spends x, his expected payoff is

0

Uo(xo) - Prob{x1 and x2 are both less than xo)v0 - Xg

G2(xo)Gl(xo)v0 R

X A4 X
0 1 0
- [v_][l - v_+v_]v0 " %o

1 2 2
v v x v
- ;—9 xo [1 - _l + ._o - _(];]
1 Vo V2 ¥
<0 for all X, € (O,vo].

Since agent 0 will never spend more than his valuation, it follows that he is



strictly better off remaining inactive than entering the competition. Since
this is true for all agents with lower valuations, we can conclude that, with
n agents, if v, > Vil > Vag T -0 2 K equilibrium spending strategies

are for the two higher valued agents to behave as if there were no other

potential competitors and for all other agents to remain passive.

While we shall leave this example at this point, the obvious next
question is whether there might be other equilibria in which more than two
agents are active. In Hillman and Riley (1987) it is established that this

is not the case. That is, we have characterized here the unique equilibrium.

II. The War of Attrition

Another contest in which winner and loser incur costs is one in which
these costs are associated with the duration of the contest. As first
applied by biologists, the competition is between animals competing for
food, territory or a mate. Typically such contests involve ritualistic
combat or "displays" rather than an all-out battle. Eventually one
contestant concedes and leaves the other to enjoy the prize.

If the contest is of duration x, the rate of resource utilization is

¢ and the discount rate is p, the present cost of entering the contest is

X
(2.1) C(x) = I ce Ptac
0

If the prize is of value v, the present value of the payoff to the winner

is
(2.2) e P*y - cx)

while the present value to the loser is -C(x).
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For an economic application of this type of contest, consider two firms
producing a product at a constant marginal cost of b and a fixed cost ¢
per unit of time. With both firms in the market, and assuming price

competition, the product is sold at marginal cost, that is
p(t) = b

Each firm thus loses the fixed cost ¢ per unit of time.

With only one firm left in the market, this firm charges the monopoly
price pm. If we let v be the present value of the stream of profits
earned by a monopolist at this price, we have a model which is identical to
the biologist’'s war of attrition.1

In the simplest version of this model, and the one emphasized by the
biologists (Maynard Smith (1976), Bishop and Cannings (1978)), competitors
value the pr;ze equally. The only uncertainty in the model is therefore
strategic.

Here, however, we introduce further uncertainty by making the value of
the prize private information. Each competitor’s value is assumed to be an
independent draw from a distribution with cumulative distribution function
F(v). We take the minimum valuation to be zero and the maximum to be v
and assume that F(v) 1is continuously differentiable over [O,v].

Given the symmetry of the model we seek a symmetric equilibrium.
Arguing, essentially as in the previous section, no competitor will in equi-
librium choose a particular duration X with strictly positive probability.
It is tempting, then, to think that the equilibrium might require mixed

strategies. However, given the informational asymmetry, any strictly

1The "war of attrition" has also been used in economics to explain the
exit decision of firms in a declining industry (Fudenberg and Tirole 1983)).
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monotonic mapping from a competitor’'s valuation (more generally, his "type")
onto his action yields a distribution of duration levels which contains no
mass points.

We therefore seek, as an equilibrium, such a mapping,
(2.3) x = B(v)

Before doing so, a short digression is in order regarding the choice of
an equilibrium concept. Certainly when modelling animal behavior it is
hardly appropriate to rely on the calculating optimization implicit in the
standard (Nash) noncooperative equilibrium. In economics, also, it is often
argued that profit maximizing decisions are made because it is profit-
maximizers which survive in the marketplace.

Consider then two populations. When a member from each meet in
competition, the population 1 agent adopts the strategy s, from among some
feasible set of possible strategies S. Similarly the population 2 agent
(hereafter, agent 2) adopts some strategy t € T. Let u(s|t) be the
expected payoff to agent 1 playing s against t and let v(t|s) be the
expected payoff to agent 2 playing t against s.

The pair of strategies (g,t) 1is evolutionary stable with respect to a
particular deviant strategy s 1f, when the proportion, p, adopting the
deviant strategy is small, the deviants have a lower expected payoff than
the nondeviants. As a result the survival rate of the nondeviants is higher
and the proportion of deviants declines. The pair (s,t) 1is an evolution-
ary equilibrium if it is evolutionarily stable with respect to all feasible
deviant strategies.

With two different populations the difference in expected payoffs for

population 1 when a proportion p adopt s is



12

D,(s;p) = u(s|r) - u(g|w)

Similarly, if a proportion p of population 2 adopts strategy t, the

difference in expected payoffs in population 2 is
D,(t;p) = v(t|s) - v(x|s)

It follows immediately that if (g,%t) is a strong Nash equilibrium in the
sense that g is the unique best reply to t and vice-versa, both Dl and
D2 are negative for all s » g and t » t.

With a single population the argument is only slightly more
complicated. If the proportion adopting strategy s is p, a competitor
adopting the deviant strategy finds himself competing against another

deviant with probability p. The expected payoff of a deviant is therefore
pu(s|s) + (1-p)u(s|g) ,

while the expected payoff of a nondeviant is

pu(s|s) + (1-p)ucals) .
The net "advantage" of the deviant strategy is therefore

(2.6) D(s;p) = (1-p)[u(s|s)-u(g|g)] + plu(s|s) - u(g|s)]

If s 1is a strong Nash equilibrium the first bracketed expression is
strictly negative for each deviant strategy s. Therefore D(s;p) is
negative for sufficiently small p. It follows that for s to be an
evolutionary equilibrium strategy it is again sufficient for g to be a
strong Nash equilibrium.

Essentially the same argument establishes that an evolutionary
equilibrium is necessarily a Nash equilibrium. For, if not, the first brack-
eted expression is positive for some g and so D(s;p) > 0 for small p.

Finally, if 3 1is a Nash equilibrium and, if for all s,
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u(s|s) = u(zgls) = u(s|s) < u(g|s)

it follows from equation (2.4) that g 1is again evolutionarily stable. The
intuition is clear. Even if a deviant has the same expected payoff as a
nondeviant when competing with a nondeviant, the deviant will operate under
a disadvantage if it is hurt more when it competes with another deviant.

We now return to the war of attrition. Since the equilibrium that we
examine is a strong Nash equilibrium it is also an evolutionary equilibrium.
Rather than attempt to characterize the equilibrium strategy x = B(v)

directly, it is helpful to define the inverse mapping
-1
(2.5) v =¢(x) =B "(x)

Since an agent’s valuation is a draw from the distribution F(¢), his

implied distribution of waiting times is
(2.6) G(t) = F(4(t))

Then if agent 2 adopts the equilibrium strategy, while agent 1 plans to drop

out at time x, agent 1's expected payoff is

X
U (x) = - (1-6(x))C(x) + I e Pt (v-c(t))6’ (t)at
0

Differentiating by x, agent 1’s best reply is to choose x* so that

(2.7) U (x) = -(1-6(x))ce X 4+ ve PXgr (x)
-0
That is,
G’ (x%*) c
(2.8) 1 - G(x*) R
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But, for B(e) to be the equilibrium, it must be the case that
x* = B(v) and hence v = ¢(x*). Substituting for v in (2.8) we obtain

the following necessary condition for an equilibrium

(x)G’ (x)
(2.9) gmEE .

Substituting from (2.6) we obtain

F'(4)

..
(1 - F(#) ax

Integrating the expression we have finally

v
(2.10) X = B(v) = I E%%;L)“
0

To complete the argument we must show that the necessary condition, (2.9),

is also sufficient. Substituting (2.9) into (2.7)
Ui (x) = e 7RG (x) [v-4(x)]

Since ¢(x) 1is increasing we have

Ui(x) >0, x<v

<0, X>v

Therefore choosing x = B(v), as given by equation (2.10) is agent 1l's
unique best reply. It follows that we have characterized a strong Nash
equilibrium and hence an evolutionary equilibrium.

It is perhaps puzzling that the equilibrium strategy is independent of
the discount rate. To understand this better, consider the following
informal characterization of the necessary condition. If an agent with

valuation v has a best reply of dropping out at x, he must be indif-
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ferent between dropping out at x and staying in just a brief time At
longer. The conditional probability that this competitor will drop out over
this time interval is G'(x)At/(1-G(x)). The net expected payoff to staying

beyond time x 1is therefore

vG' (x)

1-G(x) At - cAt

Since this must be zero we obtain the necessary condition (2.8).2

For the biological war of attrition, it is natural to seek a symmetric
equilibrium, at least if competing animals are observationally equivalent.
However, in many circumstances, there will be characteristics which distin-
guish competitors. Within a species it might be age or even something as
simple as whether an animal is up- or down-wind of its opponent. As soon as
an observable difference is introduced, there is no compelling reason to
focus attention on symmetric equilibria. As we shall now see, the war of
attrition has a continuum of asymnetric equilibria in which one competitor
is more aggressive (with longer waiting times) and the other is more passive
than in the symmetric equilibrium.

Arguing exactly as before, if agent 2 adopts the strategy X,y -BZ(VZ)'

agent 1 faces a distribution of waiting times
(2.11) Gz(t) - F(¢2(t))
where
$,(t) = B;Le)
2 2

The necessary conditions for ¢1(t) to be the inverse of agent 1l's

2'I‘he expression G’ (x)/(1-G(x)) 1is just the hazard rate at time x. In
equilibrium this must equal c/¢(x) for all x. Since ¢(x) 1is strictly
increasing, the equilibrium hazard rate declines with the length of the
contest.
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equilibrium best reply is then, from (2.9)

6, (X)G5(x)
1 - G,(x) -

Substituting from (2.11)

81 COF (8, (x))$5 (%)

(2.12) T~ F(3,(0)

An identical argument for agent 1 yields the second necessary condition

¢2(X)F'(¢1(X))¢i(X)
(2.13) 1= F(¢1(x)) -c ,
Define
v
H(v,a) = I ;?%Té%%jj , a € (0,v)
a

Dividing (2.12) by (2.13) and rearranging we obtain,
dH dH -
5;(¢1,a1) - 5;(¢2,32), for all a,.a, € (0,v).
Integrating we obtain finally

(2.14) H(él’al) - H(¢2:‘2)0 al’aZ € (Os‘-')-

Clearly one solution is a = a, and hence ¢1 - ¢2. This is the symmetric
equilibrium defined above. However, as is demonstrated in Nalebuff and
Riley (1985), equation (2.14) has a solution for all other parameter values
as well. Here we illustrate with a simple example. Suppose valuations are
distributed exponentially, that is,

F(v) =1 - %

Then H(v,a) = In(v/a) and so equation (2.14) becomes
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0 4y

a

1 %2
The equilibrium inverse bid function of one agent is therefore any linear
function of the other agent’s inverse bid function.

As economists, we usually feel frustrated by failure to either
establish uniqueness or, in the case of multiple equilibria, pin down a
particular equilibrium as being especially plausible. One reason for this
is that it is hard to justify the assumption that opponents will choose
their equilibrium strategies unless the equilibrium is unique. However, for
the war of attrition, we have seen that each of the equilibria is a station-
ary point of a dynamic adjustment process. Therefore perhaps it should
simply be accepted that, in such environments, quite different equilibria
may emerge. Indeed, as is argued in Nalebuff and Riley, the absence of a

unique equilibrium may well help to explain the remarkable variety of the

natural world.

ITI. Open and Sealed Bid Auctions

We now begin a rather more detailed review of the theory of auctions.
In this section we present some simple examples to illustrate equilibrium
bidding behavior.

There are two very common methods used to sell an item which is
infrequently traded. The first, used for the sale of painting and other
objects d'art is the "open ascending bid" auction. Here the auctioneer
calls out an ever higher asking price until there are no takers. The last
bidder is then the winner.

The second type of auction, used in competitive bidding for private and

government contracts i1s the "sealed high bid" auction. Here each buyer must
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submit a sealed bid. The bids are then opened and the high bidder pays his
bid in return for the item. In each auction, if the bidding ends in a tie,
the winner is selected randomly.

To see that these two auctions are strategically very different,
consider a situation in which valuations are entirely private. That is,
buyer i has some valuation v, which he would not change, even if he were
to learn of others’' valuations. In the open ascending bid auction there is
a very simple strategy that he can follow. As long as the asking price is
less than Vi buyer i is better off remaining in the auction regardless of
other buyers' strategies. Of course once the asking price reaches Vi
buyer i will drop out of the bidding.

Since this is true for each buyer, the equilibrium is for each buyer to
take his valuation as his maximum price. As a result the seller receives
the second highest valuation and the winning buyer has a payoff equal to the
difference between his and this second highest valuation.

The situation is much more complicated in the sealed high bid auction.
Buyer i is in the bidding hoping to make a profit. Therefore he will make a
bid somewhat less than his valuation. Just how much depends on his beliefs
about the valuations of his opponents. The more likely it is that they have
low valuations, the greater is buyer i’s incentive to lower his bid. But
this is only part of the story. For buyer i will also recognize that other
buyers will be shading their bids below their valuations. This further
increases his incentive to lower his bid.

Beyond the issue of what constitutes an equilibrium bidding strategy in
the sealed high bid auction, there is a further important issue facing the

seller. Given his opportunity to choose the way the item is sold, which

form of auction will generate a higher expected payment? As we shall see,
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at least under some central simplifying assumptions, expected payments are
the same under the two common auctions.

To understand the sealed high bid auction we begin with some very
simple examples all involving just two buyers. Suppose first that each
buyer’s valuation Vi i1 =1,2 1is either zero or unity. Let pi.1 be the

joint probability that buyer i has valuation v, and buyer j, valuation

i

vj. Without loss of generality, we impose the further restriction,

(3.1 plO 2 p01

on the joint probability matrix

[pgyl =
Pio P11
Therefore, either beliefs are symmetric or buyer 1 is more likely to have a
high value than buyer 2.

Since a buyer with a zero valuation has no incentive to bid we shall
assume that he remains out of the auction. A buyer with a unit valuation
will wish to bid less than 1 since there is a positive probability that his
opponent has a zero valuation. However, arguing almost exactly'as in Sec-
tion I, no buyer will, in equilibrium, make some strictly positive amount
bid b with positive probability. For if buyer 1 were to do so, buyer 2
would increase his probability of winning discretely if he were to bid just
greater than b. Then there is some interval [3-5,6] over which buyer 2
would not bid. But then buyer 1 could lower his bid below b6 without
altering his probability of winning and so b is not an equilibrium bid.

Moreover, while one buyer with a unit valuation might bid zero with

positive probability, both would not do so. The argument is almost the
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same. As long as buyer 1 is bidding zero with positive probability, buyer
2's expected payoff rises discontinuously at b = 0.

We therefore seek, as an equilibrium, a continuous mixed strategy
Gi(b), i=1,2, for each player, where Gi(O) = 0 for at least one
bidder.

Suppose buyer 2 is bidding according to his equilibrium mixed strategy.
Then, if buyer 1, with unit valuation, bids b he wins for sure if buyer 2
has a zero valuation and with probability G2(b) if buyer 2 has a unit

valuation. His expected payoff is therefore

P P
(3.2) ul(1,b) = (1-b) [ 10 1

2
G (b)].
P10*P11  P1o'P11

Similarly, if buyer 1 adopts his equilibrium mixed strategy, buyer 2's

expected payoff, when he has a unit valuation, is

1

Pa11P,,G (b)

(3.3) u2(1,b) = (1-b) [ o1 11 ]
Po1P11

If buyer 1’'s maximum bid is b, buyer 2 has no incentive to bid
higher. Moreover, if buyer 1’s minimum bid is b, buyer 2 has no incentive
to bid lower. Since the same argument holds in reverse, it follows that the
two buyers must have the same maximum and minimum bids.

If the minimum bid were strictly positive, buyer 1's expected payoff
would be

P10

1. - _
U™ (1,b) = (1-b)
P10*P11

since buyer 2 would make the bid b with probability zero. But buyer 1
would thus be strictly better off bidding less than b since he only wins

against buyer 2 if the latter has a zero valuation. We conclude, therefore,
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that the minimum bid must be zero.
In equilibrium each buyer must be indifferent between all his bids.

Setting b = 0 and b in (3.2) and (3.3) we can therefore conclude that

2 2
P10*P11¢ (O P10*P11¢ (P -
(3.4) n - (1-b) = -1-b
P10%P11 P10"P11
and
+p..GL(0) PP GL(b)
Po17"P11 01"P11 .
(3.5) > - (1-b) = - 1-b.
Po1"P11 Po17P11

We have already argued that only one buyer can bid zero with positive

probability. Since plO b3 Po1° it follows from (3.4) and (3.5) that
(3.6) 0 = ¢2(0) = ¢0)

and, hence, that

_ P P
P 10 11

(3.7) - =
P10o™P11  P1o*P11

Combining (3.4), (3.5) and (3.7), one can then solve for the equilibrium

mixed strategies. We obtain

f

1 P1o Po1*P11) 1 Po1
€)= |55 15 °
10" P11 P11 P11
(3.8) )
2 P1o , b
G'(b) = — (ifg)
P11

The two distribution functions are illustrated in Figure 1. Note, in parti-
cular, that the bid distribution for buyer 2 exhibits first order stochastic
dominance over that for buyer 1. That is, the buyer who is more likely to
have a higher valuation and hence is up against an opponent who is more

likely to have a lower valuation, tends to bid less aggressively.



Figure 1:

Equilibrium mixed strategiles
in the sealed high bid auctionm

bid
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The reason for this is that the more likely it is that the opponent has
a low valuation, the greater is the incentive to make a very small bid and
so win against a low valued buyer.

While we shall return to the asymmetric model later, we now focus on
the symmetric case, that is, the joint probability matrix is symmetric.
Then, setting P19 = Po1 in (3.8) the equilibrium bidding strategies of the

two agents are the same, that is,

i P10 b -
G°(b) = — (=), b e [0,b].
p11 1-b

To obtain an expression for the expected payment by a high value buyer

we rewrite (3.2) as
in and}

1 in and W
payoff when bid is b = U (1,b) = 1 Prob {: } - b Prob {p

ay b ay b

Taking the expectation over bids

1 buyer 1
Expected payoff = E U (1,b) = 1 Prob {; } - Expected Payment.
b ins

But, from (3.7) the equilibrium payoff is 1-b = p01/(p01+p11). Moreover, a
high value buyer 1 always wins against a low value opponent and, by
symmetry, half the time against a high value opponent. Therefore

+ 1
Por  _Poi* 3P
Po1*P11  Po1*P13

- Expected Payment

and so the expected payment by a high value buyer is

: )
2 (pyy+P1y



23

We now compare this with the expected payment by a high value buyer in
the open ascending bid auction. In the latter, the bidding stops at zero
unless a high value buyer is up against an opponent who also has a high
valuation. This occurs with probability pll/(p01+p11). In this case the
bidding proceeds until the price reaches unity and then the winner is
selected randomly. The probability that a particular buyer wins and pays 1

is therefore 1/2 and so his expected payment is
7 frorery)
2 Po1*P1y
that is, exactly as in the sealed high bid auction.
Of course the two point example is rather special and, as we shall see,
revenue equivalence does not generally obtain except in the two point case.
A further question when buyers have more than two possible valuations
is whether or not agents will necessarily bid monotonically. To understand

the issues involved we consider a case in which there are only three

possible valuations, vo, vl, v2, where

0 = vo < v1 < v2.

The underlying joint probability distribution,

Pro Py Pa2

is taken to be symmetric, thereby ﬁreserving the symmetry of the auction.
Moreover, reflecting the idea that a buyer with a higher valuation himself
will assign higher probabilities to higher valuations for his opponent, we

assume that the following condition holds.
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Definition: Conditional Stochastic Donminance

buyer 1's valuation | buyer 1's valuation is less than B8 and
Prob { }
is less than a buyer 2’s valuation is equal to v
is, for all a, B and v nonincreasing in 1.

In particular, for the three point example, conditional stochastic

dominance implies that

buyer 2's valuation buyer 2's valuation is less than 1
Prob { +a}

is less than « buyer 1's valuation = 1

buyer 2's valuation | buyer 2's valuation is less than 1l+a
= Prob { }

is less than a buyer 1’'s valuation = 2

Setting a = 1,2 we obtain

Pro_ _ _Pao P1o"P11 _ Pao*Pyy

(3.9) + - + &n + + + + )
P1o"P11  Pyot*Py P10"P11*P12  PotPyy*Py,

Given the symmetry of the model we seek a symmetric equilibrium. Let Gt(b)
be the equilibrium c.d.f. for a buyer with valuation Ve We begin by
supposing that equilibrium bidding in the sealed high bid auction is
monotonic, as depicted in Figure 2. If a type 1 buyer bids b e [0,51]
against an opponent adopting the equilibrium bidding strategy, his expected

payoff is

P10*P16; (D)

(3.10) U, (v,b) = (v,-b) .
1 1 P10*P11*P12

The equilibrium mixed strategy of a type 1 buyer is then determined complet-

ely by the requirements that ﬁl(vl,b) is constant over [0,51] and that

G;(0) = 0. sSimilarly, if a type 2 buyer bids b e [51,52] against an



bid

Figure 2: Monotonic bidding strategies in the
Sealed high bid Auction
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opponent adopting the equilibrium bidding strategy, his expected payoff is

P2g*P71+P99Cy (P)

(3.11) U,(v,,b) = (V.-b)
2°2 2 P2o*P21*Po)

The equilibrium strategy for a type 2 buyer is then completely determined
essentially as for a type 1 buyer.

To complete the analysis we must confirm that a type 1 buyer would be
strictly worse off bidding in the interval (51,52) and that a type 2 buyer

would be strictly worse off bidding less than b If a type 1 buyer bids

1
more than 51 against a buyer adopting the proposed equilibrium strategy

his expected payoff is

(P10*P11*P156, (®))

(3.12) Ul(vl,b) - (vl-b) , b>b

P10*P11*P12 1

Dividing (3.12) by (3.11) we obtain

(3.13 Ul(vl,b) _ [vl- 1+(1-a1)G2(b) b s i
) U2(v2,b) Vo© az+(1-az)G2(b) !

1

where

1P pig+pi; ’
10 "11 %42

It is readily verified that, since vl < Vy» the first bracketed expression
is strictly decreasing in b. Moreover, from (3.9), ay > a,. Since G2
is increasing in b it follows that the second bracketed expression is
nonincreasing in b. Therefore Ul(vl’b)/UZ(VZ’b) strictly decreases with
b for b > Bl' But U,(v,,b) 1is constant over this interval and so
Ul(vl'b) strictly decreases with b. It follows that all bids greater than

61 yield a strictly lower expected payoff to a type 1 buyer than 51.
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Therefore, a type 1 buyer is strictly worse off attempting to bid against a
type 2 buyer,

An almost identical argument can be used to show that, given
conditional stochastic dominance, a type 2 buyer is also strictly worse off
bidding below 51. The monotonic bidding strategy is therefore an
equilibrium bidding strategy as claimed.

We conclude this section by noting that, in the absence of the
conditional stochastic dominance assumption, there is no reason to expect
bidding to be monotonic in type. Consider the following joint probability
matrix.

0.2 0.2 0.1

0.2 0.2 0

0.1 0 0
In this example, if one buyer has a high valuation he knows that his
opponent has a zero valuation. The zero valuation buyer has no incentive to
bid so the high value buyer'’s best reply is to bid zero. However a buyer
with an intermediate value (vl) knows he is equally likely to be opposed
by a type zero or type 1 buyer. He therefore adopts a mixed strategy

exactly as described at the beginning of the section.

IV. The "General" Contest Model
In this section we outline a rather more general model of a contest.
Each of the examples of the previous section and essentlally all of the
models in the rapidly growing literature on auctions are special cases.
There are n competing agents, each of whom is willing to make a
nonnegative payment in order to receive a single prize. Agent i, i =
1,....,n receives a private signal s, € S prior to the start of the

i i

contest. There may also be a signal sy € So which (eventually) becomes
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public information. Agent i’s prior beliefs about the distribution of
signals is given by the cumulative distribution function Hi(so,...,sn),
i=1,...,n. If he has an initial wealth w and incurs cost x and wins
the contest, agent i's expected utility is

i

U" - Ui(w-x,s i=1,...,n.

0""'sn)'
That is, in general we allow agent i’'s valuation of the prize to depend not
only on his own signal but also others’ private signals as well.

If agent i does not win the contest and incurs a cost x, his expected
utility is

it - glew-n).

Simultaneously, each agent, using only his own private information (and the
public signal o 1f available), must decide how large a cost to incur in
his pursuit of the prize. The rules of the contest are summarized by n

probability functions
i i
(4.1) P =p (xl,...,xn)

which are nonnegative and sum to unity. Moreover, pi(x) is nondecreasing

in x; and nonincreasing in X, = (xl,...,xi_l.x1+1,...,xn).

To illustrate the applicability of this more general structure, consider
n agents bidding for an oilfield tract. Agent i incurs a research cost k
to obtain an estimate sy

estimate is distributed around the true value ¢ according to the density

of the value of the o0il in the ground. This

function f(si|0). Prior beliefs about 4 are given by the density fo(o).

Agent i's joint density function for the n signals is then

n
h(s) = [ [ f(sJIO)]fO(O)do
j=1
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and the density function for # conditional upon signal levels SpreeaSy
is
n
[0 £(s,|0)1£,(0)
=1
(4.2) g(#|s) =

h(s)

Finally, suppose each agent has an identical utility. function wu(e+). Using
(4.2) if agent 1 bids b 1in a sealed high bid auction and he is successful

his expected utility is

(4.3) ul = Uw-b,s) = fu(w-k-b+a)g(s]s)as.

If, on the other hand, b 1is not the winning bid, agent i’'s utility is
(4.4) ot = ugw-k).

Actually, the "oil field" problem discussed most often in the literature
contains one further simplification. Bidders are risk neutral so that (4.3)

can be rewritten as

(4.5) tavls) -b-k+w
where
(4.6) vi(s) = E(8]s) = [6g(8]s)as.

In order to extract results from the general model, a variety of
simplifying assumptions are typically introduced. These can be partitioned
into three classes. At the most basic level there are three monotonicity

assumptions.
A. Monotonicity Assumptions
Al: Monotonicity of Preferences
Ui(w-x,s), ﬁi(w-x) are nondecreasing and strictly increasing in their

first arguments.
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A2: Absence of Risk Loving

g Ui, 8 gl are nonincreasing functions.
aw aw

A3: Conditional Stochastic Dominance

Let t be a permutation of the signal vector s. Then for every

a = (ao,...,an), B and m and every agent
Prob(t, < B | tg=ap t) Sa,...,t Sa, Cotl = Cmelrc ooty = @)
is nonincreasing in al,...,an.

Assumption Al is a minimal restriction which requires that an agent'’s
preference ordering of the signals is not altered by a change in his wealth.
A higher signal is one which yields a higher utility.

Assumption A2 says that the marginal utility of wealth declines (or
remains constant) as wealth or any one of the signals increases. Given
aversion to wealth risk it seems entirely plausible to impose this stronger
assumption. Indeed, for the oil field example, aversion to wealth risk
implies A2.

Assumption A3 is the generalization of the Conditional Stochastic
Dominance assumption discussed in Section III. Essentially it says that if
an agent obtains more favorable information about one signal, he will tend
to believe that other signals are more likely to be favorable as well. 1In
the limiting case of independent signals more favorable information about
one signal has no effect on an agent’s beliefs about the other signals,

B. Symmetry Assumptions
Bl: Symmetry of Preferences

Ui - U(w-x,si,s_i), 85 €S and U is symmetric in S_g-
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B2: Symmetry of Beliefs
i
H (SO""'sn) - H(SO’sl""'sn) is symmetric in (sl,...,sn).
B3: Symmetry of Equilibrium
The equilibrium mapping from signal to resource cost incurred in the
contest is the same for each agent, that is x

= B(s s, € S.

1 1) 84

While Assumptions Bl and B2 are certainly strong, they are the natural
first approximation. Assumption Bl makes agents identical prior to the
receipt of their private information. Assumption B2 requires that if two
different agents in fact receive the same private signal, they will have the
same beliefs about other agents’ signals.

Given Assumptions Bl and B2, the assumption of symmetric bidding
behavior also seems reasonable. However, as the analysis at the end of
Section II shows, there are examples of symmetric contests which have a
continuum of asymmetric equilibria.

The third set of assumptions are also natural first approximations from
a technical viewpoint. However, their relevance depends very much on the

nature of the application.

C. Separability Assumptions
Cl: Risk Neutrality

i i
U = v (si,s_i) -b
C2: Independence
i i i i
H (so,...,sn) - Fo(so)Fl(sl)...Fn(sn)
C3: Private Values
Ui - Ui(w-b,si).

As long as relative risk aversion does not exceed unity, an increase in
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wealth of 1% has no more than a 1% effect on marginal utility. Therefore,
the assumption of risk neutrality (constant marginal utility of wealth) is a
reasonable approximation whenever the value of the prize is small relative
to each agent’s total wealth.

The independence assumption is a strong one. Clearly it is
inappropriate in "common value" contests such as the oil field auction
described above. However, for other applications such as the war of
attrition, or in the auctioning of art and antiques, it is justifiable,
again as a first approximation.

Assumption C3, private values, is a further strong restriction. Even
in an art auction, the winner's utility will be influenced by others’ bids
if there is a chance that he may later wish to resell the painting he has
just purchased.

We conclude this section with some observations about the nature of the
probability functions pi(x), i=1,...,n.

In all the contests examined so far, the winner is always the agent who
incurs the greatest cost. That is,

0, xi < mnx{xl,...,xn}

pi(x) -

, X

gir

{ is one of m maximal elements of {xl,...,xm}

is a discontinuous function of each agent’s cost.
As noted in Section I, there are applications for which a continuous
probability function seems more natural. Consider again the political

competition model. Plausibly the political impact, of an agent’'s

z;,
promotional activities is less than perfectly correlated with his

expenditures x Suppose, then that

i



32

= A(x i=1,...,n

% 10€¢)

where A 1is an increasing function and e, 1is independently and

i
identically distributed. If it is the agent with the largest political

impact, rather than the one who spends the most, who is the winner, the

implied win probability is continuous in X,

For example, suppose n = 2,

zZ, = X, €

i i1

and that € has cumulative distribution function

-ae€

F(ei) -1-e i.

Given spending levels of Xy and X, agent 1l wins if

(4.7) x252 < xlel.

For any given €, the probability that (4.7) holds is

X -ax,€,/x
Pr{e > {—g]c } - 272 1.
1 Xy 2

Taking the expectation over €,

© -ax.€,/X, -ae X
22’71 2 1
pl(xlvxz) - a ,g e e d(z -

The win probability is thus equals to the agent’s share of the total amount

spent in pursuit of the political payoff.

V. Auction Design

In this final section we summarize some of the central results in
auction theory. This literature has focused primarily on the choice of an
auction by a risk neutral seller. The starting point is the Revenue Equi-

valence Theorem. In its original form (Vickrey (1961)) this states that if
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Assumptions A, B and C of Section IV are satisfied, then expected revenue
from the open ascending bid auction and the sealed high bid auction is the
same.

Given risk neutrality and private values, the expected payoff to buyer

i becomes
Ui - vi -b+w
where

vi - v(si).

Given independence of the signals, we also have independence of valuations.
The resulting model is therefore exactly that which we considered in Section
III, with the additional independence restriction.

Using the discrete version of this model it is not difficult to see why
the revenue equivalence holds. First we note that, in each auction, the

expected payoff to type Ve is

Ut - vtPr(vt is a winner) - Expected payment by type t.

In each auction type t wins against lower types and wins half the time
against his own type. Given Assumption C2, independence, we can write the

probability that an opponent is of type j as pj. Then, in equilibrium,

t-1
1
(5.1) Ut - vt[ E: pJ +3 pt] - Expected payment by type t.
j=0

We shall now argue that the expected payoffs are the same in the two
auctions. It will then follow directly from (5.1) that expected payments

are also identical, hence, revenue equivalence.
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We begin with the open auction. Type t and type t+l always win if
up against types 0,1,...,t-1. In each case the selling price is the same

so the only difference is the difference in the buyers' valuations (vt+1-

vt). If the opponent is of type t there is a zero profit for type t and

since the selling price is V., a profit of (v -vt) for type t+l.

t+l
Thus again the difference in payoffs is the difference in valuations.
When up against types higher than t+l, neither buyer type can make a

profit. Therefore the difference in equilibrium expected payoffs is

t
(5.2) Uerr = Ve = ey V) [Z pj]'
j=0

Now consider the sealed high bid auction. We saw in Section III that a type

t bidder adopts a mixed strategy over some interval [Bt_l,bt]. In
particular, if he bids the upper support Bt’ a type t bidder wins with
probability
t
Z P3
j=0
and so
t
(5.3) u_ - [ z pJ] (vt-st).
j=0

But Bt is also the minimum bid by type t+l. The probability of winning

is the same and so

t
(5.4) Uet1 = [Z Pj] (Ves17Pe) -
=0

Subtracting (5.3) from (5.4) we obtain (5.2). Finally we note that, in both
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auctions U0 = 0. Therefore expected payoffs are identical as claimed.
For the continuous version of the model, there is a helpful geometrical
argument which also illustrates the result. Regardless of the details of

the auction, the expected payoff to a buyer with valuation v can be

written as
(5.5) U =vP - R = v(probability of winning)} - (expected payment)

Moreover, given the rules of the auction, if all other buyers are bidding
their equilibrium strategies, buyer 1 can compute the win probability P
and expected payment R associated with each of his bids. This implicitly
defines an equilibrium mapping R(P). If buyer 1 has valuation v he then
solves the following problem

(5.6) max (Ul = vP-R | R = R(P)).
P

This maximization is depicted in Figure 3. Note that the indifference
contours for buyer 1 are lines of slope v. Therefore buyer 1 chooses P*

so that

(5.7)

&l&

= v = R'(p)
U

With valuations distributed continuously according to the c.d.f. F(v),
and (n-1) other buyers all bidding according to the symmetric equilibrium,
buyer 1's probability of winning is

(5.8) pr = P 1y,

Differentiating (5.8) and making use of (5.7) we obtain

dR dR dgP*

(5.9) - g - v(n-1)F) 2 25 (v).

As long as the minimum valuation is zero so that R(0) = 0, we can



R*

R(p)

U=svP-R=const

Figure 3:

prar® 1 (v)

Equilibrium best reply
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reintegrate (5.9) to obtain

(5.10) R(v) = [V xdF* 1(x).

0

That is, the expected payment by a buyer with valuation v is independent
of the form of the auction.

Actually we have not simply proved Vickrey’s original revenue
equivalence result, but something far stronger. For any auction in which
equilibrium bidding is strictly monotonic and the prize is awarded to the
winner, the above argument goes through unchanged. Suppose, for example,
that the high bidder wins the auction but all the bids are paid to the
seller. Extending the analysis of Section I, it can be shown that higher
valued buyers will indeed bid more in such an auction. Therefore expected
revenue is the same as in the open ascending bid auction.

Using (5.10) we can immediately write down the equilibrium bidding

strategy. Since R(v) 1is the equilibrium expected payment we have, with n
bidders

br(v) = [V xdF* L(x).
0

By way of contrast, in the sealed high bid auction the expected payment is

the bid b(v) times the probability of winning Fn-l(v). Hence

n-1
b(v) = fv Xan-l(X)‘
0 F (v)

We now consider some of the implications of relaxing the assumptions.
First of all we note that the private values assumption (C3) is not crucial.
To see this, consider the two buyer case. Buyer 1, with signal s, wins if

buyer 2 has a lower signal S,- Buyer 1's expected value, conditional on
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winning is therefore

!
f v(sl,sz)F’(sz)ds2

F(s

(5.11) v(sl) - )
1
His equilibrium expected payoff

s

1 1 ,
U™ (s) -£ v(8,,8,)F" (s,) - b(s;)F(s;)

can therefore be rewritten as

(5.12) Ul(sl) - ¥(8,)F(s,) - b(s))F(s

v %

- G(sl) (probability of winning) - expected payment.
Since (5.12) has exactly the form of equation (5.6) the analysis carries
over. That is, revenue equivalence continues to hold.

Returning to the private values model, suppose Assumption Cl is

replaced by the assumption that buyers are risk averse. That is

i
U = u(w-b,si), where U4 < 0.

For simplicity, suppose that the object for sale has a monetary valuation
v(si) so utility can be rewritten as

Ui - u(w+v(si)-b).

Consider the sealed high bid auction. If »p 1s the probability of
winning with a bid of b

gul - pu(wv(s,)-b) + (L-plu(w).

Each buyer, in deciding whether to raise his bid considers the tradeoff

between the greater win probability Ap and the increased cost Ab. From

(5.12)
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(5.13) AEU1 - Ap[u(w+v(si)-b) - uw(w)} - pu'(w+v(si)-b)Ab.

For a risk neutral buyer, with constant marginal utility of wealth, this can

be rewritten as
(5.14) AEUY - [4p(v(s{)-b) - pablu’ (whv(s,)-b).

Buyer 1 then chooses a bid such that the marginal incentive to bid higher
(the bracketed expression) is zero.

For a risk averse buyer, declining marginal utility implies that
u(w+v(si)-b) - u(w) > u'(w+v(si)-b)(v(si)-b)).

Comparing (5.13) and (5.14) it follows that a risk averse buyer has a
greater incentive to bid higher. Intuitively, a risk averse buyer bids
higher because his disutility of losing is greater.

In the open ascending bid auction, the introduction of risk aversion
has no effecf on equilibrium bids. Just as in the risk neutral case, each
buyer has an incentive to stay in the auction until the asking price reaches
his valuation v(si). Risk aversion therefore leaves expected seller
revenue unchanged in the open auction and increases expected revenue in the
sealed high bid auction. It follows that expected seller revenue is higher
in the 1atter.3

We next consider the implications of retaining assumption Cl1 (risk
neutrality) but dropping the assumption of independence and private values.
There are two central results both due to Milgrom and Weber (1982). First,
in such an environment, public information increases expected seller

revenue. This public information may be information provided by the seller

3In fact, as Matthews (1983) and Maskin and Riley (1984) have shown, a
risk neutral seller can further exploit buyers’ fear of loss to raise
expected revenue. Losing bidders must pay an entry "fee" c(b), which is
positive for low bids and negative for high bids.
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prior to the auction or even information which arrives after the auction.
In the latter case, the seller exploits the information by introducing a
royalty payment, contingent upon the ex post signal.

The key insight which explains this result is that public information
makes each buyer’s own private signal less important. As a result
differences in buyers’ willingness to pay are reduced. It is precisely
these differences which allow a buyer to make a positive expected profit and
which therefore lower expected seller revenue. The point is most readily
made when the public information is conclusive. Then all private signals
are irrelevant and so bidders will compete avay the entire surplus.

The second result concerns the comparison of the two auctions. Milgrom
and Weber show that with risk neutrality, and with beliefs satisfying the
assumption of conditional stochastic dominance, expected revenue is lower in
the sealed high bid auction.

To understand this result we return to the discrete 2 buyer example of
Section III. Buyers valuations are either O, vy °or v, and beliefs given

by the joint probability matrix

Crucial to the discussion is that, given conditional stochastic dominance

P10 P20
P1g*Pyq - PortPyn’
10°P11 20" P21

(5.15)

A simple example of a joint distribution satisfying conditional
stochastic dominance and hence this property is depicted in Figure 4. Each

buyer draws from the same urn with replacement. Each buyer knows the
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distribution in the two urns but neither knows from which he is drawing.
However observing a ball does reveal information. For if a buyer draws a
zero he knows that the urn is more likely to be urn B and so the probability
that his opponent will also have drawn a zero is relatively high. If it is
urn B the joint probability of two zeros is (0.6) x (0.6) = 0.36. 1If it is
urn A the joint probability is (0.2) x (0.2) = 0.04. Since the two urns

are equally likely the joint probability of both drawing a zero,
Poo = }(0.04) + %(0.36) = 0.20

The rest of the probability matrix is similarly computed. We have

.20 .08 .12
[pij] - | .08 .04 .08
.12 .08 .20

For the open ascending bid auction, a type 1 bidder makes a profit only
against a type O bidder (who does not bid). His expected payoff is
therefore
U - _T10"1
1 Po*P*Py,
A type 2 buyer also makes a profit against a type 1 bidder by bidding just

more than vy- His expected payoff is therefore

_ P20Y27P91 (Va Vi) (Pog*Pyy) (Vprvy)eygvy

(5.16) U
Pyo*Py1*Pyy P20*P21%Py,

2

We now turn to the sealed high bid auction. As argued in Section 3, a

type 1 bidder will adopt a mixed strategy over some interval [0,b while

1!
a type 2 bidder will adopt a mixed strategy over some interval [51,52].
Since one of a type 1 buyers’ equilibrium bids is zero, his equilibrium

expected payoff is
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V1P10

5.17 -—110
17 1 Pio*Py1*Py,

that is, exactly as in the open auction.

Moreover, if a type 1 buyer makes his maximum bid, 51, he bids
against an opponent of type 0 or 1. Therefore,
(V=D ) (P 4+Pq 1)
(5.18) . =L 17710711
1 Po*P11*Pyo
Combining (5.17) and (5.18) we obtain
- P10 P20
(5.19) v, - b, = [——————-]v = [S——————]v » by (5.15).
L1 Byg*ey) 17 (eygteyy )t

Thus a type 1 buyer is less aggressive and makes a smaller maximum bid than
he would if his beliefs were the same as those of a type 2 buyer.

Now consider a type 2 buyer. Since his minimum bid is 51 and, when
he bids this, he wins only against type 0 and type 1 buyers, his expected

payoff is

§
2 Pyo*Py1+Py; Po*P21*Py;

Substituting from (5.19), we obtain

5 5 2™V (Pyg*Pyy) + vipyg

(5.20) >
2 Pyo*P21*Py)

.

Moreover, this inequality is strict whenever inequality (5.15) is strict.
Comparing (5.16) and (5.20) it follows that the expected payoff of type
2 buyers is higher in the sealed high bid auction. But then expected

revenue to the seller must be lower.
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The key insight is that, in the sealed high bid auction, a type 2
buyer’s minimum bid and hence his expected payoff, is determined by the
maximum bid of type 1 buyers. This in turn is determined by the beliefs of
type 1. As we have seen, the higher the probability a type 1 buyer assigns
to the valuation Voo the less aggressively he bids. A type 2 buyer is
then able to benefit from the less aggressive bidding.

In contrast, when buyers bid in the open auction, the connection
between the payoffs to type 3 and the beliefs of type 2 is severed.
Expected revenue is then greater than in the sealed high bid auction.

Thus far we have considered only relaxing one or more of the class C
assumptions. In particular the assumption of symmetric preferences, beliefs
and bidding behavior has been maintained throughout. Given a symmetric
environment, Maskin and Riley (1986) have shown that there is a strong
pPresumption that equilibrium is symmetric in the sealed high bid auction.
However, with open bidding and common values, there can be a continuum of
equilibria. To see this, consider the two buyer case and suppose buyer 2

adopts the monotonic strategy
b2 - BZ(SZ)'
Let ¢2(b) - Bél(b) be the inverse of this strategy. If the bidding
reaches b and then buyer 2 drops out, buyer 1's net payoff is
V(Sl,¢2(b)) - b~

If this is positive, buyer 1 is happy to win the auction. However, if this
is negative, buyer 1 has already waited too long. We conclude, therefore,

that buyer 1 should drop out when the asking price reaches bf satisfying

(5.21) v(s1,¢2(bf)) - bf = 0.
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This implicitly defines buyer 1’s best reply Bl(sl)' Writing the inverse
of this function as ¢1(b) - Bil(b) we can substitute into (5.21) to obtain

the necessary condition
(5.22) V($1(b),4,(b)) - b = 0.

Since exactly the same argument holds for buyer 2, condition (5.22) is the
only necessary condition. Therefore any pair of strictly increasing inverse
bid functions satisfying (5.22) are equilibrium inverse bid functions.

Finally, Maskin and Riley (1987) have compared the two common auctions
when all the symmetry assumptions are dropped. To take the simplest pos-
sible case, suppose there are two buyers. The first’s valuation is a draw
from the distribution Fl(v) and the second from the distribution FZ(V)'
Loosely speaking, the main conclusion of this research is that the sealed
high bid auction is likely to yield higher revenue when the upper support of
one distribution is significantly larger than the upper support of the
other. On the other hand, if the two distributions have the same support
and F1 and F2 are sufficiently different, the ranking is likely to be
reversed.

Two simple examples illustrate these results. Suppose first that buyer
1's valuation is continuously distributed according to the c.d.f. F(v) on
[0,1] while buyer 2's valuation is some number L with certainty, where
L>1. Let [b,b] be the support of the two buyers’ bid distributions.
Buyer 1 will submit a bid if and only if his valuation, K exceeds b.
Then if buyer 2 bids b he wins if Vi < b, that is, with probability
F(h). His equilibrium expected payoff is therefore F(b)(L-b). If buyer 2

bids 1 he wins with probability 1. Therefore

F(b)(L-b) = L-1.
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Hence

F(b)L > L-1,
that is,
(5.23) F(b) > Lil

As L becomes large the right hand side approaches 1. Therefore

lim F(b) = lim b = 1

j ) )

It follows that, as L becomes large, the support of the equilibrium
bid distribution collapses towards a bid of 1. Expected seller revenue
therefore approaches 1.

For the open ascending bid auction, buyer 2 will always outbid buyer 1,
who stays in the bidding until his valuation is reached. Expected seller

revenue is therefore

E{v,) = fl vdF(v).
0

It follows that, for all L sufficiently large, the sealed high bid auction
generates greater expected revenue.4

For the second example, suppose buyer 1's valuation is again equally
likely to be 0 or 1, but buyer 2 has a valuation of 1 for sure. In the open
auction expected revenue is then 1/2. Turning to the sealed high bid
auction, arguing as in Section 3, equilibrium bidding strategies will be
mixed strategies over some interval [0,b), for a buyer with a valuation of

1. But buyer 2 has an expected gain of 1/2 if he bids ¢, since, with

4For the uniform case, with F(v) = v, it follows from (5.23) that, in
the sealed high bid auction the minimum bid b exceeds 1/2 for all
L = 2. Therefore expected revenue is higher in the sealed high bid auction
for all L = 2,



45

probability 1/2 his opponent has a zero valuation. Therefore buyer 2 will
never bid more than 1/2 and so the mixed strategies are over an interval
(0,b] where b =< 1/2. It follows that expected revenue in the sealed high

bid auction is less than 1/2.

VI. Concluding Remarks

While the theory of auctions and contests has advanced dramatically
over the last few years, important questions remain unresolved. First of
all, exploration of the asymmetric model has only just begun. Second,
almost all of the theory on auctions has concentrated on the sale of a
single unit. There is, as yet, almost no theory on sealed bid auctions in
which each buyer has a downward sloping demand curve for multiple units.5

Third, the auction literature has focused almost exclusively on a
single sale. In practice, major participants enter auctions repeatedly and
so have an opportunity to develop bidding reputations. Moreover, in the
sale of related items, the price of one item affects expectations about
prices at later auctions. This not only affects the way buyers will bid but
also has implications for the seller. Specifically, the seller must decide
how high a minimum bid to set and whether to announce it. It would be very
nice indeed to be able to draw firm theoretical predictions for repeated
auctions of this type (vintage wine, old masters, etc.)

Finally, research is only just beginning to produce useful insights on
the role of bidding in government contracting. Here an additional problem

is that often the product cannot be completely specified at the time of the

5If all the items for sale are sold at the highest unsuccessful bid it
is easy to see that each buyer has an incentive to submit his true demand
curve. Modelling strategies when buyers must pay their schedule of bids is,
however, a difficult challenge.
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initial competition for the contract. Final terms are only determined aftér
the contract winner completes further R&D. Knowing this, and anticipating
later renegotiations, agents make initial bids that do not reflect
anticipated costs.

One recent proposal is that there should be a further round of bidding
for the right to produce after R&D is completed (some such contracts have
recently been negotiated). Except under the very simplest of assumptions,
the theoretical implications of this and other proposed incentive schemes

remain to be worked out.
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