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Conflict and Rent-Seeking:

Ratio vs. Difference Models

Abstract

The rent-seeking competitions studied by economists fall within a much
broader category of conflict interactions that also includes, for example,
military combats, election campaigns, industrial disputes, lawsuits, and
sibling rivalries. In the rent-seeking literature, each party’s success P;
(which can be interpreted either as the probability of victory or as the
proportion of the prize won) has been taken to be a function of the ratio of
the respective resource commitments. Alternatively, however, p; may
instead be a function of the difference between the parties’ commitments to
the contest. The Contest Success Function (CSF) for the difference form is
a logistic curve in which increasing returns apply up to an inflection point
at equal resource commitments, as is consistent with military experience. A
crucial flaw of the traditional ratio model is that neither one-sided
submission nor two-sided peace between the parties can ever occur as a
Cournot equilibrium. In contrast, both of these outcomes are entirely
consistent with a model in which success is a function of the difference

between the parties’ resource commitments.



CONFLICT AND RENT-SEEKING: RATIO VS. DIFFERENCE MODELS

Following the seminal contribution of Gordon Tullock [1980], a number
of papers1 have explored various aspects of rent-seeking competitions. In
such contests, each of N players invests effort Ci in the hope of
gaining a prize of value V. Existing analyses have explored the nature of
equilibrium in the short run versus the long run and with identical versus
non-identical contestants, the central issue addressed being whether or not
under- or over-dissipation of rents will occur.

But the fundamental notion of competitions in which relative success is
a function of the parties’ respective resource commitments applies far
beyond the rent-seeking context. It is applicable, for example, to military
combats, election campaigns, industrial struggles (strikes and lockouts),
legal conflicts (lawsuits), and even to rivalries between siblings or bet-
ween spouses within the family. Owing perhaps to failure to perceive these
wider implications, the papers in the rent-seeking literature generally do
not adopt a general-equilibrium approach, in which the resources available
for investment in rent-seeking competitions also have alternative productive
or consumptive uses. Thus, rent-seeking efforts may be profitable and yet
still fail to generate as much utility as productive or leisure uses of
resources. Also, what is very important, a general-equilibrium model would
typically make the value of the prize an endogenous variable rather than an
exogenously given parameter. I have attempted to provide such a general-

equilibrium analysis in Hirshleifer [1988].

1See, e.g., Hillman and Katz [1984], Appelbaum and Katz [1986], Allard
[1988].



This note has a much more limited aim, however. My purpose is only to
point out that Tullock’s basic equation for success in rent-seeking competi-
tion represents only one of two major families of possibilities, the other
and at least equally interesting family having been totally ignored in the
existing literature. Specifically, in Tullock’s formula each party’s
success is a function of the ratios of the respective efforts or inputs Ci'
As will be shown, a number of significantly different results are obtained
when, alternatively, relative success is determined by the differences among
the inputs.

For the purposes of this discussion, it suffices to consider N=2
players. In the simplest version of Tullock’'s basic model, the relative or
proportionate outcomes p; are a function of the ratio of the contest

inputs or efforts Ci:

m

(1) P1/Py = (C/Cy)

Here each p; may be interpreted either as the party’s respective probabil-
ity of success in a discrete either-or competition or else as the

proportionate share of the prize won in a continuous-outcome contest. Since

Py + P, = 1, equation (1) is of course equivalent to:

(1a) p; = G /(6" + ¢,
For given C2, this may be called the Contest Success Function (CSF) for
player #1; the CSF for the other player is @efined correspondingly. (I have
implicitly been assuming that the two sides’ resources have equal effective-
ness in the contest. More generally, it would be possible to adjust each

side's Ci by an effectiveness coefficient; this straightforward

generalization will be omitted here.)



The effect of the "mass effect parameter"' m upon the shape of player
#1's Contest Success Function is displayed in Figure 1, in which player #2's
resource input is arbitrarily fixed at 02 = 100. Regardless of the level
of m, we see that Py =Py~ .5 when C1 - C2. If m< 1, diminishing
returns to competitive effort hold throughout. But for m > 1, an initial
range of increasing returns exists instead. More specifically, taking the
second derivative in the usual way, the inflection point along the CSF of

player #1 is determined by the condition:

(2) 6,/C, = [(m - 1/ + 1)H/™

Since m cannot meaningfully be zero or negative, we see that, for given
C2’ the point of inflection occurs in the positive range of C1 only if
m > 1.2

While it is often plausible to assume that contest power is a function
of the ratio of the forces or efforts committed, this is by no means the
only possibly valid functional relation. Nor are all the implications of
the ratio form always reasonable. One implication, for example, is that a
side investing zero effort must lose everything so long as the opponent com-
mits any finite amount of resources at all, however small, to the struggle.
An evident alternative is to make success a function of the numerical

difference instead. When the outcome is a function of the difference

between the two sides’ efforts, a player can have some chance or share of

2 : cq s
In the standard Lanchester equations of military combat (Lanchester

{1916 (1956)], Brackney [1959]), the outcome as in Tullock’s formulation
depends upon the ratio of the forces committed. But for Lanchester the
battle result is always fully deterministic, in the sense that the side with
larger forces (adjusted for fighting effectiveness) is 100% certain to win.
This makes the CSF a step function, which jumps from p, = 0 to 1
when C So Lanchester’s formula can be regarded as the 11m1%1ng case
of equa%lon %1a) as the mass effect parameter m goes to infinity.




success even without committing resources to the contest. In struggles
between nations, for example, it often happens that one side will surrender
rather than resist. While the hope may sometimes be to appease the aggres-
sor, i.e., to make him more friendly, it might even make sense to surrender
to a totally unappeasable opponent -- if the submitting nation does not
expect to lose absolutely everything after giving up the struggle. And this
is reasonable, since in general it will be costly for the victor, even in
the absence of resistance, to locate and extract all the possible spoils.

There is one other factor to consider, namely, the location of the
inflection point of the CSF. When it comes to military interactions, at
least, "God is on the side of the larger battalions". Thus, there is an
enormous gain when your side’s forces increase from just a liétle smaller
than the enemy’s to just a little larger.3 This implies that the range of
increasing returns to player #l's commitment C1 will extend up to C1 =
C2, or equivalently up to Py - p2.4 But, we have seen, when the ratio
form of the CSF is used, increasing returns, if present at all (that is, if
m > 1), can only hold up to some C1 < CZ‘

For the difference form of the CSF, the required conditions are met by

the logistic family of curves:

(3) Py = 1/(1 + exp(k(C, - G)})

3 R .

As seen in the previous footnote, the Lanchester equations of combat
take this to the extreme. The larger force is 100% certain of victory; the
smaller force has no chance at all.

4This is consistent with T.N. Dupuy’s study of diminishing returns in
combat interactions between Allied and German forces in World War II (see
Dupuy [1987], Chapter 11). Dupuy’s curves generally show the inflection
point displaced slightly from the "equal forces, equal success" point, owing
(on his interpretation) to the superior unit effectiveness of the German
army.



And of course P, is defined correspondingly. (Notice that 13 + Py, = 1.)
In particular, when C1 = 0, player #l still retains a share of success
Py = 1/(1 + exp{kCz)). Figure 2 shows several different CSF curves for
varying k, where k is the "mass effect parameter” applicable to the
logistic function.

In a military context, we might expect the ratio form of the Contest
Success Function to be applicable when clashes take place under close to
"idealized" conditions such as: an undifferentiated battlefield, full infor-
mation, and unflagging weapons effectiveness. In contrast, the difference
form tends to apply where there are sanctuaries and refuges, where
information is imperfect, and where the victorious player is subject to
fatigue and distraction so that the surrendering side can still expect to
retain some prizes. And while for the sake of concreteness I have been using
military metaphors and examples, analogous statements can evidently be made
about non-military struggles like lawsuits or rent-seeking competitions.

One final implication. As has been pointed out, when the ratio form of
the CSF applies each side will surely always commit some resources to the
contest. If peace is defined by the condition C1 = 02 = 0, we can say
that, as a Cournot equilibrium, under the traditional ratio model peace can
never occur!

The demonstration is simple. Side #1 will be seeking to maximize its

"profit":
4) H1 - Vp1 - C1

where V 1is the given value of the prize and Py is determined as in
equation (la). A similar equation holds of course for player #2. Suppose

momentarily it were the case that C1 = C, = 0, the parties sharing the

2



prize equally without fighting. Then, assuming only that V > 0, wunder the
Cournot assumption either player would be motivated to defect, since even
the smallest finite commitment of resources makes the defector’s relative
success jump from 50% to 100%.

In contrast, two-sided peace may easily hold as a stable Cournot
equilibrium under the logistic CSF, even in the sort of partial-equilibrium
model traditionally dealt with in the rent-seeking literature.5 The reason

is that the player who defects from C = 0 does not get the benefit

1™ %

of a discrete jump from 50% to 100% success, but only a marginal increment

of gain.
Since some readers have found the proposition above -- that two-sided
peace may be a Cournot equilibrium under the logistic model -- hard to

credit, a Numerical Example may help drive home the point.

Numerical Example 1

Player #1 seeks to maximize his profit as defined in equation (4),

with Py given by equation (3) above -- and taking C, = 0 as given.

2
Finding the derivative in the usual way leads to:

k exp(-kCz)

1
(L+exp(-kC, })? v
For C1 = 0 to be a solution, we must have V = 4/k. By symmetry, an
analogous equation will hold for player #2. So, for example, if k = -
.04 and V = 100, then C1 - 02 = 0 will indeed be a Cournot equi-

librium. In this equilibrium, of course, P, =P, = .5 so that the

parties each have profit of 50.

For the analogous result in a general-equilibrium context, see
Hirshleifer [1988], Part B.



What about the possibility of one-sided submission rather than two-
sided peace? This means that player #1 (say) chooses C1 > 0 while player
#2 sets 02 = 0. For such an outcome, some kind of asymmetry must be
introduced -- in the parties’ valuations of the prize, in the effectiveness
of their respective contest efforts, or possibly in the costs of such
efforts. But regardless of any such asymmetries, one-sided submission as a
Cournot equilibrium can no more occur under the ratio model than could two-

sided peace!6 Yet once again, this is entirely possible for the difference

form (logistic CSF), as will be illustrated by a second Numerical Example.

Numerical Example 2

Once again player #l seeks to maximize his profit where 121 is
defined by equation (3) above. Taking 02 = 0 as given, and setting
k = .04 and V., = 500, the profit-maximizing solution vector for

1
player #1 is:

(Cl, 12K Hl) - (72.2, .9473, 401.4)

6We need look only at asymmetries due to inequalities in valuation of
the prize. Specifically, suppose V1 > V2, suggesting that there might be
a Cournot equilibrium with C, > 0 while™ C, = 0. Using the profit equa-
tion (4) for player #1, and tﬁe generalized Version (la) of the Contest

Success Function for the ratio form, the first derivative is:

m-1 m
dII1 _ VlmC1 (C2 )

m

dC1 (C1
Evidently, whenever C, = 0 this derivative will be negative. So under the
ratio form of the CSF, it will never be possible to have an asymmetrical
contest outcome with one party having zero and the other having positive
commitment of resources.

m, 2
+ 02 )



Reversing the process for player #2, with C1 = 72.2 taken as
given, the profit-maximizing7 solution is:
(Cz, Py nz) = (0, .0527, 5.3)
The expectations on each side as to the other party’s behavior being

mutually consistent, this is a Cournot equilibrium.

CONCLUSION: In rent-seeking or other conflict competitions, a closér
fit to reality is sometimes achieved by a model in which relative success is
a function of the difference rather than the ratio of the parties’ resource
inputs. And in particular, neither two-sided peace nor one-sided submission
can ever occur as a Cournot equilibrium under the traditional ratio model,
wheras both are entirely possible under the difference form of the Contest

Success Function.

7This is not an interior optimum, but rather a corner solution. Player
#2's profit function has a negative first derivative throughout, leading him
to cut back effort until the limit of zero is reached.
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