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Abstract
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1. Introduction

This paper introduces a class of robust estimators for the normal censored
regression quel. It is well known that the normal ML (or Tobit) estimator
is very sensitive to small departures from the model assumptions, and
therefore is not robust. Recently, several semi- parametric estimators
have been proposed in the litérature. Examples include Powell'’'s (1984)
censored least absolute deviation (CLAD) estimator and Powell’s (1986)
symmetrically censored least squares (SCLS) estimator. These estimators
have some robustness properties, but they can be very inefficient, for
they disregard entirely the information contained in the parametric
assumptions. The estimators presented in this paper provide a compromise
between efficiency and robustness, for they make wuse of parametric
assumptions, thereby attaining high efficiency at the assumed model, but
are robust 1in Hampel's (1971) sense, that 1is, their probability
distribution changes only little under small changes in the underlying
probability distribution of the observations. These estimators will be
referred to as ‘optimal bounded-influence estimators’, for they have a
bounded influence function ([Hampel (1974)] and they attain the best
trade-off between efficiency and robustness. They can all be interpreted
as weighted ML estimators, the exact form of the weights depending on the
particular choice of the efficiency and robustness criteria.

So far, bounded-influence estimation has been largely confined to the
linear regression model [see e.g. Hampel (1978, Krasker (1980), Krasker
and Welsch (1982), and Hampel et al. (1986)]. A notable exception is the
bounded-influence estimator proposed by Stefanski, Carroll and Ruppert

(1986) for the logit model. This paper provides another example of the



feasibility and usefulness of bounded-influence estimation outside the
context of the linear regression model. As an illustration, we estimate
Engel curves using Sudanese household budget data with a non- negligible
fraction of reported zero expenditures. We compare several
bounded-influence estimators with the Tobit, CLAD and SCLS estimators. In
particular, we address the following questions: Is the normal censored
regression model consistent with the data? Do more robust estimators lead
to different conclusions than Tobit and why? What are the differences
between semi-parametric and bounded-influence estimators? What diagnostic
information is provided by the various methods?

Our findings may be summarized as follows. The joint hypothesis of
normality and censored regression specification is often at odds with the
data. Tobit estimates are very sensitive to a few extreme observations and
look way off in some cases. Bounded-influence, CLAD and SCLS estimates are
close to eacﬁ other and look more reliable. Bounded- influence estimates,
however, appear to be more precise than CLAD and SCLS. Finally,
bounded-influence weights provide useful diagnostic information for
identifying sources of model failures, in particular outliers and
influential observations.

The rest of the paper is organized as follows. Section 2 presents a
variety of estimators for the censored regression model. Section 3
introduces the class of bounded-influence estimators. Section 4 contains

the empirical results. Section 5 summarizes the conclusions.



2. Alternative estimators for censored regression

let z = (y, x')’ be a vector of observations on k + 1 variables, with yn
n n n
restricted to be non-negative. A common statistical model for the

relationship between y and X is the censored regression model
n
- ' -
y, = max {0, xnﬁo + aorn), n=1,...,N, (1)

where r is an unobservable disturbance, assumed to be distributed
independently of X, ﬁoeRF is a vector of unknown regression parameters,
and abe(o,m) is an unknown scale parameter. The model 1is often estimated
under the assumption that the disturbances are independently and
identically distributed (i.i.d.) as N(O, 1). The resulting ML estimator is
sometimes called the Tobit estimator. Table 1 gives the likelihood score
function for this case. For convenience, the model has been
reparameterized~by putting a = 8/0 and v = 1/0.

The expected value of the normal likelihood score for § = (a', v)' is
not zero in general, unless the disturbances in (1) are normal and
homoskedastic, and so the Tobit estimator is not generally consistent when
these distributional ascsumptions are violated. The bias of the Tobit
estimator under heteroskedasticity and non-normality has been investigated
in a few, simple cases [see e.g. Hurd (1979), Arabmazar and Schmidt (1981)
and (1982), Goldberger (1983)]. A general finding is that it can be
seriously biased, particularly when the scale parameter is unknown and the
degree of censoring is high. Most studies, however, only consider the
problem of estimating the mean of a population. Further, they restrict

attention to symmetric distributions and do not investigate explicitly the



relationship between the bias and the tail behavior of the error
distribution. This is unfortunate, because the bias depends also on the
distribution of the regressors, and is 1likely to be more severe for
non-symmetrié or thick-tailed distributions.

Notice that ML estimators based on non-normal distributions need not
suffer of the same probiems as the Tobit estimator. For example, Table 1
also presents the 1likelihood score function for the case when the
disturbances in L have a common Laplace (double-exponential)
distribution. It is easy to verify that the conditional expectation of the
Laplace likelihood score is equal to zero, hence the Laplace ML estimator
is consistent, whenever the conditional distribution of the disturbances
has median zero (homoskedasticity is not required) and the marginal
distribution of the regressors gives no probability mass to points for
which x’ﬂo < 0.

The normality assumption may be tested in several ways. One approach
is to nest the normal distribution in a larger parametric family and then
construct a standard score test of the restrictions implied by normality.
For example, Bera, Jarque and Lee (1984) nest the normal into the Pearson
family of distributions, but other choices of nesting family are posssible
[see e.g. Ruud (1984)]. Although designed against a specific alternative,
tests of this type have power against a variety of misspecification
alternatives. A second approach is to construct general specification
tests based on the comparison of two estimators that are both consistent
at the assumed model, but have different probability limits when the model
is misspecified. The various tests differ in the choice of what estimators
to compare. For example, Nelson (198l) compares a consistent estimator of

the covariance of x and y with the efficient estimator based on the
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assumption of normal disturbances. Ruud (1984) compares the Probit and
Tobit estimators of the normalized regression parameter a. Chesher,
Lancaster and Irish (1985) compare alternative estimators of the
information ﬁatrix for the normal model, as suggested by White (1982). All
these tests can be interpreted as conditional moment tests [Newey (1985)].
They are not specifically designed to test normality and may lack power
against certain alternatives. A third approach is to use graphical methods
based on some non-parametric estimator of the error distribution, such as
the Kaplan-Meier estimator [Chesher, Lancaster and Irish (1985)].

Several estimators that are cénsistent under weak distributional
assumptions have been proposed in the literature. One approach involves
joint estimation of the regression parameters and the distribution of the
disturbances in (1) [see e.g. Buckley and James (1979), Duncan (1986),
Fernandez (1986) and Horzwitz (1986)]. All the proposed estimators require
homoskedastic errors and their asymptotic distribution has not yet been
established. Moreover, their computation is not a trivial problem. Another
approach is to apply the method of moments to derive estimators that are
consistent and asymptotically normal for a broad class of distributions.
Here we consider two of these estimators.

Powell’'s (1984) censored least absolute deviation (CLAD) estimator is
consistent and asymptotically normal provided that the conditional error
distribution has median zero (homoskedasticity is not required).
Estimating its asymptotic variance matrix, however, requires éstimating
the error density at the median. Powell’s (1986) symmetrically censored
least squares (SCLS) estimator is consistent and asymptotically normal
under the somewhat stronger assumption that the conditional error

distribution 1is symmetric about =zero (again homoskedasticity is not



required). Both the CLAD and the SCLS estimators, as well as the Tobit and
Laplace ML estimators, are M-estimators, that is, roots of ’estimating

equations’ of the form

L. n(z_, 8) =0,

=1

where the function n(z, ) is called the scorerfunction associated with

the given estimator. The CLAD score function is equal to
n(z,B) = L(x'B > 0) sign (y - x'8) x,

where 1(A) denotes the indicator function of the event A. Notice that the
CLAD score is similar but not not equal to the Laplace likelihood score.

The SCLS score function is equal to
n(z,f) = 1(x'8 > 0) [min (y, 2x'B) - x'B] x.

Interestingly, neither the CLAD nor the SCLS estimators require a
knowledge of the scale parameter o,

Monte Carlo evidence -[Paarsch (1984), Powell (1986)] indicates that
both the CLAD and SCLS estimator can be very inefficient relative to the
ML estimator based on a correctly specified model. This raises the
question of whether too much information is ignored in order to attain

consistency under very general conditions.



3. Optimal bounded-influence estimators for the Tobit model

It is important to investigate the behavior of a statistical procedure not
just at the assﬁmed model, but also under small departures from the model
assumptions. Some kind of ’'stability of behavior’ is necessary, because
the assumed model need not be exactly true, no matter how weak the
assumptions on which it is based. In the case of model (1), for example,
normality and independence between the errors and the regressors may fail
because of a few gross-errors in the data, and linearity of the underlying
regression relationship may fail for extreme values of the regressors.
Further, it may be difficult to assess the exact nature of the model
misspecification, and therefore it may not be clear what corrective
measures are appropriate. In this kind of situations, which appear to
arise frequently in empirical work, it may be sensible to consider
statistical procedures that are reasonably efficient when the model is
correctly specified, while being robust, that is not too sensitive to
small violations of the model assumptions.

In the econometric literature the notion of robustness is often used
in a loose, heuristic way. Here we depart from this practice by adopting
the definition proposed by Hampel (1971), which formalizes the notion that
an estimator ;N, indexed by the sample size N, is robust if small changes
in the probability distribution of the observations have only small
effects on the probability distribution of ;“. More precisely, let 1%(;N)
denote the distribution function (d.f.) of ;N when F is the underlying
d.f. of the observations. Then, the sequence of estimators (;N} is called

qualitatevely robust at the d.f. F if, for large enough N, the mapping F

— L%(GN) is continuous at F with respect to the topology of weak



convergence.

In the case of M-estimators, qualitative robustness 1is easy to
characterize. An estimator ;N can generally be represented, at least in
large sampleS, as a functional of the empirical d.f. of the observations

A

FN, that 1is, ON - ;(FN). Let Fe,z denote the mixture, with mixing
probabilities equal to 1 - ¢ and ¢ respectively, of the d.f. F and another
d.f. with mass concentrated at the point z. Then the influence function
(IF) of ;N at the d.f. F, denoted by IF(z,;,F), is defined to be the limit
as € — 0 of the difference [;(Fe,z) - ;(F)]/e [Hampel (1974)] 1. The IF
can be used to approximate the asymptotic bias of ;N, as an estimator of
;(F), that may arise under small departures from the d.f. F [see e.g.
Serfling (1980) and Fernholz (1983)]. 1If ;N is an M-estimator with
associated score function 5(z,4), then its IF at the d.f. F is a non-
singular linear transformation of n(z,;(F)) [see e.g. Serfling (1980)].
Further, an M-éstimator is qualitatively robust if and only if its IF is
bounded and continuous 'see e.g. Huber (1981)]. A natural quantitative
measure of robustness 1is therefore provided by the sup-norm of an
estimator’s IF, called the estimator’'s sensitivity. An estimator with a
finite sensitivity is called a bounded-influence estimator.

The Tobit estimator is clearly not a bounded-influence estimator.
Indeed, one large disturbance or one gross-error in the data are enough to
completely spoil the Tobit estimates. The Laplace ML, CLAD and SCLS
estimators have some robustness properties, because all have a bounded IF
wvhen the regressors take values in a compact set. Even in this restrictive
case, however, their sensitivity may be unacceptably high. Moreover, since

their IF is not continuous, they can all be sensitive to rounding or

grouping of the observations [see e.g. Hampel et al. (1986)].



In this Section we shall assume that the observations {zn) are i.i.d.
and their common d.f. F0 belongs to the parametric model F = (F8: fed, 6 =
ka(o,m)}, specified by the censored regression model (1) with normal

disturbances 2. Thus F0 - Fg for some ﬂoee. We shall exploit this
0

information to construct estimators of 00 that are consistent under the

normality assumption and cannot be improved upon simultaneously with

respect to the criteria of asymptotic efficiency at the assumed model and

robustness, that is, stability of performance under small departures from

the model assumptions.

More precisely, let Tc be the class of M-estimators of 00 that are
regular, i.e. possess an asymptotically normal distribution, and have a
sensitivity that does not exceed a given bound ¢, 1i.e. sup z
"IF(Z’;N’FO)”B < ¢, where B is a given p.d. matrix 3. Consider the problem
of finding in Tc an estimator that 1is consistent and asymptotically
efficient at the assumed model F according to a given asymptotic mean
square error (MSE) criterion. Such an estimator, called an optimal
bounded-influence estimator, is qualitatively robust if, in addition, its
score function is continuous. Peracchi (1987) provides conditions for the
existence of an optimal bounded-influence estimator and characterizes its
score function in the case of a general parametric model and arbitrary
metrics for the sensitivity and the MSE criterion. We shall restrict
attention to the case when the sensitivity and the MSE criterion are both
defined in the metric of the p.d. matrix B. Let the symmetric p.d. matrix
P(8) and the vector a(§) be solutions to the equation system

E, min (1, c/[F 7 [s(z,8) - allp) [s(z,8) - a] =0 (2)



E, min (1, /P (s(z.6) - allp) [s(z,6) - a] s(z,6)'- B =0  (3)
where s(z,#) is the likelihood score function of the assumed parametric
model. We fifst give a necessary condition for a(f) and A(f) to exist. All

proofs are presented in Appendix 1.

PROPOSITION 1: Suppose that E, ls(z,8)| exists and is positive. Then

a(f) and P(6) exist only if c = (trace B)/(E, us(z,a)nB).

The next result characterizes the class of optimal bounded-influence

estimators.

PROPOSITION 2: Assume that a(f) and A(f), implicitly defined by
equations (2) and (3), exist for all ¢ in an open neighborhood of 00. Let
?'N be the regular M-estimator of 00 based on the score function n(z,0) =

w(z,0) [s(z,8) - a(6)], where the function w(z,f) is defined by

c
w(z,0) = min { 1, - }. (4)
Ieco)™" [s(z,8) - a(o)lly

A A

Then Eu minimizes trace [B AV(ON,Fo)] among all regular M-estimators ON

that satisfy sup "IF(z,ﬂN,Fo)HB < c.

Proposition 2 defines a whole class of estimators, indexed by the
choice of the matrix B and the sensitivity bound c. Clearly, when the
bounded-influence constraint is not binding, i.e. ¢ = =, 7" is the ML

estimator for the given parametric model. The optimal bounded-influence
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estimator can be interpreted as a weighted ML estimator, where the weight
function w(z,f) depends on the matrix B. When B is equal to the identity
matrix, 5N is the Tobit analogue of the regression estimator of Hampel
(1978) and Krasker (1980). When B = A.V(?N,Fo)-1 we obtain the analogue of
the regression estimator of Krasker and Welsch (1982). Other choices of B
will be discussed later. The vector a(f) is a bias correction term that
depends on the assumed model and ensures that 5“ is consistent for # at
Fo. Geometrically, the likelihood score for one observation is shrunk to
satisfy the ©bounded-influence constraint, and shifted to ensure
consistency at the assumed model.

We now establish formally the asymptotic properties of in when the
assumed parametric model is the normal censored regression model. Since
the score function (2) is not differentiable at the ﬁoints where "P(ﬁ)q
[s(z,8) - a(o)]”B = ¢, standard techniques based on a Taylor’s expansion

cannot be applied. Asymptotic normality can however be established by

verifying the sufficient conditions of Huber (1967).

PROPOSITION 3: Suppose that Amemiya‘'s (1973) conditions for
consistency and asymptotic normality of the Tobit estimator are satisfied,
and assume that there exists a pair of continuosly differentiable
functions (a(-), P(-)), defined on a compact set 80 containing 00 in its
interior, such that P(4) is a p.d. matrix and (a(8), P(8)) solve (2)-(3)
for all 0660. Then the optimal bounded-influence estimator Fn exists and
is consistent, and N'*(F - 4 ) 4, No, P Q P,'), where P = (3/36')

Eo n(z,ao) and Q0 - Eo n(z,oo) n(z,oo)'. A consistent estimate of the

-1 -1

asymptotic variance matrix of FN is given by ?;ﬂ QN ?; , where §N = N

L) (8/38") n(z ,§) and Q = N L7 n(z .B) n(z .8)".
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The next result summarizes the robustness properties of GN.

PROPOSITION 4: The optimal bounded-influence estimator EN is
qualitatively robust at F. Moreover, sup "IF(Z,FN,F)MB < o for all d.f.

F and all B.

When the distribution of the regressors is unknown, the above results
can be interpreted as conditional on the given set of regressors. When any
of the assumptions of the normal censored regression model F is violated,
?N will not generally be consistent. However, since the IF of 5; is
bounded, its asymptotic bias under any small departures from F will also
be bounded. Thus, if the bias and the asymptotic variance of an estimator
are combined together in some risk function, it will be possible to find a
neighborhood of the assumed model F over which the optimal
bounded-inflﬁence estimator has smallest asymptotic risk than the Tobit
estimator [see e.g. Bickel (1984) and Hampel et al. (1986)].

It can be shown that tests inherit the efficiency and robustness
properties of the estimators on which they are based [see e.g. Peracchi
(1987)]. In particular, tests based on bounded-influence estimators are
robust, that is, their level and power are relatively stable under small
departures from the model assumptions. This property is not shared by
tests based on estimators that do not have a bounded IF. Tests based on
optimal bounded-influence estimators are robust and have, in addition,
certain optimality properties.

The difference between Tobit and an optimal bounded-influence
estimator EN can be used to construct a variety of specification tests of

the type proposed, among others, by Hausman (1978). Tests of this type are
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likely to be quite powerful, because the difference between the two
estimators can be very large when the model is misspecified, but ?N will
be only slightly less efficient than the Tobit estimator when the model is
correctly spécified.

The set of robust weights (4), computed for each observation in the
sample, provide useful diagnostics for detecting outliers and influentialy
observations. In the case of non-linear estimators, the use of these
weights represent an alternative to methods based on deleting a subset of
observations at a time and then comparing the resulting estimates with the
ones obtained from the full sample [see e.g. Belsley, Kuh and Welsch
(1980) for the linear regression case]. Since the robust weights are
jointly computed with the parameter estimates, they require no additional
calculation. Further, they are easy to interpret, because of the weighted
ML nature of an optimal bounded-influence estimator.

The computation of 58 may be quite expensive, but considerable
simplifications can be obtained by exploiting the arbitrariness of the
metric in which the sup-norm of the IF is defined. Here we propose two
possibilities. The first is to choose B = P(0)2. Although not very
natural, this metric is convenient from the point of view of computation,
since it eliminates the need of solving for the matrix P at each
iteration. However, the resulting sensitivity measure is not invariant
under a reparameterization of the model. One choice that 1leads to
invariance is B = P(4) .1(9)-1 P(8), where J(§) is the information matrix

associated with the parametric model F,. The resulting weight function,

g
which is also computationally simple, rescales the recentered likelihood

score whenever its norm, in the metric of the information matrix, is

greater than the given bound ¢. The estimators based on these two choices
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of weight function will be denoted by BI1 and BI2 respectively.
We shall also denote by BIO the estimator based on a score function
of the form n(z,0) = w(z,§) [s(z,8) - a(d)], where a(d) = Ee w(z,8) s(z,8)

and the weighf function w(z,§) is given by
w(z,8) = min (1, ¢ / ”s(z,&)").

The BIO estimator is simple to compute because w(z,f) does not depend on
a(8). It is easy to verify that the BIO estimator is consistent at the
normal censored regression model, has a bounded IF and is asymptotically
normal. Therefore, it should provide good starting values for one-step
versions of the H-K and K-W estimators. The method of Bickel (1975) can be
used to show that these one-step estimators are asymptotically equivalent
to the fully iterated estimators. Table 2 summarizes the score function

for each of the estimators introduced in this Section.

4. Empirical application
The censored regression model is frequently used to analyze the income-
expenditure relationship when household budget data contain a significant
fraction of reported zero expenditures 4. In this Section we analyze
household budget data from the Sudan. A comparisons between the Tobit,

CLAD, SCLS and several bounded-influence estimators is carried out.

4.1 The data and the fitted models
The data are taken from the 1978-80 Household Income and Expenditure

Survey of the Sudan 5. The original data set contains observations from
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different regions of the Sudan but, to keep the model as simple as
possible, we only consider the subset of 268 observations from the Nile
region. We estimate Engel curves for 3 commodities with a non-negligible
fraction of -reported zero expenditures, namely clothing and footwear
(‘clothing’), transport services and repairs (’transport’), and tobacco
products ('tobacco’). The degree of censoring differs for the various
commodities and is equal to 8.2% for clothing, 23.9% for transport, and
31.7% for tobacco.

We consider a number of popular models of Engel curves for an

individual commodity i:

Working-Leser (WL): w - a + bi In x
Quadratic Working-Leser (QWL): w o= ai + bi In x + di(ln x)2
Linear expenditure system (LES): Pq = a + b1 X

Quadratic expenditure system (QES): Pq - & + b1 x + di x°

where w, and P4, denote respectively the budget share and the total
expenditure on the i-th commodity, and x denotes the total outlay. All
Engel curves belong to the general class considered by Gorman (1981), and
are all theory consisgent in the sense that each of them can be derived by
Shephard’'s Lemma from some nice cost function. QWL and QES may be
interpreted as second order approximations, based respectively on powers
of 1n x and of x, to an arbitrary Engel curve.

Demographic and area effects are introduced in the analysis by

expressing income in per capita terms, and by assuming that for each model
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the intercept a, depends linearly on a number of household
characteristics, including the household size, a household composition
effect (number of household members less than 14 years old), and an area
dummy (DRUR)‘wich a valve of one for households living in rural areas and
zero for households living in urban areas. This specification may be
restrictive, because demographic and area effects may affect the whole set
of parameters.

Definitions and summary statistics for the variables considered are

presented in Table 3.

4.2 Preliminary tests of specification

For each commodity and functional form we first consider a number of
tests for normality, conditional symmetry of the error distribution, and
censored regression specification. The normality assumption 1is tested
against the general Pearson family using the score test of Bera, Jarque
and Lee (1984). The specification tests of Nelson (1981) and Ruud (1984)
are also considered. The censored regression specification is tested
against Cragg’s (1971) Model I by using the score test of Deaton and Irish
(1984), and against Cragg's Model II by using the score test of Lin and
Schmidt (1984). The joint hypothesis of conditional symmetry and censored
regression specification is tested as in Newey (1987).

The Deaton-Irish test essentially compares a consistent estimate of
Pr (y > 0) with the efficient estimate based on the assumption of a normal
censored regression model. The Lin-Schmidt test compares a consistent
estimate of E (xy|y > 0) with the efficient estimate for the normal
censored regression model. Both tests are related to Nelson’s

specification test, and have power against a variety of alternatives,
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including heteroskedasticity and non-normality.

All tests assume that the Engel curves are correctly specified.
Therefore, they should all have power against misspecification arising
from omitted variables or an incorrect functional form. All score test
statistics are computed in an asymptotically equivalent form as N times
the uncentered R® in the regression of a column of ones on the likelihood
score for the unrestricted model (evaluated at the restricted estimates).
Under the null hypothesis, all test statistics except the Deaton-Irish
statistic have an asymptotic xz distribution. The number of degrees of
freedom is equal to 2 for the Bera-Jarque-Lee test, and to the number of
regressors for all other tests. The Deaton-Irish statistic is
asymptotically normal under the null hypothesis. As noted by Deaton and
Irish (1984), if the statistic is negative and significantly different
from zero, this is evidence against both Tobit and Cragg'’s Model I.

The various test statistics are presented in Table 4. The hypothesis
of a Tobit model is strongly rejected in all cases, except the WL form for
clothing. The results for the WL and LES forms are generally consistent
with those for QWL and QES. Nelson’s test tends to reject less frequently
than the others. This may be a consequence of its low power, as suggested
by Ruud (1984). The Ruud and the Lin-Schmidt statistics are very close and
always lead to rejection. The Deaton-Irish statistic is always positive,
which indicates rejection of the Tobit model but, interestingly, not in
the direction of Cragg’'s Model I. The results for the conditional symmetry
hypothesis are mixed, with rejections in the case of transport and the LES
form for clothing.

Misspecification may also be detected by less formal procedures.

Following Chesher, Lancaster and Irish (1985), we use the Tobit residuals
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to compute the Kaplan-Meier estimate of the d.f. function of the errors.
If the model 1is correctly specified the Kaplan-Meier estimate is
consistent. Therefore, the plot of its inverse normal transform against
the ordered fobit residuals should be close to a 45-degree line. In
agreement with our earlier findings, there is some evidence for normality
only in the case of the WL form for clothing [Figures la and 1lb]. However,
even in this case, the Kaplan-Meier estimate has somewhat fatter tails
than the normal. In all other cases, especially the expenditure equations,
the Kaplan-Meier estiméte looks often 1like the double- exponential
distribution [see e.g. the case of the LES form for clothing in Figures lc
and 1d]), which makes the CLAD estimator an interesting alternative to
consider.

Thus, formal tests and graphical procedures all indicate that
misspecification is 1lik:ly to be present in most of the cases that we
consider. HoweQer, it is hard to determine the exact nature of the
misspecification, and in particular, whether it is due to failures of the
censored regression specification or simply to failures of the normality

assumption.

4.3 Point estimates and standard errors

Here we present the results obtained for 8 different estimators: the
Tobit estimator, the 5 bounded-influence estimators discussed in Section
3, and Powell's CLAD and SCLS estimators. Details on the computation are
given in Appendix 2.

For all estimators, the estimated standard errors are consistent
under heteroskedasticity and non-normality. For the CLAD covariance

estimates we consider different window widths for the non- parametric

18



estimator of the error density at the origin. The estimates are very
sensitive to the degree of smoothing. We report results for three choices,
corresponding respectively to settingrco = 0.5, 1.0 and 2.0 in equation
(5.5) of Powell (1984).

Table 6 presents estimates of the income elasticity of demand
evaluated at the median'income: First consider the WL and LES forms. In
the case of clothing estimates do not change much across models and
estimation techniques, and are rather precise. In the case of transport
the differences between Tobit and all other estimates tend to be large.
Semi-parametric and bounded-influence estimates are generally close (with
the exception of the H-K estimator, perhaps because of the numerical
problems encountered in this case), but bounded-influence estimates tend
to be more precise. In the case of tobacco again we find large differences
between Tobit and all other estimators, but all estimates are very
unprecise.

In the QWL case, estimated elasticities are close to the ones for the
WL and LES forms. In the QES case, however, the Tobit estimates just blow
up. For all goods, the Tobit estimates are at least twice as big as for
the other specifications. The SCLS estimates are not reported because of
divergence of the algorithm. The other estimates are also larger than for
all previous specifications, but the increase is much less pronounced.

Our results are illustrated in Figure 2, that compares the shape of
estimated Engel curves for transport in the case of a median household
with 7 household members, 4 adults and 3 children, living in a rural area.
The differences between Tobit and the other estimates are also very big in
the case of tobacco, but are smaller in the case of clothing.

Specification tests based on the difference between Tobit and

19



bounded-influence estimates satisfy the conditions for powerful tests [see
e.g. Ruud (1984)], namely a large difference between estimators under the
alternative @odel, and a relatively efficient alternative estimator to ML.
On the other hand, tests based on the difference between the Tobit and the
CLAD or SCLS estimator satisfy the first but not the second conditions and
should therefore be less powerful.

The specification test statistics are presented in Table 7. The test
statistics are computed as N times the uncentered R? in the regression of
a column of ones on the likelihood score and the influence function for
the subset of regression parameters, both evaluated at the Tobit
estimates. Under the null hypothesis of correct specification these
statistic have an asymptotic xz distribution with the number of degrees of
freedom equal to fhe number of regression parameters. We find this
artificial regression form more convenient than Hausman (1978) original
form, because the covariance matrix for the difference between the two
contrasts, even when constrained to be positive semi-definite, as
suggested in Newey (1985), is typically singular.

Equality of the regression coefficients is typically rejected for

clothing and transport, but not for tobacco. In the case of CLAD and SCLS
rejection occurs 1less frequently, essentially because of the 1larger

standard errors of these estimates

4.4 Diagnostics for outliers and influential observations

A standard approach to identifying influential observations is based
on deleting a subset of observations at a time and then comparing the

resulting estimates with the ones obtained for the full sample. A subset
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of observations is deemed to be influential if this difference is large.
Usually only methods based on deleting a single observation are applied,
because of the combinatorial problems arising with multiple deletion. This
approach is ;traightforward for linear estimators [see e.g. Belsley, Kuh
and Welsch (1980)], but even single deletion methods can be quite
expensive for non-linear estimators, in particular when the number of
observations is high. Another approach 1is to examine, for a given
estimator, the norm of the IF for each observation [see e.g. Cook and
Weisberg (1982) for the case of regression estimators]. An influential
observation is one for which the norm of the IF is large. Asymptotically,
this is equivalent to deleting one observation at a time and then
computing the norm of the difference in the estimates with respect to the
full sample. Neither approach 1s entirely satisfactory for outlier
detection. On the one hand, it is well known that single deletion methods
can fail to reveal multiple outliers [see e.g. Atkinson (1986)]. On the
other hand, outliers may not be detected by methods that are based on
estimators that are not robust.

As an illustration of the latter problem, consider the scatter of the
relationship between log per-capita income and budget share on transport
[Figure 3]. The symbol associated with each point in the scatter depends
on the norm of the IF of the Tobit estimator, with the IF evaluated at the
Tobit estimates. Two very influential points are clearly revealed. Notice
that the norm of the IF is not very large for the points in the cluster on
the top-right of the scatter. These points correspond to households with
an exceptionally high expenditure share on transport (15% or more). By
computing the Tobit estimates with and without these observations, it is

easy to verify that it is their presence which explains why ML estimates
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of elasticity are so large, especially in the QES case.

An alternative to the previous approaches is to consider the weights
from bounded-influence estimation. An influential observation is now one
which receives a small weight. Figure 4 is a graphical illustration of the
use of these weights. The scatter of the log per-capita income and the
budget share on transport is presented again, but now the symbol
associated with each observation depends on the magnitude of the robust
weights. Notice that the two very influential observations of Figure 3 are
heavily downweighted, but so are now the points in the cluster on the
top-right of the scatter. Figure 4 also illustrates how the different
bounded-influence estimators work. In particular, the H-K estimator
downweights more the former set of points, while the other bounded-

influence estimators downweight more the latter.

5. Conclusions

This example demonstrates the feasibility of bounded-influence estimation
outside the context of the linear regression model. It shows that Engel
curves estimated from the same set of censored data can differ
significantly depending on the choice of the estimation technique. In
particular, the Tobit estimates can differ significantly from other more
robust estimates as a consequence of the presence of only a small fraction
of extreme observations.

We found that semi-parametric and bounded-influence estimates tend to
be close to each other, but the latter appear to be more precise and lead

to tests that appear to be more powerful. It would be interesting to
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verify these indications with a full scale Monte Carlo study.

In our view, using the <class of bounded-influence estimators
discussed in this paper offers several advantages. First, it ensures
protection aéainst the negative effects, on both estimation and inference,
of small departures from the assumed parametric model, while maintaining
high efficiency if the assumed model is correctly specified. Seéond, the
difference with respect to Tobit estimates provides the basis for
specification tests that have power against a variety of alternatives.
Third, the weights from bounded-influence estimation provide useful
diagnostics for detecting outliers and influential observations. The price
one has to pay by using these estimators is a loss of efficiency with
respect to ML if the assumed model is indeed correct. However, and this is
yet another advantage, the investigator can choose the efficiency 1loss

that he/she is willing to tolerate.
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A

1 Let GN denote the value of the estimator for a given sample of N
observations, and consider adding to this sample an additional observation
z. Let ;mq denote the value of the estimator for the new sample of N + 1
observations. Then, under mild regularity conditions, the IF of the
estimator is AequalA to the 1limit in probability of the normalized

difference N (§ - §).
N+1 N

In what follows, Eo denotes expectations taken with respect to the true

d.f. Fo’ and E, denotes expectations taken with respect to FG'

6

3 1/2

X = (x'B x) denotes the norm of a vector X in the metric of some
B .

p.d. matrix B. The Euclidean norm of x is simply denoted by |x].

Cragg (1971) first pointed out that the censored (and truncated)
regression model may not be a valid representation of demand, because it
does not distinguish between the decision of purchasing a good and the
decision of how much to purchase. See also Blundell and Meghir (1987).

> The data set was chosen as an example of the type of low-quality data

that are often used by economists. The data are contaminated in various
ways, including misreporting by individual households, coding and punching
errors, data manipulation at the editing stage, etc., but the actual

amount of contamination is unknown.

Interestingly, equality of the whole parameter vector is almost always
rejected in the case of bounded-influence estimators. This partly reflects
the fact that ML estimates of the scale parameter are usually larger and

less precise than bounded-influence estimates.
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Appendix 1

PROOF OF PROPOSITION 1: See Peracchi (1987), Proposition 2.3.2.

PROOF OF PROPOSITION 2: See Peracchi (1987), Proposition 2.3.3. See
also Hampel et al. (1986), Thm. 4.3.1, for the case when B is the identity

matrix.

PROOF OF PROPOSITICN 3: Under the stated assumptions the function n:
Z X 60 — RP exists, n(-,8) is measurable for each Geeo and n(z,:) 1is
continuous on 60 for eacu z. Since n(z,4) is a bounded function, A(§) = E0
n(z,0) exists for all 0690. Moreover, A(#) is continuous, and the equation
A(8) = 0 has a unique root at § = 00 because the matrix (3/864') A(6) is
p.d. for all 9660, and is equal to P(#) if the model 1is correctly
specified. Therefore the function S(§) = "A(ﬁ)“z is continuous on the
compact set eo and attains a unique minimum of zero at ¢ = 9¢

The estimator 0N may equivalently be obtained by minimizing the

function S (8) -= A ()], where A (8) = N T n(z,6). Clearly S ()

is measurable and continuous. By the Weak Laépzf Large Numbers, SN(G)
converges in probability to S(f) for each fixed #. We now verify that this
convergence is uniform in 0660. Let g(z,d) be defined on Z X 90 by g(z,4)
= n(z,8) - A(6). Then g(-,8) is measurable for each 0660 and g(z,-) is

continuous on 80 for each z. Moreover E0 g(z,6) = 0, and E0 sup 0690

lg(z,8)|| is finite because n(z,#) is a bounded function. It then follows
from Theorem 4.2.1 of Amemiya (1985) that A“(o) converges to A(f#) in
probability uniformly in 0690, and so the convergence of SN(O) to S(#) is
uniform in 0660. Consistency of 5N then follows from Theorem 4.1.1 of
Amemiya (1985).

We shall establish the asymptotic normality of ?N by verifying the
sufficient conditions of Huber (1967). These take care of the fact that
n(z,8) 1s not differentiable with respect to f# at points where ||P(0)-1
(s(z,8) - a(&)]"B = c. Measurability and separability of n(-,8) [Huber's
Condition (N-1)] are easily verified. Condition (N-2) is satisfied because

90 is a root of A(f) = . Since %(z,d) is bounded, the trace of Eo n(z,8)



n(z,8)' is finite and so Condition (N-4) is also satisfied. Thus, we only
have to verify Conditions (N-3), namely that there exist strictly positive

numbers a,a, a3 and d0 such that

(i) Ixeerh = a o -6l for flo - 06| =<4,
(ii) E u(z,6,d) <ad for |6 - 6l +d=<a, da=z0,
(iii) E u(z,6,d)"<ad for [#-0]+d=sa, dz0,

where u(z,6,d) = sup "1_0" <d Hn(z,r) - q(z,ﬁ)". Part (i) is satisfied
because (4/488') A(oo) is non-singular. Next notice that n(z,4) < s(z,8) -
a(f) for all z and Beeo. Therefore, by the differentiability of s(z,-) and
a(-),

n(z,7) - n(z,0) s s(z,7) - s(z,0) - (a(r) - a(h)
s (3/80°) [s(z,8) - a(8)] (r - 6)

for all re@ and f€@ such that |r - | < d and |6 - 6 s d - d, where d
is small and positive. The Lipschitz conditions (ii) and (iii) are easy to
verify by taking norms and expectations, and using the fact that the
Information matrix for the Tobit model is p.d. Since all conditions of
Theorem 3 in Huber (1967) are satisfied, 5N is asymptotically normal with
asymptotic variance matrix equal to P;l Q, P;—l, where P = (8/30') A(8)
and Q0 - E .
estimate of the asymptotic variance matrix of 0“ follows immediately from
Thm. 3.2. of White (1982).

n(z,ﬁo) n(z,ao)'. Finally, consistency of the proposed

PROOF OF PROPOSITION 4: The likelihood score function s(-,8) for the
normal censored regression model is continuous. Thus, the weight function
w(-,8) and therefore IF(-,?N,FO) are also continuous. Since IF(-,?N,FO) is
bounded by construction, the conclusions of the Proposition follow

immediately.

29



Appendix 2

Computation of the bounded-influence estimates proceeds as follows:

1.

2.

. 1
. Given A(), a

0)

Start with G(M - OW‘and a'® - 0.

(0),-1/2
)

Choose Au) = 1 for the BI0O and BIl estimators, Au) - J(4 for

P
the BI2 estimator, Au) - P(o‘“) ! for the H-K estimator and A“J -
Q(G(O))_U2 (©y i{s the solution to (11) for

a given aw), and Q(8) is defined in Proposition 1].

for the K-W estimator [P(d

(1)

. 1
. Given A(), compute a as

c -1
al’ - [ ¥ E, min { 1, } ]
n @ "A(l)[sn(r,o(O)) ) b(O)]"

C. A
X zn E@ min { L, (1) (0) (0) } s(r,0(°5
la [s (r,6 ") - b Kl ‘

where, from Table 1,

[l(yn >0)r - l(yn = 0) A(xéa)] X

s (r,8) = - ,
1, > 0) (v * - ry)

(0) (0)

b = 0 for the BIl estimator, and bw) - a otherwise. The normal
integrals are evaluated numerically by using the Gauss-Legendre
subroutine in Quandt (1988).

) and b(n, compute o by solving

. c
2% min { 1, re) e } [S(zn,ﬂ) - a(n] = 0.
ja** s(z_.6) - b 1] |

This is done by using the Newton-Raphson algorithm NEWRAP in GQOPT.

(2)

Given a‘“, compute A;z% a ’, b(z)

and 8 as in Step 2 to 4, and
iterate. Convergence of this algorithm is not guaranteed.

The sensitivity bound ¢ is chosen so as to obtain an average weight
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of about 95%. When ¢ = =« all bounded-influence estimators that we consider
are the same as the ML estimator, with an average weight equal to unity.
Thus, our choice of the sensitivity bound may be interpreted as resulting
in an efficiency loss of about 5% when the Tobit model is indeed correct.
The % of downweighted observations varies depending on the specification
and, to a lesser extent, the type of estimator. Typically is between 10
and 15% for the WL and QWL forms, and is somewhat lower for LES and QES.
In the latter case, however, the value of the minimum weight is much
smaller, which indicates the presence of highly influential observations.

The convergence criterion requires the maximal change in any of the
parameter estimates to be 1less than 107, Convergence 1is typically
attained after 5 to 10 iterations of the outer loop. We had numerical
problems with the H-K estimator, in particular for the QWL and QES
specifications, and we do not report results for these two cases. For the
other bounded-influence estimators, sometimes the algorithm cycled between
two values very close to each other. In these cases convergence was always
reached by weakening the tolerance to 107, _

The CLAD estimates are computed by iteratively reweighted LS with
weight function given by w(y,x,8) = 1(x'B) min(]y - x'ﬁl-l, {1}, where ¢
is positive and small. The SCLS estimates are computed by the iterative LS
algorithm mentioned in Powell (1986). The convergence criterion requires
the maximal change in any of the parameter estimates to be less than 107,
CLAD estimates typically need more iterations to converge. In a few cases

the limit of 100 iterations was reached without convergence.
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Table 1

Likelihood score for the censored regression model (r = vy - x'a).

a) Normal disturbances

[ty >0) r - 1(y = 0) A(x'a)] x

s(z,8) = -1
Iy >0) (xy - v )

where Au) = g(u)/[1 - ®(u)].

-

b) Laplace disturbances

[1(y > 0) sign(r) - 1(y = 0) x(x'a)] x

s(z,8) = L

1(y > 0) [sign(x)ey - v ']

where A(u) = 1(u = 0) + 1(u < 0) [2 exp(-u) - 1]}.
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Table 2

Bounded-influence estimators for the censored regression model.

All bounded-influence estimators in this paper are based on a score

function of the form

(o]

n(z,8) = min { 1, } [s(z,8) - a(8)]

lace) (s(z,8) - b(a)]|

where

Estimator b(8) A(8) Metric on the IF

BIO 0 I .
BI1 a0 I P(9)*
BI2 a(8)  J)M* o) 38)7" p()
H-K (Hampel-Krasker) a(8)  P(8) * I
K-W (Krasker-Welsch) a(d)  Q)M* (o) Qa)t (o)

Note: The pxl vector a(f) and the pxp matrix P(#) are solutions to
equations (2)-(3) in the text, and Q(f) = Eo n(Z,0) n(Z,8)’.
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Table 3

Definition and summary statistics for the variables in the data set.

SHXCLOTH: % share of total exp. on clothing and footwear.
SHXTRANS: % share of total exp. on transport services and repairs.
SHXTOBAC: % share of total exp. on tobacco products.

XCLOTH : household expenditure on clothing and footwear.

XTRANS : household expenditure on transport services and repairs.
XTOBAC : household exp:nditure on tobacco products.
LXPC : log of total expenditure per household member.

LXPCSQ : square of LXPC.

XPC : total expenditure per household member.

XPCSQ : square of XPC.

HHSIZE : number of household members.

LT14 : household members less than 14 years old.

Variable Min Max Median MAD (1)
SHXCLOTH 0.00 22.35 4.0 92.24
SHXTRANS 0.00 30.43 0.97 0.97
SHXTOBAC 0.00 12.27 0.52 0.52
XCLOTH 0.00 52.63 4.00 2.73
XTRANS 0.00 73.53 0.94 0.94
XTOBAC 0.00 19.44 0.34 0.34
LXPC 7.97 11.68 9.41 0.31
LXPCSQ 63.45 136.48 88.54 5.77
XPC 2.88 118.46 12.20 3.73
XPCSQ 8.29 14032.43 148.89 84.30
HHSIZE 2 16 7 2
LT14 0 9 3

(1) Median absolute deviation from the median.
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Table &4

Tests for normality, symmetry and Tobit specification.

Ruud: Ruud (1984), asymptotically x: under Ho'
Nelson: Nelson (19881), asymptotically xi under Ho'

BJL: Bera, Jarque and Lee (1984), asymptotically x: under Ho.
L-S: Lin and Schmidt (1984), asymptotically xz under H,.
D-I: Deaton and Irish (1984), asymptotically N(0,1) under Ho'

Newey: Newey (1987), asymptotically xz under Ho'

Ruud Nelson BJL L-§ D-1 Newey

Clothing

WL 14.1p 4.01a 4.22a 14.1b 1.68a 6.88a

LES 93.2 71.5 36.6 94.6 4.06 19.6

QWL 15.9 7.21a 4.78a 16.0b 1.6% 8.73a

QES 99.0 127.0 20.2 100.6 0.95a 9.14a
Transport

WL 110.3 40.6 60.8 111.8 10.2 16.4

LES 161.5 80.7 37.8 162.5 12.7 12.0b

QWL 118.9 61.0 59.6 119.4 10.6 15.5

QES 171.5 184.3 70.0 178.0 11.9 c
Tobacco

WL 48.9 11.1s 45.8 49.0 6.74 6.39

LES 70.7 23.8 61.5 71.1 7.22 6.84a

QWL 50.2 17.3 46.7 50.2 6.80 3.94a

QES 75.5 82.0 54.5 77.4 6.37 c

a: Asymptotic p-value greater than .05,
b: Asymptotic p-value between .0l and .05.

c: Not available.
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Iable 3

Income élasticity of demand evaluated at the median

(asymptotic standard errors in parentheses).

Clothing Transport Tobacco
WL LES QWL QES WL LES QWL QES WL LES QWL QES
Tobit 1.61 1.23 1.7t 2.64 5.85 6.73 5.70 13.24 .620 1.12  .593 3.27
(.122) (.475) (2.48) (.362)  (.745) (2.67) (26.7) (1.77) (.660) (.815) (13.4)( 1.67)
BIO 1.54 1.60 1.62 2.08 3.10 3.63 3.46 4.60 -.025 .253 -.073 1.42
(.127) (.207) (2.18) (.186)  (.383) (.582) (21.2) (.377) (.484) (.581) (10.2) (2.16)
BIl 1.54 1.60 1.62 2.08 3.09 3.63 3.47 4.29 -.027 .254 -.079 1.42
(.128) (.207) (2.31) (.186)  (.394) (.582) (22.8) (.379) (.484) (.583) (10.2) (2.15)
BI2 1.58 1.62 1.62 2.00 2.97 2.60 3.05 3.09 -.022 -.026 -.119 .276
(.117) (.199) (3.33) (.486)  (.317) (.394) (12.5) (1.53) (.471) (.267) (9.80) (1.41)
H-K 1.63 1.54 N . 4.51  6.99 . a .375  .817 a .
(.118) (.318) (.569) (2.95) (.544) (.877)
K-W 1.59 1.71 1.63 2.09 3.20 3.30 3.21 4.19 .031 .31 ,022 1.59
(.119) (.186) (3.70) (.763)  (.347) (.459) (12.7) (1.09) (.495) (.654) (10.5) (2.14)
SCLS 1.55 .948 1.66 3.25 3.68 2.38 3,21 b -1.42 -.08s -3,38 b
(.127) (.368) (.124) (.531)  (.895) (1.40) (.561) (.853) (1.30) (3.05)
CLADc 1.61 1.39 1.61 2.11 3.13 2,97 3.14 4.69 .170  0.010 .245  .655
(.082) €.710) (.099) (.319) (.532) (2.41) (2.17) (.915) (.716) (1.52) (.741) (.690)
(.115) (.227) (.109) (.484)  (.420) (3.95) (.429) (.943) (.628) (2.01) (.504) (.982)
(.113) (.170) (.114) (.573)  (.502) (1.85) (.645) (1.42) (.794) (.309) (.667) (.942)

a: Not computed.

c: Standard errors corresponding respectively to c, = 0.5, 1.0 and 2.0 in
equation (5.5) of Powell (1984).

. Algorithm failed to converge.
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Specification tests for the regression

Table 6

parameters.

BIO BI1 BI2 H-K K-w SCLs CLAD

Clothing

WL 20.0 19.3 18.3 3.82a 15.8 2,02¢ 1.55a

LES 98.8 98.9 111.9 19.5 105.1 7.14a 19.8

QWL 7.86a 7.81la 20.4 c 16.7 1.03a 3.64a

QES 30.1 30.1 56.4 c 44.7 27.7 18.9
Transport

WL 253.9 257.0 228.4 24.5 123.1 23.6 20.7

LES 171.2 175.4 164.5 100.0 86.2 38.4 13.%

QWL 101.3 120.1 203.6 c 43.5 32.3 21.9

QES 16.2» 17.0 56.6 c 13.0p 54.4 32.1
Tobacco

WL 7.19a 7.51a 8.98a 16.8 13.00p 16.9 15.2

LES 7.58a 7.69a 2.6la 24.8 8.13a 26.7 30.8

QWL 19.4 19.8 14.3p c 12.0 18.7 15.6»

QES 20.0 20.2 1.02a c 7.90a 27.7 21.8

a: Asymptotic p-value greater than .0S5.

b: Asymptotic p-value between .0l and .05.

c:

Not available.
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