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Abstract

This paper summarizes from an econometric perspective the influence function
approach to robust estimation of parametric models. Hampel’'s optimality
results for M-estimators with a bounded influence function is generalized

to allow for arbitrary choices of the asymptotic efficiency criterion and
the norm of the influence function. Further extensions to various cases of
practical interst are also considered.
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1. Introduction

The basic aim of robust statistics is to develop procedures (estimators
and tests) that perform well when the assumed model is correctly
specified, while being relatively insensitive to small departures from
the model assumptions. Robust and semi-parametric statistics are quite
distinct. Robust statistics makes use of parametric assumptions, thereby
attaining high efficiency at the assumed model, but deals in a formal way
with the fact that these are almost never literally true. On the other
hand, semi-parametric statistics places only weak, regularity-type
assumptions on the statistical model, but does not address the question
of what happens when these are not exactly true.

The definition of robustness that is probably most satisfactory
theoretically is due to Hampel (1968, 1971), and formalizes the notion
that a statistic TN, indexed by the sample size N, is robust if small
changes in the distribution of the observations have only small effects
on the distribution of Tu 1. More precisely, let ZF(TN) be the
distribution of T“ when F is the underlying distribution of the
observations. Then the sequence {TN} is called qualitatively robust at
the distribution F, if, for large enough N, the mapping F — ZF(TN) is
continuous at F with respect to the topology of weak convergence. In
Hampel’s definition, the topology of weak convergence is induced by the
Prohorov metric, which captures three main types of deviations from the
model: (i) the occurrence of gross errors, (ii) the effects of rounding
and grouping of the observation, (iii) the fact that the assumed model is
at best an approximation to the unknown ’true’ model.

The two main approaches to robust statistics are Huber’s minimax



approach [Huber (1964, 1981)] and Hampel’s infinitesimal approach [Hampel
(1968), Hampel et al. (1986)]. Both approaches assume a parametric model
for the observations and then try to construct procedures that 'do well’
over a ’'neighborhood’ of the assumed model. The optimality problem of
parametric statistics is modified by introducing, in addition to the
classical consistency and efficiency requirements, a robustness condition
that refers to the behavior of a procedure in a neighborhood of the
assumed model. The exact formulation of the optimality problem depends on
the class of procedures, the type of neighborhoods of the assumed model,
the efficiency criterion and the robustness condition. In general, the
optimal solution entails a trade-off between efficiency and robustness 2,

Huber’s approach is to consider a certain neighborhood of the
assumed parsmetric model, and then to safeguard within that neighborhood
in & minimax sense. As an example, consider the problem of estimating the
mean of a distribution that is only known to be in a given neighborhood
of symmetric distributions around the Gaussian model. Since no bias
arises, the performance of an estimator can simply be measured by its
asymptotic variance. Huber (1964) represented this situation as a game in
which ’Nature’ picks a distribution so as to minimize the Fisher
information in the chosen neighborhood, and the econometrician picks an
estimator so as to minimize the maximum asymptotic variance. Huber was
able to characterize the ’least informative’ distribution. The minimax
strategy for the econometrician is the maximm likelihood (ML) estimator
based on the least informative distribution. This estimator, called the
Huber estimetor of location, is essentially a trimmed mean with the
trimming proportion depending on the data and the size of the

neighborhood. The generalization to the classical linear regression model
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is straightforward [see Huber (1973)].

Huber'’s 'approach is difficult to extend to the case of non-symmetric
distributions, and even in the symmetric case it leads to estimators that
are inadmissible 3. Wwe shall therefore follow the infinitesimal approach
to robustness, by focusing on the asymptotic behavior of an estimator in
an infinitesimal neighborhood of a given model. The influence function
(IF) ([Hampel (1968, 1974)] provides a useful desc:iption of this
behavior. On the one hand, the IF measures the effect on the asymptotic
value of an estimator of an arbitrarily small contamination of the
assumed model for the observations. On the other hand, it provides
information on the asymptotic variance of the estimator.

In this paper we consider a general class of estimators, namely the
class of M- (or generalized ML) estimators, defined as roots of an
implicit equation. This class of estimators includes most econometric
estimators, such as ML, least squares, least absolute deviations,
generalized method of moments and certain minimum distance estimators.
For M-estimators, Hampel’s definition of qualitative robustness is
equivalent to the IF being bounded and continuous. An estimator is called
B- (or bias-) robust if it has a bounded IF. B- robustness is a desirable
property, for it ensures protection against the bias that may arise
because of small failures of the model assumptions. Moreover, the sup-
norm of the IF, called the estimator’s sensitivity, provides a natural
quantitative measure of robustness.

An estimator that is B-robust will generally be less efficient than
the ML estimator based on a correctly specified model. This is because B-
robustness requires the IF to be bounded, while efficiency requires the

IF to be equal to the likelihood score (up to a linear transformation).
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Since the latter is often unbounded, B-robustness necessarily implies a
loss of efficiency. The infinitesimal approach aims at minimizing this
efficiency loss by constructing procedures that are ’optimally robust’,
i.e. asymptotically efficient among all procedures with a bounded IF. An
optimality result for M-estimators with a bounded IF was first proved by
Hampel (1968). Given a parametric model indexed by a one-dimensional
parameter 6, he constructed an optimal B-robust estimator of 6 by
censoring and recentering the likelihood score so as to satisfy the B-
robustness constraint and ensure consistency at the assumed model. The
resulting estimator can be interpreted as a weighted ML estimator. In the
location model with Gaussian errors, this estimator coincides with
Huber’s minimax estimator.

The generalization of Hampel’'s result to the case of multi-
dimensional estimators is not trivial. In this paper we show that given
an arbitrary mean square error (MSE) criterion and a bound on the gross-
error-sensitivity, it is possible under certain conditions to construct a
B-robust estimator that is consistent and has minimum asymptotic MSE at
the assumed model among all the consistent estimators that satisfy the
same sensitivity bound. Such an estimator is obtained by applying to the
likelihood score a matrix weight function that depends on the metrics in
which the MSE criterion and the gross-error-sensitivity are defined. Our
results contain as special cases the ones of Krasker (1980) and Krasker
and Welsch (1982) for the linear regression model, Fraiman (1983) for the
non-linear regression model, Stefanski, Ruppert and Carroll (1986) for
the logit model, and Hampel et al. (1986). The statistical problem is
formulated explicitly as a minimum norm problem in a Hilbert space. This

clarifies the Lagrange multiplier interpretation of some of the elements
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of the solution and allows generalizations to three cases of practical
interest. The first case is when the IF of an estimator is the product of
two components, and we allow for different sensitivity bounds on each of
them. The second is when the distribution of the observations can be
factorized as the product of a conditional and a marginal density, but we
only care about misspecification of the former. The third is the
partitioned parameter case, when we allow for different sensitivity
bounds on each subset of estimates.

The rest of the paper is organized as follows. Section 2 introduces
the statistical model and the class of M-estimators. Section 3 collects a
few results that relate the asymptotic properties of an estimator to the
properties of its IF. Section 4 presents our main result. Section 5
contains a number of generalizations. Section 6 contains some final
remarks.

The following notation will be used. Fo denotes the true
distribution function (d.f.) of a single observation and E0 denotes
expectations taken with respect to Fo' Expectations taken with respect to
some d.f. in a parametric family {Fe) are denoted by Ee, and expectations
taken with respect to any other d.f. F by E_. Ixll = (x’x)“2 denotes the
Fuclidean norm of a finite dimensional vector x, and leIIB = (x'B x)”2

the norm of x in the metric of the positive definite (p.d.) matrix B.

2. The statistical model and the class of M-estimators

Let z IREXEEL be a sequence of independently and identically distributed

4
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common d.f. Fo' The d.f. Fo is typically unknown, but prior information
may be available to justify the assumption that F0 belongs to some set ¥
of d.f.’s over ¥, called the assumed model. ¥ is either a family of
d.f.’s indexed by a p-dimensional parameter 6, i.e. ¥ = {Fe: 68}, or a
set of d.f.’'s satisfying a number s 2 p of moment restrictions, i.e. ¥F =
(F: E_ 9(z,6) = 0, 68}, where y: R" x 8 — R*, In either case, the
perameter space 8 is assumed to be an open subset of RP. For F0 to be
identifiable, it is further necessary to assume that there is a unique

6069 such that either F0 = F60 or IS.’0 lp(z,eo) = 0.

In fact, the assumed model ¥ may be misspecified, in the sense that
it may not contain Fo' In this paper we focus on the case when the
assumed model is only approximately true. This is modelled by assuming
that F0 = (1 -¢€)F + € G, where Fe¥, G is some other unknown d.f. and
€€[0,1] °. When ¢ is small, this is called an ’e-contamination model’,
and formalizes the notion that the assumed model may be adequate for the
majority but not all the observations. In particular, when G is a d.f.
with mass concentrated at a point z€Z, we obtain the so-called ’gross-
error model’. This is a convenient way of modelling the occurrence of
outliers or gross errors.

An M-estimator 5“ of the unknown parameter 60 is a root of an
implicit equation of the form

-1 o N -
N ‘Znn T)N(zn,e) = 0, : (1)

where nN(z,G), called the score function associated with GN, is some

function mapping £ x R? into RP. If (1) has multiple roots, we assume



that some selection rule has been specified. Equation (1) often arises as
the necessary condition for optimality in problems of the form ®
MeX geg_ NTEY e (2,0, (2)
where 80 is a subset of R’ assumed to contain 60 in its interior, and
p,(2,0) is some real valued function defined on ¥ x R’ and almost
everywhere continuously differentiable with respect to 6. In this case
nu(z,e) = (3/98) pN(z,G), except possibly for a countable set of points.
The class of M-estimators is very large and includes most common
econometric estimators. ML, pseudo-ML [see e.g. Gourieroux, Monfort and
Trognon (1984)], least squares, least absolute deviations, generalized
method of moments (GMM) [see e.g. Burguete, Gallant and Souza (1982) and
Hansen (1982)], and the minimum distance estimators of Malinvaud (1970)
and Chamberlain (1982) are all members of this class. For example, if ¥
js a regular parametric model with density f(z,6) and likelihood score
s(z,8) = (8/80) 1ln f(z,6), then n"(z,e) = s8(z,8) and éu is a ML

estimator. If ¥ = {F: EF y(z,0) = 0}, aN is an sxs p.d. matrix, and
0.(20) = - IN' 2 ¥ w(z 01" Q' ¥(z,0)
N - n=1 n'’ Qll ’ !

then 9" is a GM estimator, obtained by minimizing the squared norm of
the sample average of v(z,0) in the metric of the (possibly data
dependent) matrix Q;’. When y(z,0) is differentiable with respect to o,

-1

the @M score function is proportional to n(z,8) = P"(B)’ Qu v(z,0),

where P“(G) = N'1 2n:1(a/ae') w(zn,e) is an sxp matrix. Thus, in the GM



case the score function depends on the sample size N through the matrices
a' and E’N(O). However, when both 5“ and f’" converge almost surely (a.s.)
to p.d. matrices, n"(z,G) converges a.s. to a function that does not
depend on N.

Consistency and asymptotic normality of M-estimators can be
established under very general conditions 7, Moreover, as we shall see,
estimators that are not in this class are often asymptotically equivalent

to M-estimators.

—_— e, A S SRS

Because of the independence assumption, the order of the observations in
the sample does not matter. One can therefore replace functions of the
observations by statistical functionals, i.e. functionals defined over a
set of d.f.’s. In particular, if the score function n“(z,O) does not
depend on N, equation (1) and the given selection rule implicitly define
a functional 8: F, — 6, = O(F,), where F, denotes the empirical d.f. of
the observations. More generally, if the score function n"(z,ﬂ) has an
a.s. limit n(z,8), then we can associate with n(z,8) the functional 6: F

—~> O(F) implicitly defined by

J, (6 arz) = 0, (3)

for all Fe¥!. We assume that the domain ¥’ of the functional is a convex
set containing the true d.f. Fo’ the assumed model ¥ and all empirical

d.f.’s over ¥. Convexity of ¥’ is needed because the statistical



functional é is to be evaluated at ’e-contamination models’ of the form
(1 - ¢) F + e G, €€[0,1}. We also assume that the function n(z,8) is
continuously differentiable with respect to 8, except possibly at a
countable number of points, and the matrix P(é,F) =-E (8/90) n(z,é(F))
is finite and p.d. for all d.f.’s F in a neighborhood of Fo‘

In the case of a statistical functional it is more reasonable to
adopt a definition of consistency that differs slightly from the usual

definition of weak consistency [see e.g. Cox and Hinkley (1974)].

DEFINITION 1: 6 is called Fisher-consistent for 60 if G(FO) = 60

whenever Foeff .

Thus, an M-estimator defined by (3) is Fisher consistent for 6 o
whenever the assumed model ¥ is correctly specified and the equation E0
n(z,8) = 0 has a unique root at 8 = 90. For ML estimators of regular
perametric models, the latter condition corresponds to the standard
assumption that the likelihood function has a unique global maximum at
60. If the assumed model is misspecified, é(FO) defines the population
parameter estimated by 6

Given a statistical functional é, it is natural to investigate its
continuity and differentiability. In the remainder of this Section we
present rather informally a number of results that relate these
properties to the asymptotic behavior of 5

A statistical functional 5 need not be linear. However, when it is
linear, that.‘is, a(F) = Er Y(z) for some function ¥, its asymptotic
properties are easy to establish. This suggests deriving the asymptotic

properties of a non-linear functional by means of a suitable
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linearization. Under regularity conditions [see e.g. Serfling (1980)]1, a
functional 0 possesses the (von Mises) expansion

1 N P
zm1 IF(zn,e,Fo) + RN(FO) (4)

B(F") - O(Fo) =N
where IF(-,é,Fo) is a function that depends only on 5 and Fo and Ru(') is
a remainder term. The function IF(- ,O,Fo) is called the influence
function (IF) of 6 at Fo [(Hampel (1974)] ®. A more explicit definition of

the IF is the following:

DEFINITION 2: Let A(z) be a d.f. with mass concentrated at the point
za.nclletl“£ z - (1 - ¢) F+8A(z). Then the IF of € at F is defined by
?

IF(z,é,F) = lim [5(F€ Z) - 5(F)]/6.

€—04+

provided that the limit exists.

Thus, the IF is the collection of Gateaux differentials of the
functional 8 jin the direction of point mass distributions 9, and can
therefore be interpreted as a measure of the asymptotic bias of 8, as an
estimator of é(F) , under an arbitrarily small contamination of the d.f. F
by a point mass 19,

If é is an M-estimator definedv by an equation of the form (3), the
matrix P(é,F) exists and is p.d, and the d.f. F satisfies regularity
conditions sufficient to allow interchanging the order of differentiation
and integration, then it follows from the Implicit Function Theorem

applied to (3) that the IF of 6 at F exists and is equal to
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IF(z,6,F) = P(6,F)" " n(z,8(F)), (5)

that is, the IF of 6 at F is just a non-singular linear transformation of
the score function that defines 5

In particular, suppose that Fe belongs to a regular parametric model
with p.d. Fisher information matrix J(6). If 8 is the ML estimator, then
P(8,F,) = J(6) and so IF(z,8,Fg) = J(6)" a(z,60). If 6 is a general M-

estimator then
P(8,Fg) = Eg n(z,6) s(z,0)’, (6)

which generalizes the familiar equality between the information matrix of
a correctly specified model and the expectation of the outer product of
the likelihood score.

Now suppose that the domain of the functional é -is equipped with
some norm &(-). If é has a differential at G with respect to the given

norm, then it can be shown that
é(c) - a(F) = EG IF(Z,é,F) + o(&(G - F)). (7)

For a proof, see Serfling (1980). Thus, if G is some d.f. near F, the
asymptotic bias of 8, as an estimator of é(F), can be approximated by
E_ IF(z,6,F) ''. Notice that (7) implies that E, IF(z,6,F) = 0.

As an illustration, consider the 'problem of evaluating the
asymptotic bias of the Probit estimator under heteroskedasticity. Let x
be a random vector with d.f. H and let y' be a random variable that is

N(x'B, 02) conditionally on X . Denote by ¢ and ¢ respectively the NO,1)
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density and d.f. Also denote by Fe the joint d.f. of z = (y, x’)’, where
® = B/ocand ¥y = 1y > 0). If é is the Probit estimator of @ then, by
(5), IF(z,8,F) = J(8) ' A(x’8) [(y - ®(x’6)] x, where J(6) denotes the
information matrix for 6 and A(r) = ¢(r)/[®(r) (1 - é(r))]. Clearly,
é(Fe) = 6. Now let G be the d.f. of a single observation z when half of
the observations on y' are N(x’'B, az) and half are N{x’'B, mz). This kind
of heteroskedasticity has been considered by Kiefer and Skoog (1984). By

(7), the bias of the Probit estimator can be approximated by
8(G) - 6 ~ (1/2) 3(6) " E, (\(x’0) (8(x’a®) - &(x’6)) x]

where « = 0/w. For some distributions of the regressors this bias can be
quite large. The approximation proposed by Kiefer and Skoog (1984), which
is given by 8(a - 1)/2, is simply a linearization of the IF approximation
about « = 1.

As another example, consider the problem of evaluating the maximum
asymptotic bias of é, as an estimator of a(F) , under the ’gross-error

’ - -—
model Fe g = (1-€¢)F+e A(z). From (6)

sup z€% “e(FE,Z) - 6(F)|| ~ € sup z€¥ IIIF(Z.G,F)II

provided that € is small. For a more general 'e-contamination model’ F €. 6
’

= (1-¢)F + € G, Ge%, we have that

sup gg 19(0) - B(F) < € sup g NIF(2,0,P)I. (8)

Thus, the right hand side of (8), if finite, gives an approximate upper

12



bound on the asymptotic bias of 6 over a sufficiently small ’e-
contamination neighborhood’ of F. This justifies the following

definition:

DEFINITION 3: An estimator €@ is called B- (or bias-) robust at the

d.f. F if IF(-,0,F) is a bounded function.

B-robustness is a desirable property, for it ensures protection
against the effects of local failures of the model assumptions. However,
many common econometric estimators, such as least squares and
instrumental variable estimators do not have a bounded IF and therefore
are not B-robust, because their IF is unbounded. For M-estimators with a
continuous IF, B-robustness is equivalent to Hampel’s qualitative
robustness [see Huber (1981)1].

A natural quantitative measure of robustness is given by the sup-

norm of the IF, in the metric of some p.d. matrix B,

yt(e’F,B) = sup ze¥ “IF(Z,esF)HBr

called the estimator’s sensitivity 12 mhe choice of B is largely
arbitrary. For example, if B = Ip one obtains Hampel’s (1974)
unstandardized gross-error sensitivity. The gel f-standardized sensitivity
of Krasker and Welsch (1982) corresponds to B = AV(6,F)”. The
information-standardized sensitivity of Hampel et al. (1986) corresponds
to B = J(8), but is only defined when ¥ is a parametric model. Unlike the
unstandardized sensitivity, the last two measures are invariant to non

singular reparameterizations of the model.
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Now consider the asymptotic distribution of a functional é that
possesses an expansion of the form (4). Assume that 8 satisfies
regularity conditions sufficient to ensure that the remainder term R"(FO)
in (4) is o (N"'2) and the metrix E, IF(z,6,F,) IF(2,6,F,)" is finite

and p.d. Since N? Z‘n_,‘ IF(zn,G,Fo) is an average of i.i.d. random

vectors with zero mean and finite, p.d. variance, it follows that
N2 [B(F,) - 6(F,)1 &5 NO,AV(8,F,)), (9)

where AV(G,FO) = E0 IF(z,O,Fo) IF(z,G,FO)’. A sufficient condition for

-1/2

the remainder term in (4) to be o (N ) is some form of

P
differentiability of the functional é, such as Frechét differentiability
[see Serfling (1980) and Huber (1981)] or the weaker Hadamard
differentiability [see Fernholz (1983) and Prakasa Rao (1987)1.

In particular, when é is an M-estimator one obtains that AV(é,Fo) =
P(8,F,)"" Q(B,F,) P(8,F,)’"", where Q(8,F,) = E, n(z,6(F,)) n(z,8(F,))’ .
If é is the ML estimator of a regular parametric model then, provided
that the model is correctly specified, P(0,F,) = Q(6,F,) = J(6,) and one
obtains the familiar result that AV(é,Fo) z J(GO)"I. In the GM case, if
é ig the estimator based on the weighting matrix 6(17'0) = ]320 [w(z,é(Fu))
9(2,6(F ))’], then P(6,F,) = Q(6,F)) = B(8,F,)’ Q(F,)"’ P(6,F,), and
therefore AV(8,F,) = [P(8,F,)’ Q(F,) " P(8,F,)1™". Such an estimator has
minimm asymptotic variance matrix (AVM) in the class of M estimators
based on the moment restriction E0 w(z,eo) = 0 [see e.g. Hansen (1982)].

A consistent estimator of the AVM of 5 can be obtained by replacing
Fo with the empirical d.f. of the observations. A consistent estimator of

a . . - -1 -
AV(G,FO) is therefore given by AV(O,FN) = N Enﬂ IF(z“,G,F")

14



n=l (a/w, )

IF(zn,é,Fn)’. when 6 is an M-estimator, IF(z,é,F") =[-N'Z
n(z_,6,)1°" n(z,6,), and AV(B,F,) is Jjust the covariance estimator
proposed by White (1982).

It is clear from (5) and (9) that an estimator 5 which possesses an
IF at F has the same IF and hence the same asymptotic distribution as an
M-estimator besed on the score function n(z,8) = IF(z,a,F). Thus, if
interest focuses only on asymptotic properties, such as the asymptotic

bias and the AVM, there is no loss of generality in considering only M-

estimators.

4. Optimal robust estimators

The ML estimator of a correctly specified model is asymptotically
efficient, that is, the AVM of any other consistent estimator differs
from the AVM of the ML estimator by a positive semi-definite matrix. The
ML estimator, however, can loose its optimality properties for very small
departures from the assumed parametric model. If its IF is unbounded, as
typically occurs when the assumed model is Gaussian, the asymptotic bias
that arises under certain types of misspecification can be quite large.
This is not the case for a B-robust estimator, even though such an
estimator will generally be less efficient than the ML estimator based on
a correctly specified model. Hampel (1968) proposed to minimize this
efficiency loss by considering estimators that are 'optimal B-robust’,
that is, consistent and asymptotically efficient at the assumed model
among all B-robust estimators that satisfy a given sensitivity bound.

In what follows we consider a generalization of Hampel’s approach to

15



the case of multidimensional estimators. We restrict attention to
‘regular’ M-estimators, namely the ones that are Fisher consistent at the
assumed model, possess an IF, and have an asymptotically normal
distribution with a finite, p.d. AVM. The assumed model is a regular
parametric model {Fb}, and efficiency of estimation is defined in terms
of an asymptotic mean square error (MSE) criterion of the form MSE(a,F) =
trace [Q AV(é,F)], where Q is some p.d. matrix. Given a bound 1'(6,F,B) <
Yy on an estimator’s sengitivity, we consider the problem of finding an
'optimal B-robust’ estimator 5, namely one that has minimum asymptotic
MSE at the assumed model among all M-estimators that are Fisher
consistent at the assumed model and satisfy the given sensitivity
bound '3 our formulation of the problem builds on earlier work of Hampel
(1968), Krasker (1980), Bickel (1981, 1984) and Hampel et al. (1986), but
is more general, for it allows the MSE criterion and the B-robustness
constraint to be defined with respect to arbitrary and possibly different
metrics. As we shall see, this has important implications for the form of
the optimal solution.

In order to obtain a tractable problem we need to ensure that there
is a one-to-one correspondence between the set of M-estimators and the
get of score functions. We do so by imposing a ‘normalization’ conditions
on the score function n(z,8) that defines 5, namely n(z,0) must be such
that E_ [- (3/00°) N(z,8(F)] = I . Under this condition, the IF of o is
given by n(z,0(F)) snd its AWM by E_ n(z,6(F)) n(z,0(F))’. When the
assumed model {Fe} is correctly specified, an optimal B-robust estimator
of the unknown parameter 90 can then be based on the score function that

solves the following problem
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Min n(~,6)€ﬁ Ee n(z,6)’ Q n(z,6) (10)

s.t E6 n(z,8) = 0 (11)
Ee n(z,0) s(z,0)’ = Ip ‘(12)
sup g IN(z,8)ll5 = ¥ (13)

for all @ in a neighborhood of 90. For a given 6, the set l} is the set of
score functions that are square integrable with respect fo Fe. Constraint
(11) ensures Fisher-consistency. Because of (6), constraint (12)
corresponds to the normalization condition discussed earlier. Given (11)
and (12), the objective functional (10) is the asymptotic MSE of the M-
estimator based on the score function n(z,8). Finally, constraint (13) is
the bound on the estimator’s sensitivity. When 7 is not finite, problem
(10)-(13) essentially reduces to the optimality problem of classical
parametric statistics.

The set ;l js clearly a Hilbert space with respect to the inner

~

product <n,¥> = Ee n(z)’ Q ¥(z). The induced norm of a vector neH is

2, The set of points in H that satisfy (13)

given by [Eg n(z)’ @ n(z)1"
is convex. It may be viewed, heuristically, as a closed hypersphere with
center at the origin and radius 7y. The feasible set, being the
intersection between this set of points and the hyperplane def ined by
constraints (11) and (12), is closed and convex but can be empty. It will
be seen that the feasible set is not empty provided that ¥ is large
enough. For a given 0, problem (10)'_(13) is therefore one of finding a
vector of minimam norm in a closed and convex subset of a Hilbert space.

It follows by standard results [see e.g Luenberger (1969)] that, if the

feasible set is not empty, an optimal solution exists, is unique and can
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be characterized by a saddle point of the Lagrangean

E, [ n(2,6)’Q n(z,6) + A’ n(z,0)

+ (vec I')? {vec Ip - [8(z,9) ® Ip] 1n(z,0)}

+ u(z) (In(z,0)lg - 1 ],

where A is a pxl non negative vector of Lagrange multipliers associated
with the constraint (11), I is a p<p positive semi-definite matrix of
Lagrange multipliers associated with the constraint (12), and the non
negative function p(-) is the Lagrange multiplier associated with the
constraint (13). Notice that all Lagrange multipliers are functions of 6,
but this dependence is omitted for simplicity. The optimal solution

(n(-,8), », T, p(-)) is characterized by (11)-(13) and

n(z,8)

~

in(z,8)lg

(1]
(=]

2Qn(z,8) + % - T s(z,0) + p(z) B

#(z) (In(z,0)ky - ¥) = 0

for all z, except possibly a set with measure zero under FG' If Hn(z,O)llB

< y for some z, then u(z) = 0 and n(z,8) = A s(z,0) - a, where A = (1/2)

Q 1 l: and a = (1/2) Q"1 ‘7: If l:(z) > 0 at some point z, then ﬂn(z,G)IB =

7 and
n(z,8) = (1, + (a(z)/27) @ L BI7! (A 8(2,0) - al,

where the Lagrange multiplier u(z) is given by the implicit eq\mtion‘
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Y- 00D+ (uz)/2) &7 BT 1A 8(2,0) - allly = 0. (14)
The optimal score function is therefore given by

nN(z,6) = W(z,6) [A s(z,6) - al (15)
where the pxp p.d. matrix matrix W(z,0) is given by

I if |lA s(z,0) - alIB <Y
W(z,0) = P

[Ip + (;(z)/27) Q’l B]'l otherwise,

and p(z) is a non negative root of (14). The vector a and the matrix A,
are determined implicitly by the constraints (11) and (12). The existence
of the optimal score function depends therefore on the existence of a

solution to the equations system
Ee w(z,8) A s8(z,0) - [E6 w(z,8)1 a =0 (16)
Ee w(z,8) {A s(z,8) - a] 8(2,6)’ - Ip =0, (17)
where W(z,0) depends on (a, A). If a solution (a(6), A(6)) exists for all
6 in an open neighborhood 90 of 90 (necessary conditions are provided
below), the function n(:,0): £ — RP can be extended to a function n: € x
80 — RP. The resulting estimator will be denoted by 6. We summarize this
result in the following:
PROPOSITION 1: Let 6 be the M-estimator of 6 based on the score
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function n defined by (15), and assume that a(6) and A(6), implicitly
defined by equations (16) and (17), exist for all @ in an open
neighborhood of 60. Then © minimizes trace (Q AV(G,FG)] among all regular

M-estimators satisfying 7'(9,FG,B) < 7.

Notice that, unlike the ML estimator, 5 is optimal only in a weak
sense, namely with respect to the given MSE criterion. This implies that
tests based on optimal B-robust estimators are robust but nof invariant,
that is, their power function is stable under small departures from the
assumed model but they have optimal power properties only for certain
departures from the null hypothesis [Peracchi (1987)1.

Since W(z,8) is a continuous function, the optimal B-robust
estimator 5 is qualitatively robust provided that the likelihood score
function is continuous. Consistency and asymptotic normality of 5 must be
established formally. Consistency follows by standard methods [see e.g.
Amemiya (1985)]. Asymptotic normality requires less standard techniques
because the score function (15) is not differentiable at the points where
ia©) s(z,8) - a(O)IIB = 7. Usually, asymptotic normality can be
established by verifying the sufficient conditions of Huber (1967). This
is generally straightforward, because the boundedness of the optimal
score ensures that the appropriate dominance conditions are satisfied.

The optimal B-robust estimator 5 can be interpreted as a weighted ML
estimator, obtained by applying the matrix W(z,8) A(0) to the likelihood
score, and subtracting off the vector W(z,0) a(8) in order to correct for
the bias. Geometrically, this corresponds to shrinking and twisting the
likelihood score vector until it is entirely contained in a p-

dimensional hypersphere with center at the origin and radius 7y, at the
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same time satisfying the condition for consistency at the assumed model.

For given matrices B and Q, Proposition 1 generates a whole family
of estimators indexed by the value of the sensitivity bound 7. If there
is no bound on an estimator’s sensitivity the optimal estimator is the ML
estimator, which always exists and is unique under the stated
assumptions. In this case, the constant a(8) is equal to zero because the
Fisher consistency constraint is not binding. Also A(8) = J(G)'1 and so,
when Q = Ip, the information matrix is equal to the inverse of the matrix
of Lagrange multipliers associated with the constraint (13). By a simple
continuity argument [see Proposition 1 in Krasker (1980)], the optimal
estimator 5 exists and is unique, and the matrix A(0) is p.d., when ¥ is
finite and sufficiently large. Varying Y describes a trade-off between
efficiency (relative to the Cramér-Rao bound) and protection against bias
(the sup-norm of the IF). In some cases, such as linear regression, this
trade-off can be characterized easily.

We now provide necessary (but not sufficient) conditions on the
sensitivity bound y for a(6) and A(8), and hence é, to exist. All proofs

are given in the Appendix.

PROPOSITION 2: Let Fe be such that E6 IIs(z,G)IlB exists. Then a(0)

and A(0) exist only if

trace B

12 .
Eg i=(z,6)lig

Geometrically, when y < trace B / [Ee lls(z,G)llB], the linear variety

defined by the constraints (11)-(12) does not intersect the convex set
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defined by (8), and so the feasible set is empty. Notice that the lower
bound on 7 depends on the choice of the metric B, as well as on 8. In
practice, given this lower bound, the choice of Y depends on the
econometrician’s preferences between efficiency and protection against
bias. When both the econometrician’s preferences and the trade-off
between efficiency and bias are known, solving the choice problem is
straightforward.

The expression for the optimal score can be simplified considerably
in the one-dimensional case or when the same metric is used for both the
sensitivity and the asymptotic MSE criterion. The next result extends
Theorem 4.3.1 of Hampel et al. (1986) to the case where the sensitivity

is defined in an arbitrary metric.

PROPOSITION 3: If Q = « B, a > 0, the estimator that minimizes trace
[Q AV(6,Fg)] among all regular M-estimators satisfying 1'(9,F9,B) <7 is
based on a score function of the form (15), where W(z,0)= w(z,6) Ip and

the scalar weighting function w(-,0): £ — [0,1] is defined by
w(z,0) = min {1, ¥ / lA(8) =(z,6) - a(6)lig}. (18)

In some cases the expression for the optimal score function
simplifies even further. For example, if Q@ = o B and a(6) = 0, then
;l(z,e) = w(z,0) A(8) s(z,8), where w(z,0) = min {1, ¥ / JA(O) s(z,O)lB}
and A(6) is a symmetric p.d. matrix implicitly defined by the equation
Eq w(z,8) s(z,0) s(z,8)’ - A(G)'1 = 0. This case typically arises in
regression models with symmetric conditional error distributions. Notice

that the optimal B-robust estimator in this case is the same as the one
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based on the score function n'(z,e) = w(z,8) s8(z,0), which makes its
interpretation as a weighted ML estimator even clearer.

Estimators based on Proposition 3 have been derived for a variety of
models, including the linear regression model [Hampel (1978), Krasker
(1980), Krasker and Welsch (1982)]}, the non-linear regression model
[Fraiman (1984)], the SURE model ([Peracchi (1988)], the Logit model
[Stefanski, Carroll and Ruppert (1986)], and the censored regression
model [Peracchi (1987)]. In most cases, the assumed model is Gaussian.

One problem that remains to be discussed is the choice of the
matrices Q and B that determine the metrics in which the MSE criterion
and the estimator’s sensitivity are defined. One possibility is to choose
metrics that are ’natural’, for example B = Q = Ip. A better choice, from
the point of view of invariance, is B = Q = J(0). Unfortunately, these
choices still lead to estimators that are computationally difficult,
because the implicit equations (16) and (17) must be solved at each
jteration. Another possibility is to choose metrics that, although less
‘natural’, are more convenient from the point of view of the computations
[see e.g. the proposals in Peracchi (1987)].

Specification tests based on the difference between an optimal
B-robust estimator 5 and the ML estimator based on {Fe} satisfy the
conditions for powerful épecification tests, namely a potentially large
difference between estimators when the model is misspecified, and a
relatively efficient alternative estimator to ML. Useful diagnostics for
detecting influential observations and ou£liers can be based on the
robust weights W(zn,é), computed for each observation in the sample. The
use of these weights provides an alternative to the traditional methods

besed on deleting a subset of observations at a time (typically a single
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observation) and then comparing the resulting estimates with the ones
based on the full sample [see e.g. Belsley, Kuh and Welsch (1980)1. Even
single deletion methods can be quite expensive for non-linear estimators
and may fail to reveal the presence of multiple outliers [see e.g.
Atkinson (1986)]. The use of robust weights has several advantages over
these methods. Robust weights are jointly computed with the parameter
estimates and require no additional calculation. They are easy to
interpret, because of the weighted ML nature of an optimal B-robust
estimator, and all the information on the influence of a given
observation can be summarized in a scalar nunber, such as the trace or
the determinant of W(zn,é), or simply w(zn,a) in the case of estimators
based on Proposition 3.

So far, applications in empirical econometrics have dealt mainly
with the Gaussian linear regression model. For example, Krasker, Kuh and
Welsch (1983) estimate hedonic price models for housing, Swartz and
Welsch (1986) estimate and forecast energy demand, and Thomas (1987) uses
a very large data set to estimate Engel curves for food. All these
studies report significant differences in point estimates, inference and
forecasts with respect to least squares. Peracchi (1987) estimates Engel
curves using household budget data containing a significant fraction of
reported zero expenditure. He compares the Tobit ML estimator with a
number of semi-parametric and optimal B-robust estimators based on
various choices of metrics. The Tobit estimator appears to be very
sensitive to a few extreme observations and is way off in some cases. On
the other hand, semi-parametric and optimal B-robust estimates are close
to each other and look more reliable, but the latter appear to be more

precise.

24



5. Some extensions

A number of additional results are easily obtained by applying the method
of Proposition 1. First consider the case when the vector of observables
is given by z = (y, x')’, with y€y and x<¥, and the likelihood score can
be written as the product of two components, s(z,8) = r(y,x,0) v(x,0),
with the conditional expectation of r(y,x,0) given x equal to zero. The
IF of the ML estimator can be factored in a similar way. For simplicity
we assume that r(y,x,0) is a scalar and v(x,0) is a p-dimensional vector.
Examples include the linear regression model, where r(y,x,0) = (y -
x'B)/0, the non-linear regression model, the Probit and Tobit models.
Both components of the likelihood score can be unbounded, but we may be
particularly concerned with the unboundedness of one of them. In this
case we may consider the class of estimators based on a normalized score

n(z,8) = ¥(y,x,0) E(x,0) with the following robustness properties

= ~

1,(6,Fg) = sup _  19(y,x,0)] < 7, (19)

7,(6,Fg,B) = sup _ E(x,0)l5 S 7, (20)
where |-| denotes the abeolute value. When both 7, and ¥ , are finite,

each estimator in this class has an IF with a finite norm and is
therefore B-robust. An optimal estimator can be based on the score
function that minimizes the objective functional (10) subject to the
robustness constraints (19)-(20)' plus Fisher consistency and
normalization conditions. A sufficient condition for Fisher consistency
is that I 4(y,x,6) de(y) = 0 for all x, where Gx denotes the conditional

d.f. of y given x, and suitable normalization conditions are I *(y,x,0)
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r(y,x,9) de(y) = 1 for all x, and E“ E(x,8) v(x,8)’ = Ip, where H
denotes the marginal d.f. of x (for simplicity the dependence of Gx and H

on 0 is omitted). Assume that the system of equations

E w,(y.x,e) A, r(y,x,08) - [E

G wi(y.x,e)] a=z0

G
x x

E, w,(y,x,0) [A r(y,x,6) - a] r(y,x,0) -1=0

EH wz(x,e) Az v(x,8) vi(x,0)’ - Ip =0,

where

w (v,x,8) = min {1, ¥,/ 1A, r(y,x,0) - al}

w,(x,8) = min {1, 7, / 1A, v(x,0)l5},

has a solution (a(x,8), Ai(x,G’), AZ(O)) for all x and all 6 in a

neighborhood of 6 o' Under the above set of assumptions we obtain:

PROPOSITION 4: let Q = « B, « > 0, and Let @ be the M-estimator

based on the score function n(z,8) = ¥(y,x,8) E(x,0), where

§(37,%,8) = w_(y,%,0) [A,(x,0) r(y,x,8) - a(x,0)]

E(x,0) = w,(x,6) A,(6) v(x,0).

Then 0 minimizes trace [Q AV(G,FO)] among all regular M-estimators

satisfying 1:(6,Fb) < 7, and 1;(6,Fb,B) S 7,
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The generalization to the case when Q and B are both arbitrary is
straightforward given the method of Proposition 1. When Y ®, the
optimal solution 5(y,x,,6) is a linear transformation of r(y,x,0).
Similarly, when 1, = ©® the optimal solution E(x,e) is a linear
transformation of v(x,8). When neither ¥, nor 7, are finite we obtain the
ML estimator. Lower bounds on ¥y ' and 7, can easily be established.

Sometimes r(y,x,0) is independent of x, as in the case of regression
models with independence between the errors and the regréssors. In this
case the optimal estimator simplifies oonsiderably, because the constants
a and A1 depend only on 6 and not on x. Further simplifications occur
when the errors are symmetrically distributed. Examples include the class
of ’optimal Mallows-type’ estimators [Mallows (1975), Hampel (1978),
Maronna and Yohai (1981), Peracchi (1987)]. When 72 = ® one obtains the
Huber estimator of regression [Huber (1973)].

Now consider again the case when Fe(z) = Gx(y) H(x), but suppose
that we only care about misspecification of the conditional d.f. Gx of y,
but not of the marginal d.f. H of x. Often all Gx are of the same shape,
e.g. they are all Gaussian, with mean and possibly variance depending on
x. In what follows F

(2]
collection of all conditional d4.f.’s Gx’

is replaced by the pair (%,H), where ¢ is the

First we introduce the concept of partial IF of an estimator 6,
which is a measure of the asymptotic bias of 6, as an estimator of
6(%,H), arising from an infinitesimal amount of contamination of the

collection of conditional d.f.’'s ©, keeping the marginal d.f. H fixed.

DEFINITION 5: Leth = (1 - €) Gx+eA andletgeybethe

€,y ty)’

, for given € and y. Then the partial

collection of all d.f.’s G _ v
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influence function (PIF) of é at (%,H) is given by
PIF(y,0,(%,H)) = lillls_,o+ [9(9‘:”,3) - 6(%,H)1/¢

provided that the limit exists.

We now show that for an M-estimator 6 the PIF can simply be obtained

by integrating the IF with respect to the d.f. of the x’s.

PROPOSITION 5: Under regularity conditions sufficient to allow
interchanging differentiation and integration, the PIF of an M-estimator

6 at a distribution (%,H) is equal to
PIF(y,0,(%,H)) = EH IF(y,x,6,(%,H)).

The sensitivity to gross-errors that affect only the conditional

d.f. of y is defined in the usual way as

, -~ ~

,P(e,‘giu) yB) = sup yey HPIF(Y,G,(Q,H))“B-
A ’constrained asymptotically efficient’ estimator can then be based on
the score function that solves problem (10)-(12), with (13) replaced by

the constraint that 1;(6,(§,H),B) S 7. Assume that the equations system

Eg w(y,0) A 8(y,x,6) - [Eg w(y,8)] a = 0

Eqg w(y,9) [A s(y,x,0) - a] s(y,x,0) - Ip 0,
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where

w(y,8) = min {1, v / A E  s8(y,x,8) - aI!B},
has a solution (a(8), A(68)) for all 8 in a neighborhood of 60. Then

PROPOSITION 6: let Q = a B, « > 0, and let 6 be the M-estimator

based on the score function

N(5,%,0) = w(y,0) [A(®) 8(¥,x,8) - a(O)].

Then € minimizes trace [Q AV(0,(%,H))] among all regular M-estimators

satisfying 7,(6,(S,H)) < 7.

The generalization to the case when Q and B are both arbitrary is
straightforward given the method of Proposition 1. A lower bound on ¥y can
easily be established.

Finally consider the case when the parameter vector can be
partitioned in two subsets of parameters, and we want to allow the
corresponding subsets of estimates to have different degree of
robustness. For example, in the case of the classical linear regression
model, we may want to ooosider separately the regression parameters and
the variance of the disturbances.

us, partition the parameter vector as 6 = (9’, 9')’, where 61 and
6 are respect1ve1y a p,- and a P, ~vector, wit.h p, + P, = P Partition
the score function and the IF accordingly. Let ¥ (6 ,F ,B ) = sBup -

HIF(z, ,Fe)llB denote the gross-error sensitivity of an estimator of the
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j-th subset of parameters in the metric of the p J X p | matrix Bj, and let
T = 3! 12)’. Consider the class of regular M-estimators of 6 for which
7'(éj,Fe,Bj) £ 11 , j =1, 2. If all components of 7 are finite,.then
each estimator in this class has an IF with a finite norm and is
therefore B-robust.

The fact that the sensitivity can be different for different subsets
of parameters increases the flexibility of the estimation procedure. For
example, if 91 is the parameter of interest and 62 is the nuisance
perameter, the bound on the estimate of @ , can be very tight, in order to
be sure that estimates are very robust, whereas the bound on 9l can be
chosen to attain some balance between .robustness and asymptotic
efficiency at the assumed model.

An optimal B-robust estimator can be based on the score function

that solves problem (10)-(12), with (13) replaced by the constraint
1(6,FgB) v, =12 (21)

The following result extends Proposition 2 to the partitioned parameters
case. It also generalizes Theorem 4.4.1 of Hampel et al. (1986), to the
case when the sensitivity of each subset of estimates is defined in an
arbitrary metric. Generalizations of Propositions 4 and 6 to the

partitioned parameters case are also straightforward to obtain.

PROPOSITION 7: Let Q and B be p.d. block diagonal matrices with Qj =
aj BJ, ozj) 0, j=1, 2, and assume that a(6) and A(6), implicitly defined
by equations (16) and (17), exist for all 6 in an open neighborhood of

FGD. Let 6 be the M~estimator of © based on a score function of the form
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(15), with W(z,0) = Diag [wj(z,O) Ip y j=1, 2] and

3

wj(Z.G) min {1, 1, / lIAj s8(z,0) - ajllB ¥

J

where Aj is the pj x p matrix formed by the j-th subset of rows of A(8).
Then © minimizes trace [Q AV(G,FO)] among all regular M-estimators
satisfying 7'(6j,F9,Bj) <¥,3d=1, 2
The generalization to the case when Q and B are both arbitrary is
straightforward, and lower bounds on 7, and 12 can easily be derived.
The optimal weighting function of Proposition 7 simplifies somevwhat

when a(6) = 0 and A(6) = [ Au A ] is block-diagonal. In this case
. 22

wj(z,B) = min (1, 71 / IIAj sj(z,O)HB , where sj(z,e) denotes the j-th
J .

]

sub-vector of s(z,0).

6. Final remarks

The robust estimators presented in this paper are based on parametric
assumptions, but are explicitly designed to bound the negative effects of
their violations. This makes them particularly attractive in situations
where the researcher may be willing to specify a parametric model for the
observations, but not to take it as literally true. This kind of
situations arise quite frequently in empirical work. The reasons for the
limited success of these methods in applied econometrics are therefore

not very clear. Paradoxically, semi-parametric and non-parametric methods
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have been used more frequently, even though their efficiency and
robustness properties are often poor and their distribution sometimes
unknown even for large samples.

One reason may be the fact that bounded influence methods are often
viewed as ad-hoc methods for dealing with outliers. In fact, these
methods simply extend classical parametric gtatistics by supplementing
the standard requirements of consistency and efficiency with a robustness
condition that refers to the behavior of a procedure in a small
neighborhood of the assumed model. For this reason they are quite
flexible, and can be applied to any model for which the investigator is
prepared to specify a likelihood function.

Computational difficulties and the lack of readily available
computer programs may be another reason. Often this problem is much less
serious than it may look at first. For example, optimal B-robust
estimators of regression can easily be computed by iteratively reweighted
least squares.

Yet another reason may be the fact that little is known about these
estimators aside from their large sample properties, and one may, quite
rightly, fear that asymptotic results provide little guidance in the case
of procedures that are highly non-linear. Research in this area would be

very valuable.
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Appendix
PROOF OF PROPOSITION 2: If A(6) and a(8) exist, premultiplying (17)

by B and taking the trace of both gides gives

trace B = Ee s(z,0)’ B W(z,0) [A s8(z,0) - al

< Eg Hs(2,0)llg IW(2,0) [A 8(2,6) - ally
(by the Cauchy-Schwarz Inequality)
< 7 By Is(z,0)l,

(by (13)), from which the desired result follows.

PROOF OF PROPOSITION 3: When Q = o B equation (14) becomes
¥ = 11+ B(z)/(200)1" (A 8(2,6) - allg.

Solving for ;:(z), by using the fact that «, ¥y, and p(z) are all non

negative, gives
H(z) = 2« [HA 8(z,0) - allg - 7]
and therefore

[1+ i(z) /(21" = 1 / WA 5(2,0) - allg.
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PROOF OF PROPOSITION 4: let 1 = ma’ nz) denote the optimal score.

Then the first order conditions for optimality are given by (19)-(20) and

EG ﬁi(stye) =0
x

EG ﬁi(Y:xse) r(y,x,0) de(Y) =1
Xa

E" nz(x,e) v(x,0)!' = 1
0, (7,%,0) + a(x) = A, (x) T(7,x,0) +

+ B, (7,%) sign (1,(y,%,0)) = 0

“~ ~

p (¥,x) (In (v,x,8)] - 7,) =0
n,(x,6)

]
(=]

nz(x,e) + A2 vix,0) + pz(x) B

A~

unz (x'e) “B

B (x) (I, (x,8)llg - ¥,) = O

for almost all (y,x) (i.e. except possibly a set with zero

Fe-probability) , where the dependence of the Lagrange multipliers a(x),
Ai(x), Az’ ui(y,x) and uz(x) on 6 has been omitted. The result then

follows by a standard argument.

PROOF OF PROPOSITION 5: Evaluating (3) at ge v gives
0= [ [ nwvere, . d () dHv).

Differentiating with respect to ¢ gives

- 2 o -
0= [ [] 2 nwmibe, ) 2o, @, 0
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+ [ neuvi6e, ) A -6 + 8, W) ] ).
Evaluating at € = O and using the definition of PIF gives

0 = I I - n(u,v,é(g,H)) dG (u) dH(v) - PIF(y’ay(gnH))
29’ '

+ [ nty,v,6(8,H) dH(v).

The result then follows from the definition of IF.

PROOF OF PROPOSITION 6: The first order conditions for optimality

are given by (11)-(13), and

A . n(y,x,0)
n"y,x,0) + a - A 8(y,x,8) + u(y) B =0

HE“ TJ(Y,X,G)I!B

HE, n(y,x,0)llp = ¥

H(y) (RE n(y,X.G)HB -73)=0

for almost all (y,x), where the dependence of the Lagrange multipliers a,

A and u(y) on 6 has been omitted. The result then follows by a standard

argument.

PROOF OF PROPOSITION 7: The first order conditions for optimality

are given by (11)-(13), (21) and
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n(2,6)

nj(z,e) +a- As(z,0) + uj(z) Bj

Mj(z) (In,(Z.G)IIBj- 11) =0

for j = 1, 2 and almost all z, where the dependence of the Lagrange
multipliers a, A, pi(z) and uz(z) on 6 has been omitted. The result then

follows by a standard argument. ‘
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Footnotes

1 an alternative, data-based definition of robustness has been proposed
by Gilstein and Leamer (1983). For a given sample of observations, they
consider the set of all points in the parameter space that can be ML
estimators for some distribution of the observations. An estimate is not
robust if this set is large. There are two problems with this approach.
First, the set of possible ML estimates can be difficult to describe.
Second, generalizations of this approach require strong restrictions on
the distribution of the observations and/or the class of

estimators.

2 This need not always be true. For example, Beran (1977) shows that in
the case of neighborhoods based on the Hellinger metric no trade- off
arises. His result illustrates the importance of the type of topology,
but should not be emphasized because, as pointed out by Bickel (1981),
the Hellinger neighborhoods are really too small for being of practical

interest .

3 For example, in the location and regression models with symmetric
errors, the Huber estimator is inadmissible because it is dominated by
adaptive estimators. '

‘ The assumption of identical distribution can be relaxed, but the
assumption of independence is crucial. For some results in the case of
dependent observations see Kiinsch (1984) and Martin and Yohai (1986).

S Bickel (1981, 1984) provides some results for the more general case
when Fo is at a distance € from the assumed model ¥ in a proper metric.
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Footnotes

' an alternative, data-based definition of robustness has been proposed
by Gilstein and Leamer (1983). For a given sample of observations, they
consider the set of all points in the parameter space that can be ML
estimators for some distribution of the observations. An estimate is not
robust if this set is large. There are two problems with this approach.
First, the set of possible ML estimates can be difficult to describe.
Second, generalizations of this approach require strong restrictions on
the distribution of the observations and/or the class of
estimators.

2 This need not always be true. For example, Beran (1977) shows that in
the case of neighborhoods based on the Hellinger metric no trade- off
arises. His result illustrates the importance of the type of topology,
but should not be emphasized because, as pointed out by Bickel (1981),
the Hellinger neighborhoods are really too small for being of practical

interest .

For example, in the location and regression models with symmetric
errors, the Huber estimator is inadmissible because it is dominated by

adaptive estimators.

4 The assumption of identical distribution can be relaxed, but the

assumption of independence is crucial. For some results in the case of
dependent observations see Kiinsch (1984) and Martin and Yohai (1986).

5 Bickel (1981, 1984) provides some results for the more general case
when F0 is at a distance € from the assumed model ¥ in a proper metric.

¢ gometimes M-estimators are defined in terms of (2) rather than (1). The
two definitions are really equivalent, for we can always obtain a root of
(1) by minimizing the norm of the sample average of n“(z,e), which is a

problem of the same form as (2).
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7 See e.g. Huber (1967) or, for simpler but stronger conditions, Amemiya
(1985) and Duncan (1987).

® Sometimes the linear term in (4) vanishes, in which case higher-drder
terms have to be included and the definition of the IF is based, more
generally, on the first non-vanishing term of the von Mises expansion.

9 The same idea, applied to the asymptotic variance of a statistic, also
viewed as a functional, leads to the concept of change-of-variance
function [Hampel, Rousseeuw and Ronchetti (1981)1.

10 e IF is closely related to a number of other concepts. In particular,
it can be shown [see e.g. Hampel et al. (1986)] that, under regularity
conditions, the IF is equal to the limit, as N — ®, of Tukey's
sensitivity curve [see e.g. Hoaglin, Mosteller and Tukey (1983)], which
describes the normalized effect on the value of a statistic of adding one
arbitrary point to a given sample. In turns, this fact relates the IF to
the jackinife [see e.g. Efron (1982)] and the diagnostics for influential
observations proposed by Belsely, Kuh and Welsch (1980).

1 The IF provides only a local approximation to the asymptotic bias of an
estimator. A measure of the distance from the assumed model up to which
the estimator still gives some relevant information is given by the
estimator’'s breakdown point [Hempel (1971)]. Donoho and Huber (1983) and
Hampel et al. (1986) provide tractable finite-sample versions of Hampel’s
original asymptotic concept. The practical importance of the breakdown
point has been demonstrated by Hampel (1985), who shows that the
robustness properties of various location estimators in a number of
simulation experiments can accurately be classified on the basis of their

breakdown point alone.
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12 The concepts of V-robustness and change-of-variance sensitivity
are analogously defined on the basis of the change-of-variance function.
B- and V-robustness are not equivalent, because V-robustness implies B-
robustness, but the converse is not always true {Hampel et al. (1986)].

12 pesults on efficient estimation under robustness constraints different
from the ones discussed in this paper are very few, and are typically
confined to the normal linear regression model. For example, Mallows
(1975) considers the class of estimators with separate bounds on the IF
and the sensitivity to rounding or grouping of the observations.
Ronchetti and Rousseeuw (1985) consider the class of V-robust estimators.
Yohai (1987) consider a class of high breakdown point estimators.
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