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Abstract

This paper presents a simple constructive proof of the strong
optimality of the ML estimator of a correctly specified parametric model.
The method of proof, based on the Projection Theorem for Hilbert spaces,
reveals the simple geometric nature of the problem, and illustrates a
general way of constructing estimators with pre-specified statistical

properties.
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1. Introduction

Econometric practice is largely based on the method of maximum likelihood
(ML). This method requires specifying a parametric model for the
obgervations, and leads to estimators that, under certain regularity
conditions, are consistent and asymptotically efficient when the assumed
parametric model is correctly specified. Efficiency is typically
establishéd in an indirect way, namely by showing that in large samples
the ML estimator attains the Cramér-Rao lower bound for the variance of a
consistent estimator of a correctly specified model.

In this paper we present a simple constructive proof of the
optimality of the ML estimator of a correctly specified parametric
model 1. This proof, based on the Projection Theorem for Hilbert spaces,
is interesting because it reveals the simple geometric nature of the
problem, and illustrates a general method for constructing estimators
with pre-specified statistical properties. This method can for example be
applied to construct estimators that satisfy, in addition to the
classical consistency and efficiency properties, other requirements such
as robustness to small departures from the assumed statistical model.

The next Section collects a few results that relate the asymptotic
properties of an estimator to the properties of its influence function
[Hampel (1974)]. These results are then used in Section 3 to establish
the strong optimality of the ML estimator. Section 4 contains some

conclusions.

Let ZyyeensZy be a sequence of independently and identically distributed
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(i.i.d.) random vectors, with values in a known subset Z of R, and

common d.f. Fo' The d.f. F_ is typically unknown, but prior information

0
may be available to justify the assumption that Fo belongs to some set ¥
of d.f.’s over £. In this paper ¥ is taken to be a family of d.f.’'s

indexed by a p-dimensional parameter 6, i.e. ¥

{FG:

parametric model ¥ is assumed to be correctly specified and identifiable,

6e8}. The

in the sense that there is a unique 6066 such that F = F, . We also

o
0
agsume that F is regular in some neighborhood 80 of 00, that is, for all
6€80 the d.f. Fe possesses a smooth density function f(:,6), a likelihood
score function s(-,8) = (8/96) 1n f(-,6), and a finite positive definite
(p.d.) Fisher information matrix J(0).
An M-estimator GN of the unknown parameter 60 is a root of an
implicit equation of the form

1o N _
N Z“ﬁ nu(zn,e) = 0, (1)

where nN(z,G), called the score function associated with é“, is some
measurable function mapping € x R® into R® 2. If (1) has multiple roots,
we assume that some selection rule has been specified to make 5.« unique.

Consistency and asymptotic normality of M-estimators can be
established under very general conditions [see e.g. Huber (1967)1.
Moreover, as we shall see, estimators that are not in this class are
often asymptotically equivalent to M-estimators.

Because of the independence assumption, the order of the
observations in the sample does not matter. One can therefore replace
functions of the observations by statistical functionals, i.e.

functionals defined over a set of d.f.’s. In perticular, if the score
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function nN(z,G) does not depend on N, equation (1) and the given
selection rule implicitly define a functional é: F“ — é“ = é(FN), where
Fn denotes the empirical d.f. of the observations. More generally, if the
score function nu(z,e) has an a.s. limit n(z,0), then we can associate

with n{(z,8) the functional 6: F — O(F) implicitly defined by

Iz n(z,8(F)) dF(z) = 0. (3)

The domain of this functional is taken to be a convex set containing the
true d.f. Fo the assumed model ¥ and all empirical d.f.’s over . We
assume that the score function n(z,0) is piecewise continuously differen-
tiable with respect to 0, and that the matrix P(6,F) = (3/80) [ - E_
n(z,é(F))] is finite and p.d. for all d.f.’s F in a neighborhood of Fo 3,

In the case of a statistical functional it is more reasonable to
adopt a definition of consistency that differs slightly from the usual

definition of weak consistency [see e.g. Cox and Hinkley (1974)1].

DEFINITION 1: © is called Fisher-consistent for 0 if 9(Fe) = 0.

Thus, an M-estimator defined by (3) is Fisher consistent for 60
whenever the assumed model ¥ is correctly specified and the equation Eo
n(z,8) = 0 has a unique root at @ = 90. For ML estimators of regular
parametric models, the latter condition corresponds to the standard
assumption that the likelihood function has a unique global maximm at
60. If the assumed model is misspecified, a(Fo) defines the population
parameter estimated by é

A statistical functional 6 need not be linear. However, when it is



linear, that is, a(F) = EF p(z) for some function ¥, its asymptotic
properties are easy to establish. This suggests deriving the asymptotic
properties of a non-linear functional by means of a suitable
linearization.

Under appropriate regularity conditions 4, a statistical functional

~

6 possesses the (von Mises) expansion

1/2

8(F,) - 6(F) =N 'L " IF(z ,0,F) + o, (N ''?) (4)

1 P

where IF(-,G;FO) is called the influence function of © [Hampel (1974)1. A

more explicit definition of this function is the following:

DEFINITION 2: lLet F be an arbitrary d.f., let A(z) be a d.f. wit
mass concentrated at the point z and let Fe g = (1 ~€)F+e¢ A(z). Then
H

the IF of 8 at F is defined by
provided that the limit exists.

Thus, the IF is just the collection of Gateaux differentials of the
functional 0 in the direction of point mass distributions 5.

By the Implicit Function Theorem applied to (3), if the M-estimator

6 is Fisher consistent, its IF at the d.f. Fg is equal to

IF(Z,é,Fe) = P(é,F)-l n(z,0). (5)



Thus, the IF of 0 at Fe is just a non-singular linear transformation of
the score function that defines 0. For example, if @ is the ML estimator,

then p(é,Fe) = J(6) and so IF(z,é,Fe) = 3(6)"! 8(z,8). Moreover,
P(8,Fg) = Eq N(2,6) 5(2,0)", (6)

which generalizes the familiar equality between the information matrix of
a correctly specified model and the expectation of the outer product of
the likelihood score.

When the matrix E_ [IF(z,0,F,) IF(z,8,F,)’] is finite and p.d., the

term N Znsi IF(zn,O,FO) is an average of i.i.d. random vectors with

zero mean and finite p.d. variance. It then follows from (4) that
N'2 [8(F,) - 6(F,)] L NO0,AV(8,F,)), (7)

where AV(G,FO) = E0 [IF(z,G,Fo) IF(z,B,FO)’]. If 6 is an M-estimator

- _ -1 ,-
AV(G,FO) = P0 Qo P0

!, where P = P(6,F) and Q = E; [n(z2,6(F,))

n(z,é(Fo))’]. In particular, if 5 is the ML estimator based on the
correctly specified parametric model ¥, then P0 = Q0 = J(OO) and one
obtains the familiar result that AV(6,F,) = J(6,) .

It is clear from (5) and (7) that any estimator 5 which possesses an
expansion of the form (4) has the same IF and hence the same asymptotic
distribution as an M-estimator based on the score function n(z,0) =

IF(z,G,Fe) . Thus, if interest focuses only on asymptotic properties,

there ig little loss of generality in considering only M-estimators.



3. Optimality of the ML estimator

It is well known that, if the assumed model is correctly specified and
certain regularity conditions hold, then any consistent estimator of 90
has an AVM that exceeds the AVM of the ML estimator by a positive semi-
definite matrix. This strong optimality property, which justifies the use
of ML estimators, is typically established by showing that in large
samples the ML estimator attains the Cramer-Rao lower bound for the
variance of a consistent estimator of a correctly specified model. We
shall now provide an alternative, constructive proof of this fundamental
result. This proof is interesting because it reveals the simple geometric
nature of the problem, and illustrates a general method for constructing
estimators with pre-specified statistical properties.

We restrict attention to ’regular’ M-estimators, namely the ones
that are Fisher consistent at the assumed model, possess an IF, and have
an asymptotically normal distribution with a finite, p.d. AVM. Efficiency
of estimation is defined in terms of an asymptotic mean square error
(MSE) criterion of the form MSE(é,Fe) = trace [Q AV(a,Fe)], where Q =
[qi j] is some p.d. matrix. We shall consider the problem of finding an
optimal M-estimator 5, namely one that is Fisher-consistent and has
minimum asymptotic MSE at the assumed model.

We first translate the problem of finding an optimal M-estimator
into the one of finding an optimal score function in a certain class. In
order to do so, we need to ensure that there is a one-to-one
correspondence between the set of M-estimators and the set of score
functions. We therefore impose a ’normalizatidn’ conditions on the score
function n(-,8) that defines é, namely n(-,0) must be such that (3/96’)

EF [- n(z,8)] = Ip. Under this condition, the IF of a Fisher-consistent
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estimator 6 at F‘6 is equal to n(-,0) and its AVM is equal to Ee n(z,0)
n(z,8)’]. When the assumed model is correctly specified, an optimal
estimator of the unknown parameter 0 o can therefore be based on the score

function that solves the following problem

Min (. o)en Fo N(2:6)’ @ N(2,0) (8)
s.t. Ee n(z,8) = 0 (9)
E9 n(z,8) s(z,6)’ = Ip (10)

for all 6 in a neighborhood of 90. The set H is the linear vector space
of measurable functions, mapping £ into Rp, that are square integrable
with respect to Fe for all 6 in a neighborhood of 90. Constraint (9)
ensures Fisher-consistency. Given (6), constraint (10) corresponds to the
normalization condition discussed earlier. Given (6), (7) and (10), the
objective functional (8) is the asymptotic MSE of the M-estimator based
on the score function n(-,8).

The space H can be converted to a Hilbert space by defining the
inner product (x|y) = E6 x(z)’ Q y(z), for any x,y€H. The induced norm of

2

a vector x€H is given by |lix|| = (xlx)“2 = [Ee x(z)! Q x(z)]“ . Problem

(8)-(10) can therefore be rewritten as the following minimum norm problem

. 2
Min oy linl
Soto (ei|n) = 0, i = 1)""p’
(Sij’n) =qij’ i, Jj=1,..04p

where the function e , maps ze¥ into a p-vector with a one in the i-th



position and zeros everywhere else, and the function s, ; maps z€¥ into a
p-vector with the i-th component of the likelihood score s(z,8) in the j-
th position and zeros everywhere else. The dependence of the function
n(-,8) on 6 has been omitted for simplicity. The constraints (eiln) = 0,
i=1,.0.,p, and (sijln) =0, i,j = 1,...,p, define a closed subspace M

i jl
the functions {ei) and {s.i j} are linearly independent vectors in H. Thus

of H. Since the matrix [(s )] = J(B) © Q is p.d. and (eilsij) = 0,

s,
the constraints (9) and (10) define a hyperplane, i.e. a translation of
M, of codimension p(p + 1). It then follows from the Projection Theorem
for Hilbert spaces [see e.g Luenberger (1969), Section 3.10, Thm. 2} that
problem (8)-(10) has a unique solution ;1(-,6). Moreover, the optimal
score function r~1(-,6) is orthogonal to M and can be characterized as a
linear combination of the functions {ei} and {si }

3

n(-,8) = 2i:1 Biei + Ziii j:‘l Yijsij =B +T s(,0),
where the p-vector B = (Bl,...,Bp) and the pxp matrix I' = ”ij] are the

solution to the normal equations

1p o’ B [ 0 ]
0 J(®) ®Q vec T ) vec Q )

Clearly, 8 = 0 and T = J(6)"'. The optimal solution to (8)-(10) is
therefore given by ;7'(-,6) = J(O)"1 s(+,6) . Since J(O)"l exists for all
6 in a neighborhood 00 of 90, the functioh F,(-,e): £ — RP can be
extended to a function ;;: £ x 8 — RP. The resulting estimator is

obviously the ML estimator. Finally, since the optimal score function



does not depend on the choice of the matrix Q, the ML estimator is
optimal in a strong sense, that is, with respect to the partial ordering

of p.d. matrices.

4. Conclusions

In this paper we have presented a simple constructive proof of the
strong optimality of the ML estimator. Unfortunately, the ML estimator
may loose its optimality properties for even small departures from the
assumed parametric model. This problem is particularly severe when the
assumed model is Gaussian. One advantage of our approach is that it can
easily be generalized to incorporate, in addition to the classical
requirements of consistency and efficiency, robustness constraints such
as an upper bound on the sup-norm of the IF [éee e.g. Hampel et al.
(1986) and Peracchi (1987)]. Additional robustness constraints might also
be introduced. For example, the sup-norm of the gradient of the IF,
called the local-shift sensitivity ([Mallows (1975)], provides a
quantitative measure of the effects of rounding or grouping of the
observations. The asymptotic variance of an estimator can itself be
represented as a functional, and its Gateaux derivative in the direction
of a point mass distribution, called the change-of-variance function
(Hampel, Rousseeuw and Ronchetti (1981)], provides a quantitative measure
of the stability of the asymptotic variance of an estimator under a small
perturbation of the underlying d.f. of the observations. Problem (8)-(10)
could then be further generalized to incorporate upper bounds on the
local shift sensitivity and/or the change-of-variance function. The

general form of the optimal solution in these cases is yet unknown.
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Footnotes

1 .
An alternative proof, based on Lagrangean methods, is given in Peracchi
(1987).

2 The class of M-estimators is very large and includes most common

econometric estimators, such as ML, pseudo-ML, least squares, least
absolute deviations and generalized method of moments estimators [see
e.g. Burguete, Gallant and Souza (1982) and Hansen (1982)]. For example,
if nN(z,G) = s(z,6) then 5" is the ML estimator based on model ¥.

3 The following notation is used. E0 denotes expectations taken with

respect to Fo’ the true d.f. of a single observation. Expectations with
respect to some d.f. in the parametric family {Fe} are denotes by E,, and
expectations taken with respect to any other d.f. F by EF.

4 A sufficient condition for (4) is some kind of differentiability of the
functional é, such as Frechét differentiability [see Serfling (1980) and
Huber (1981)], or the weaker Hadamard differentiability [see Fernholz
(1983) and Prakasa Rao (1987)].

5 The IF plays a key role in the literature on robustness, where it is

interpreted as a measure of the asymptotic bias of 6, as an estimator of
6(F), arising from an arbitrarily small contamination of the d.f. F by a

point mass.

6 Alternatively, the optimal solution can be characterized as the saddle-
point of a Lagrangean function ([Peracchi (1987)]. In this case the
inverse of the information matrix can be shown to be equal to the matrix
of Lagrange multipliers associated with the constraint (10). On the other
hand, since li'.e s(z,0) = 0, the Fisher consistency constraint is not
binding and so the associated Lagrange multiplier vector is equal to

Zero.
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