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Abstract

This paper presents recent results on robust estimation of the linear
regression model. The concept of influence function is used to compare and
contrast the efficiency and robustness properties of a number of regression
estimators. Various computational problems are also discussed.
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1. Introduction

In recent years much research has been devoted to developing regression
estimators that perform well when the assumed statistical model is
correctly specified, while being robust, that is, not too sensitive to
small violations of the model assumptions [see e.g. Huber (1981) and

Hampel et al. (1986)]. This informal definition of robustness corresponds
to Hampel’s (1971) definition of qualitative robustness, which formalizes

the notion that an esti.maﬁor is robust when its probability distribution
changes 1little under small changes in the underlying probability
distribution of the observations. Because a test inherit the efficiency
and robustness properties of the estimator on which it is based, tests
based on robust estimators are also robust, that is, their level and
power are stable under small departures from the model assumptions. Tests
based on robust estimators with good efficiency properties are robust and
have, in addition, good power properties.

The purpose of this paper is to present a number of robust
regression estimators and discuss their properties in a unified
framework. We hope that this will provide valuable information to the
applied investigators about the relative merits of the various
estimators, and will encourage their use.

The remainder of the paper is organized as follows. Section 2 presents
the statistical model and the class of estimators that we consider.
Sections 3-7 introduce the various estimators and discuss their
efficiency and robustness properties. Section 8 deals mainly with

computational issues.



2. The statistical model and the clagss of M-estimators

Let z = (yn, x"‘)’ be a vector of observations on k+1 variables. A common

way of modelling the relationship between Y, and X is to assume that

yn=x; B0+un, n=1,...,N (1)
where u is an unobservable disturbance, and BOERR is a vector of unknown
regression parameters. Further, it is commonly assumed that (i) the
disturbances and the regressors {xn] are independent (or at least
uncorrelated) (ii) the disturbances are independently and identically
distributed (i.i.d) with zero mean and finite variance, (iii) the common
distribution of the disturbances is N(O,o(z)), wherelo‘z) > 0 is unknown. We
shall say that model is correctly specified when the observations satisfy
(1), and (i)-(iii) hold. In fact, the assumed model need not be exactly
true. For example, the distribution of the disturbances may have somewhat
thicker tails than the normal, there may be a few gross-errors in the
data, small departures from linearity in the relationship between y and
x, etc. Moreover, it may be difficult to detect exactly the nature of the
model misspecification. In this kind of situations, which appear to arise
frequently in empirical work, it may be sensible to consider estimators
of 6, = (B,, 02) that are reasonably efficient if the model is correctly
gpecified, while being robust, that is, not too sensitive to violations
of the model assumptions.

All robust estimators of Bo that we shall discuss are M-
(generalized maximum likelihood) estimators, that is, estimators defined

as roots of implicit equations of the form



N -
)_."n’1 n“(z,e) = 0,

where the function 1. : R**' x & — R*, with 8 = ((B,0”): BeR", 0%>0), is
called the score function associated with the given estimator.

It is well known that the efficiency and robustness properties of an
M-estimator are closely related to the properties of its influence
function (IF) [Hampel (1974)]. The IF is a measure of the asymptotic bias
of an estimator when the assumed model is subject to a small amount of
contamination by a point mass distribution. Given a parametric model, an
M-estimator is efficient if and only if its IF is equal to the likelihood
score (up to a linear transformation). On the other hand, an M-estimator
is qualitatively robust [Hampel (1971)]1 if its IF is bounded and
continuous. Qualitative robustness is a desirable property, because it
ensures that small perturbations of the assumed model can have only small
effects on the estimates, but does generally conflict with efficiency.
For M-estimators, the sup-norm of the IF, called the estimator’s
sensitivity, provides a natural quantitative measure of robustness. A
bounded influence (or B-robust) estimator is one with a bounded IF or,
equivalently, a finite sensitivity.

The IF provides only a local approximation to the behavior of an
estimator. A global measure of robustness is given by the estimator’s
breakdown point [Hampel (1971)], which measures the distance from the
assumed model up to which the estimator still gives some relevant
information. Donoho and Huber (1983) and Hampel et al. (1986) provide
tractable finite-sample versions of Hampel’s original asymptotic concept.
The practical importance of the breakdown point has been demonstrated by

Hampel (1985), who shows that the robustness properties of various



location estimators in a number of simulation experiments can accurately
be classified on the basis of their breakdown point alone.
All the estimators of BO considered in this paper are based on a

score function of the form

n,(z,8) = w(z,8) x (v - x’B), (2)

k+1
where w: R

x 6 — R+. All these estimators can therefore be
interpreted as weighted least squares (LS) estimators, and are all
consistent and asymptotically normal under general conditions [Maronna
and Yohai (1981)]1. Although very large, this class of estimators is not
completely general. In particular, it excludes some interesting (but
usually computationally burdensome) estimators, such as the resistant
line estimator [see e.g. Johnstone and Velleman (1985)], resistant
instrumental variable estimators [Krasker and Welsch (1985)], adaptive
estimators {[Bickel (1982)1, and high breakdown-point estimators [Siegel

(1982), Rousseuw (1984), Rousseuw and Yohai (1984), and Yohai (1987)1.

3. Least squares

When the weight function in (2) is identically equal to 1, we obtain the
ordinary LS estimator é!.s’ which is also the maximmm likelihood (ML)
estimator under the normality assumption. Lgt B" denote the LS estimate
based on a sample of N observations, and consider adding to this sample
an additonal observation z = (y,x). Let 5““ denote the LS estimate for

the new sample of N + 1 observations. Using well known results we obtain
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where X is the Nxk design matrix. We assume for simplicity that the
regressors are also i.i.d. with common distribution function H. Then,
multiplying both sides by N and taking the limit in probability as N — ®
under the assumption that the model is correctly specified, gives the IF

of BL s evaluated at the point z
IF(z,B ) = [E, w1t x (y - x'Bg) s

where EH denotes expectations with respect to the marginal distribution
of the regressors. If H is not specified, expectations can be replaced by
sample averages.

The IF of I§L g can be viewed as the product of two components. One is
equal to y - x’Bo, and is the 'influence of the residual’. The second,
[E}l vv’]'1 x, will be called the ’influence of the regressors’. The
sensitivity of E?LS is not finite, because the influence of the residual
is not bounded. Moreover, unless the regressors take values in a bounded
set, the influence of the regressors is also unbounded. As a consequence,
the LS estimator is not qualitatively robust and has zero breakdown
point, that is, one large disturbance or one gross-error in the data are
sufficient to completely spoil the estimates.

Let 0°_ denote the unbiased estimate of o5 under normality. Then, by

the same argument used to derive the IF of BL g+ one obtains

= (v - x'B,)° - o,

~2
IF(z,oLS)



This is a quadratic function of the disturbance and is clearly unbounded.
Thus large disturbances have an even greater effect on the LS estimates
of ¢ o' This can seriously affect inference based on the usual t- and F-

statistics.

4, Estimators with a bounded influence of the residual

As a first step in obtaining robust estimates of P o °ne might bound the
influence of the residual. Several proposals exist in the literature.
However, since the influence of position remains unbounded, all these
estimators are not qualitatively robust and have zero breakdown point. In
particular, all can be very sensitive to gross-errors in the data.

The least absolute deviation (LAD) estimator corresponds to the
choice w(z,0) = 1/]y - x'B|, provided that y - x’8 # 0. The fact that y -
x'B may be equal to zero can be taken into account in practice by putting
w(z,0) = max {(1/|ly - x'Bl, 1/¢}, vhere € is a small, positive number
[Fair (1974)1. The LAD estimator is also a regression quantile estimator
[Koenker and Bassett (1978)], and is the ML estimator when the error
distribution is Laplace (double-exponential). The influence of the
residual is equal to the sign of y - x'B, and is clearly bounded but not
continuous at y - x'B = O. This implies that the LAD estimator can be
very sensitive to rounding or grouping of the observations.

The Huber estimator of regression B, [Huber (1973, 1981)]
corresponds to the weight function w(z,8) = min {1, c/lrl}, where c
is a finite positive constant and r = (y - x'B)/0. The score function of

BH can be written



n(y,x,B,0) = ‘pc(r) X,

where the function wc(r) = max {-c, min (c, r)} is called the Huber
function. This function plays a key role in robust statistics. It is easy
to show that the influence of the residual is proportional to ¥_(r) and
is bounded and continuous. The LS and LAD estimators may be viewed as
limiting cases corresponding respectively to ¢ — ® and ¢ — 0. The Huber
estimetor can be interpreted as a method of moments estimator, obtained
by equating to zero the sample covariance between the regressors and the
censored residual wc(r). éu is also the ML estimator for Huber’s least
informative distribution. This distribution has minimm Fisher
information measure over all symmetric distributions in a given
neighborhood of the normal model. It behaves like the normal in the
center and like the Laplace in the tails. According to this ML
interpretation, the bound c depends on ¢ o and the radius € of the
neighborhood. In particular, c should decrease as € or 0 increase.
Schweppe’s estimator [Handschin et al. (1975)] corresponds to the

weight function w(z,8) = min {1, c(1 - N"lh(x))“2

/lr|}, where h(x) = x’
(E“ wv! )'1 x is the squared norm of x in the metric of the inverse gsecond
moment matrix of the regressors. Schweppe’s estimator behaves
asymptotically like the Huber estimator, because c(1 - Ndh(x))“2 — c

aBN-’W.

5. Optimal bounded influence estimators

We now consider estimators whose IF (and not just a part of it) is

bounded and continuous. Therefore, they are all qualitatively robust and



have a finite breakdown point. There is a trade-off between efficiency
and robustness, because bounding the IF generally involves a loss of
efficiency at the normal model. A bounded influence estimator that
attains the best trade-off between efficiency and robustness is called an
optimal bounded influence estimator. Formally, such an estimator has
minimm asymptotic mean square error (MSE) at the normal model among all
estimators with a given sensitivity [see e.g. Hampel et al. (1986)]. A
whole class of estimators may be obtained by varying the MSE criterion
and the metric in which the estimator’s sensitivity is defined. A
drawback of these estimators is the fact that their breakdown point
decreases as the number of estimated parameters increases [Maronna,
Bustos and Yohai (1979)].

First, we apply results of Peracchi (1987) to derive optimal bounded
influence estimators of B 0" An estimator’s sensitivity is defined in the
metric of some kxk positive definite (p.d.) matrix B, and the same metric
is used for the asymptotic MSE criterion. By varying B one obtains a
whole class of estimators. The sensitivity bound is given by c. A method
for choosing c will be discussed in Section 8.

An optimal bounded influence estimator of B 0! denoted by a, is based

on a weight function of the form
w(z,6) = min {1, c/CIr[lA xligl}, (3)

where llzllB = (2'B z)“2 denotes the norm of the vector z in the metric of

the p.d. matrix B. The kxk matrix A is p.d. and satisfies the implicit

equation



1 .o,

EH [2 d(c/lA xI]B) - 1] x’ - A
where ® denotes the standard normal distribution function. It can be
shown that A (and hence B) exists only if the sensitivity bound c is at
least as great as c = (u/2)”2 (trace B)/(EH IIxIlB), that depends on the
matrix B and the spread of the x-distribution.

The score function associated with B can also be written as

n(y,x,B,0) = Wc(x,(r) x

where c(x) = c/J|A xIIB. Thus B can be interpreted as a method of moments
estimator, obtained by equating to zero the sample covariance between the
regressors and the censored residual v, (x) (r). Unlike the Huber
estimator, the degree of censoring is not constant but depends on x.

Another way of representing the score associated with B is

n(z,8) = y_(r/w(x)) w(x) x

where @(x) = 1/}A xllB is a scalar weight that depends only on the norm of
the vector of regressors. Thus, when |r| > ¢ @(x) the residual is
censored and the vector of regressors is downweighted by w(x).

By varying the matrix B, a whole class of optimal bounded influence
estimators is obtained. Each estimator in this class is only optimal for
one particular choice of B, and so optimality is only in a weak sénse.
However, all estimators in this class are admissible, that is, no
estimator can be dominated by another for all choices of B. We are now in

the position to establish the relationships between several bounded
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influence estimators proposed in the literature.

The Hampel-Krasker estimator EHK {Hampel (1978), Krasker (1980)] is
the optimal estimator when the sensitivity and the MSE are both defined
in the Euclidean metric, i.e. B = I..‘. The corresponding weight function
is equal to w(z,8) = min {1, c/[|r|lA xl|1}, where the matrix A satisfies
the implicit equation E_ [2 ®(c/lA x]l) - 11 xx’ - A"! = 0. The necessary

lower bound on c is equal to ¢ = k (1{/2)“2

/(E, lixll) and depends on the
number of regression parameters.

The Krasker-Welsch estimator éxw [Krasker and Welsch (1982)] is the
optimal estimator when the sensitivity and the MSE are both defined in
the metric of the inverse asymptotic variance matrix of éxw’ The
corresponding weight function is equal to w(z,0) = min {1, c/[lr|(x’ Q
x)“zl, where the matrix Q satisfies the implicit equation E w(z,6)2 r2
xx' - Q@' = 0. Notice that éxw is not optimal for an arbitrary MSE
criterion, which contradicts the original claim of Krasker and Welsch.

Both the Hampel-Krasker and Krasker-Welsch estimators require
solving an implicit matrix equation in order to compute the weights. This
can be computationally burdensome. Peracchi (1987) proposes two bounded
influence estimators based on the weight functions w(z,8) = min {1,
c/lirtixll1} and w(z,8) = min {1, c/[lIrl h(x)'’2]}. These estimators,
denoted respectively by BI1 and BI2, are optimal under an appropriate
choice of metric, and are computationally simple because they do not
require solving an implicit matrix equation.

An optimal bounded influence estimator of 02 can be based on the

score function

X(2,0) = v(z,0) (r® - 1)

10



where v(z,0) = min {1, d/|a (r> -1)|} and d is the sensitivity bound. The

scalar a is a root of the equation Etb min {1, d/la (r2 - 1)}} (r2 - 1)2 -

a'1 = 0. It can be shown that such a root exists only if the sensitivity
bound d is at least as great as 1/(E, |r° - 1|). By analogy with the BI1
estimator, a considerable simplication can be obtained by choosing v(z,0)
= min (1, d/Ir° -1]}.

Tests of model specification may be based on the difference between
the E? and the LS estimates. Tests of this type are likely to be quite
powerful, since the difference between the two estimators can be very
large when the model is misspecified, but E? will be only slightly less
efficient than LS if the model is correctly épecified. Useful diagnostics
for detecting influential observations and outliers can be based on the
set of robust weights (3), computed for each observation in the sample.
The use of these weights provides an alternative to the traditional
methods based on deleting a subset of observations at a time, and then
comparing the resulting estimates with the ones based on the full sample.
The use of robust weights has several advantages over these methods.
Robust weights are jointly computed with the parameter estimates and
require no additional calculation, and are easy to interpret, because of
the weighted LS nature of an optimal bounded influence estimator.

There have been some interesting applications of optimal bounded
influence estimators in empirical econometrics. For example, Krasker, Kuh
and Welsch (1983) and Small (1986) estimate hedonic price models for
housing. Swartz and Welsch (1986) estimate and forecast energy demand.
Thomas (1987) uses a very large data set to estimate Engel curves for
food. All these studies indicate that these estimators can lead to

gignificant differences with respect to LS in terms of point estimates,

11



inference and forecasts. This is mainly due to the fact that they are
much less sensitive than LS to outliers and aberrant observations. These
studies also demonstrate how robust weights can be used as an effective

diagnostic tool.

6. Mallows estimators

Optimal bounded-influence estimators place an overall bound on the norm
of the IF. Mallows (1975) proposed a class of bounded influence
estimators with separate bounds on the influence of the residual and the
influence of position. When both bounds are finite, Mallows estimators
are also qualitatively robust and have a finite breakdown point that
decreases as the number of estimated parameters increases. The weight
function of these estimators takes the form w(z,0) = min {1, c/Ir|} ©(x),
for some weight function w(x) depending only on the regressors. When w(x)
is identically equal to 1 we obtain the Huber estimator. The score

function associated with these estimators is of the form
n(z,0) = v _(r) o(x) x.

The optimal estimators in this class (in the asymptotic MSE sense)
correspond to the choice @(x) = min {1, y/lA xIlB} for some matrix B and a
finite positive constant y [Peracchi (1987)]. The matrix A satisfies the
implicit equation E, min {1, 7/IA xlg} xx’ - A"' = 0, which implies a
necessary lower bound on Yy given by 1' = (trace B)/(E“ lelIB). When B = Ik
we obtain the Mallows-Hampel estimator [Hampel (1978)]. When ®(x) = min
{1, y/(x’Q x)“z}, where Q solves the equation E min {1, ¥/(x’'Q x)”z)2

12



xx! - Q' = 0, we obtain the Mallows-Maronna estimator [Maronna and Yohai
(1981)]. When (x) = min {1, ¥/lxll} and o(x) = min {1, ¥/h(x)''?} we
obtain the M1 and M2 estimator proposed by Peracchi (1987). These two
estimators are analogues of the BIl1 and BI2 estimators, and are
computationally convenient because they do not require solving an

implicit matrix equation.

7. Redescending estimators

For all robust estimators discussed so far the influence of large
residual is finite and bounded away from =zero. However, for some
distributions with heavy tails, such as Sudent’s t, the likelihood score
tends to zero for large values of the disturbances. This observation
suggests that estimators with good robustness properties against thick-
tailed distributions may be obtained by requiring the influence of the
residual to go to zero, or become zero, for large values of the residual.
Estimators with this property are called ’'redescending’. Examples include
Hampel’s (1974) three-part redescending estimator, Andrews’s (1974) sine
estimator, Tukey’s biweight estimator [Beaton and Tukey (1974)] and the
hyperbolic tangent estimator [Hampel, Rousseeuw and Ronchetti (1981),
Ronchetti and Rousseeuw (1985)]. The available evidence indicates that
redescending estimators are very robust but can be computationally quite

burdensome because of non-uniqueness problems.

13



8. Computational aspects

Computation of optimal bounded influence estimators of © o is relatively
simple, because the matrix A and the constant a do not depend on 6 but
only on the distribution functions ¢ and H. Moreover, in the case of the
BI1 estimator one can simply put (A, a) = (Ik, 1). Given (A, a), optimal
bounded influence estimates a = (5, ;z) can be obtained by an iterative
scheme whose i-th iteration is of the form:

(e1)12 _ o N (1) =1 g N (1) (v - xn’B(“)zy (4)

n=1 n n=1 n

(i) (i) (i)
r

where w o= min {1, c/[lrr(‘“HIA anB]}, A min {1, d/|a ([ n 2 .-

]
(i) _ yali), ,~(1) s s . .
1)]} and r = (yn- X B )/o . This iterative scheme can easily be
implemented on most LS packages. Good starting values for the iterations
may be given by the Huber or LAD estimates.
In some cases the investigator may prefer, for breakdown-point
reasons, to use a very robust estimator of scale rather than an optimal

one. One possibility in these cases is to use the median absolute

deviation estimator. This amounts to replacing (4) with
ol*1 = (071(3/417 med Iy, - x *B'"1, n = 1,..0N)

where the factor [¢li"1(3/4)]'1 js introduced in order to obtain asymptotic
unbiasedness at the normal model [see e.g. Hampel et al. (1986)]. Another
possibility is to follow Huber’s (1964) Proposal 2, and derive the

estimates of 6 0 by solving the problem

14



Min g0 QO) =0 E 1 (o (v, - x2B)/0) + VI, (5)

c(x )
n

where the choice of v guarantees asymptotic unbiasedness of the estimator

of scale at the normal model, and P, is a convex function defined as

r /2 if |r] < c(x)

Irle(x) - c(x)2/2 otherwise.

The first-order conditions for (E, ;2) are of the form

N
n=1

L4

cix )((yn - X;B)/;) xn =0
n

z (v, - x,’ff)/;) -Np=0

ne1l xc(x )
n

where X_(r) = ¥_(r) r - p_(r) = ¥ (r)%/2. Thus, v = B, [By X (,, ()]
Since v, is an odd function, that is wc(-r) z - wc(r), it follows from
the results of Andrews (1986), that the exact distribution of é is
symmetric about B o provided that the distribution of the disturbances is
symmetric about zero. It can also be shown that E is consistent and
asymptotically normal under general conditions (Maronna and Yohai

2

(1981)]. Furthermore, B and o are asymptotically independent. The

asymptotic variance matrix of B is of the form AV(B) = P! aQ (P’)",

where

o
"

E [(3/3’) n(2,6,)]

2]
"

E [ﬂ(z,eo) n(zyeo)’]y
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and can be estimated consistently as suggested in White (1982). When the
disturbances are i.i.d. normal, it is easy to see that P = E“ [2 ®(c(x))
-1l % and Q=0 P+ 20°E [e(x)® (1 - ®clx)) - elx) de(x)]
xx’, where ¢(-) denotes the N(0,1) density. Using these expressions,
however, leads to covariance estimates that are inconsistent under

heteroskedasticity or non-normality.

All regression estimators discussed above can be obtained by
suitable restrictions on the function Q(8). If c(x) = ®», V x, we obtain
the LS estimator. In this case ;2 is equal to the mean squared deviation
of the LS residuals. If c(x) = ¢, V x, we obtain the Huber estimator. The
choice c(x) = ¢ (1 - N? h(x))”z, gives Schweppe’s original estimator.
If c(x) = c/llA x|| for some matrix A we obtain the class of optimal
bounded-influence estimators. When c{(x) = ¢ and observations are
transformed by multiplying by w(x)“z, we obtain the class of Mallows’
estimators. Finally, by suitably modifying the function Q(6) one obtains
the class of redescending estimators.

Minimization of Q(6) may be carried out by gradient methods.
Alternatively, one may solve the first order conditions by iteratively
reweighted LS or a Newton-Raphson type algorithm. The FORTRAN subroutine
library ROBETH [Marazzi (1980)] and the conversational package ROBSYS
[Marazzi and Randriamiharisoa (1986)] are also available.

We conclude by presenting a simple procedure for choosing the
sensitivity bound ¢ for an estimator B obtained by solving (5). Consider
any of the commonly used meausures of the aéymptotic relative efficiency
(ARE) of two estimators. Under i.i.d. normal errors, the ARE of E? with
respect to the LS estimator depends only on the sensitivity bound ¢ and

the distribution of the regressors, and is a strictly increasing function

16



of c. Given the distribution of the regressors, choosing a sensitivity
bound is therefore equivalent to choosing a level of ARE. The choice
problem is therefore straightforward given the econometrician’s
preferences with respect to efficiency and protection against bias. For
Mallows estimators one needs to choose separate bounds on the influence
of the residual and the influemce of the regressors. If one wants to
attain an ARE of, say, .95 at the normal model, the above procedure may
be modified as follows. One can first choose the bound on the influence
of the residual so as to attain an ARE not exceeding, say, .975. One can
then choose the bound on the influence of position so as to attain the

desired ARE of 95%.
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