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ABSTRACT

This paper extends the results obtained in Pesaran, Pierse and Kumar
(1988), and examines the effect of aggregation on the estimates of long run
wage and output elasticities of demand for employment in the U.K. The
aggregate and the disaggregate employment functions analyzed in this paper
differ from those in Pesaran, Pierse and Kumar (PPK) in two respects: first
the functions allow for a longer lagged effect of output on employment,
second, in order to deal with some of the econometric difficulties asso-
ciated with the use of the time trend as a proxy for technical change in
estimating the employment functions, the time trend is replaced by a measure
of embodied technological change based on the current and past movements of
gross investment, a la Kaldor (1961).

The paper also discusses alternative methods of testing for aggregation
bias and proposes direct tests of the discrepancy of the macro parameters
from the average of the corresponding micro parameters, and derives tests of
aggregation bias in the general case where the parameters of interest may
possibly be non-linear functions of the micro parameters. The paper also
develops a Durbin-Hausman type misspecification test of the disaggregate
model. These tests and the goodness-of-fit criteria and the test of perfect
aggregation proposed in PPK are then applied to disaggregate and aggregate
specifications of the employment functions.
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1. Introduction

The responsiveness of employment to changes in real wages is an issue
of considerable importance, particularly for policy analysis, and over the
past decade a number of studies have been devoted to this issue in the U.K.
Notable examples include the papers by Nickell (1984), Symons (1985), Wren-
Lewis (1986), and Burgess (1988) for the manufacturing sector, and by
Beenstock and Warburton (1984), Layard and Nickell (1985, 1986) for the
private sector and the economy as a whole. In contrast to the earlier work
by Godley and Shepherd (1964), Brechling (1965) and Ball and St. Cyr (1966),
these recent studies find a significant and quantitatively important effect
for real wages on employment. The point estimates of the long run wage
elasticity obtained in these studies vary widely depending on the coverage
of the data (whether the data set used is economy-wide or just manufactur-
ing), and on the specification of the estimated equations. A recent review
of these studies by the Treasury (1985) concludes that the estimate of long
run wage elasticity most likely falls in the region -.5 to -1, although for
the economy as a whole under the influence of Layard and Nickell’s important
contributions the "consensus" estimate of this elasticity in the U.K.
currently seem to center on the figure of -1.1

All the above studies are, however, carried out using highly aggregated
data, either at the level of the whole economy or the manufacturing sector,
and given the significance of their results for macroeconomic policy it is
important that the robustness of their results to the level of aggregation
chosen are carefully investigated. In this paper we extend the results

obtained in Pesaran, Pierse and Kumar (1988), and examine the effect of

lThis consensus estimate is also the same as the figure obtained by
Beenstock and Warburton (1984) for their extended data set.



aggregation on the estimates of long run wage and output elasticities of
demand for employment in the U.K. The aggregate and the disaggregate
employment functions analyzed in this paper differ from those in Pesaran,
Pierse and Kumar (PPK) in two respects: First the functions allow for a
longer lagged effect of output on employment. Second, in order to deal with
some of the econometric difficulties associated with the use of the time
trend as a proxy for technical change in estimating the employment
functions,2 the time trend will be replaced by a measure of embodied
technological change based on the current and past movements of gross
investment, a la Kaldor (1957, 1961). This measure of technological change
is both statistically less problematic than a simple time trend and more
satisfactory from a theoretical standpoint.

In this paper we also discuss alternative methods of testing for
aggregation bias and propose direct tests of the discrepancy of the macro
parameters from the average of the corresponding micro parameters. We
distinguish between the case where the values of the macro parameters are
given a priori (say by the consensus estimate), and when they are defined
under the disaggregate model. We develop the aggregation bias tests in the
general case where the parameters of interest may possibly be non-linear
functions of the micro parameters. Since the tests of the aggregation bias,
whether of the type discussed here or the one proposed in Zellner (1962),
assume the disaggregate model is correctly specified, in this paper we also
develop a Durbin-Hausman type misspecification test of the disaggregate

model. These tests and the goodness-of-fit criteria and the test of perfect

2The econometric problems involved in the use of time trends in
regression equations containing non-stationary variables are discussed, for
example, by Mankiw and Shapiro (1985, 1986), and Durlauf and Phillips
(1986).



aggregation proposed in PPK will then be applied to the new disaggregate and
aggregate specifications of the employment functions.

The plan of the paper is as follows: the next section sets out the
disaggregate employment functions and discusses the theoretical rationale
that underlies them. Section 3 motivates the use of a distributed lag
function in gross investment as a proxy for technological change. Section 4
gives the details of the misspecification test and the test of the
aggregation bias. Section 5 presents the empirical results, and the final

section provides a summary of the main findings of the paper.

2. dustrial loyment tions: eoretical Consideratio

In specifying of the employment demand functions we follow the
literature on derivation of dynamic factor demand models and suppose that
the employment decision is made at the industry level by identical cost
minimizing firms operating under uncertainty in an environment where
adjustment can be costly. We assume that in the absence of uncertainty and

adjustment costs the industry’s employment function is given by

hi - f(wt,yt,at) + v, (1)
where
ht = the desired level of man-hours employment (in logs),
v, - the real wage rate (in 1ogs).,
Ye = the expected level of real demand (in logs),
a_ = an index of technological change,
vV, ™ mean zero serially uncorrelated productivity shocks.
The actual level of employment, ht’ measured in logarithms of man-hours

employed in the industry is then set by solving the following optimization

problem
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where Ot - (ht’ht-l""; wt,wt_l,...; yt,yt_l,...,; at’at-l”";

ut,ut_l,...) represents the information set of the firm at time t, A is
the first difference operator, and 0 < 8 <1 1is the real discount factor.
The first term in [--] measures the cost of being out of equilibrium, and
the second and the third terms stand respectively for the costs of changing
the level and the speed which changes in employment are put into effect.
The inclusion of the last term in (2) is proposed in Pesaran (1988) and
generalizes the familiar adjustment cost-rational expectations models dis-
cussed, for example, by Sargent (1978) and Kennan (1979), and is of some
interest as it provides a theoretical justification for the inclusion of
ht-2 in the employment function.3 In practice the speed of adjustment
coefficients (1-¢1) and (1-¢2) could vary with the state of the labor
market as argued, for example, by Smyth (1984) and Burgess (1988). Here,
however, we shall assume that they are fixed. The unique solution to the

above optimization problem is derived in Pesaran (1988) and is given by:

-]

h =9.h , +%h o+ Z ajE(h¥+j|Ot). (3)
3=0

where
L2l R 0, ¥, = -pp, < o,

0y = W w3 7 ey,

3The inclusion of first or higher order lags of h_ in the employment
function can also be justified by appeal to aggregation over different types
of labor or firms with different adjustment costs (Nickell, 1984).
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and Bis Boys My and By are the roots of

2 -1 -2
a2x + alx + Alx + Azx = 1.

The reduced form parameters a,, a,, Al and A2 are defined in terms of
the structural parameters, g, ¢1 and ¢2. [See, Pesaran (1988)]. It is
important to note that for plausible values of the structural parameters the

theory suggests a negative value for the coefficient of h in (3).

t-2
Adopting a linear approximation for (1), and assuming that conditional

expectations of w and a with respect to Qt are formed

t+j° Tt+j t+]
rationally on the basis of an rth order vector autoregressive (VAR) system,

the decision rule (3) becomes:

ht = Intercept + ¢1ht-1 + ¢2ht-2 + S;-I(L)Et + u, (4)

Where ut - (1'¢1‘¢2)(1‘¢1/ﬂ'¢2/p2)vt; Et - (atvyt!wt)'s and sr'l(L) =

2;_1 giLi'l is a 3x1 vector of lag polynomials of order r-1 in the lag
operator L. In the case where the variables Yer Ve and a have

univariate AR(ri), i = y,w,a representations, (4) simplifies to

r
h, = Intercept + ¥.h + ¥.h + it
t P 1'e-1 7 ¥2leo2 Tiy Ve

i=1

r r

w a

i-1 CoLi-1
+ [ E: 7iwL ] w, + [ }: Tqal ] a, +u,, (5)
i=1 i=1

which is a generalization of the aggregate employment function (7.2) in

PPK.4 Under the rational expectations hypothesis (REH), the coefficients

4To derive (7.2) in PPK from (5) let ry -r - 2, and notice that

when a simple linear trend is used as a proxy for a., then a_ = a_ ,+b,

t t-1



S in (4), and Yiy’ Yivw' Via in (5) will be subject to 3r-4 and
(ry+rw+ra) - 4 cross-equation restrictions, respectively. However, given
our concern with the problem of aggregation in the present study we do not
consider imposing these restrictions, and employ instead the unrestricted
version of (5) as our maintained hypothesis.5 We then choose the orders of
the lag polynomials on ht’ Yer Ve and a, empirically. The validity of

the RE restrictions at the industry level and the problem of aggregation

bias in the context of RE models is beyond the scope of the present paper.

3. o ica e

In the empirical analysis of labor demand, technological change,
broadly defined to include new scientific, engineering and electronic
discoveries and inventions, is generally assumed to occur exogenously;
evolving independently of market conditions and government policy
interventions. It is inferred either indirectly as a residual using a
production function approach, or is represented by linear, pilece-wise linear
or non-linear functions of time. Neither procedure is satisfactory. The
former approach employed, for example, by Layard and Nickell (1985), aSsumes
an a priori knowledge of the production possibilities and involves circular
reasoning, while the latter is devoid of a satisfactory theoretical

rationale and is adopted by most researchers as a "practical" method of

where b 1is a fixed constant, and

ra-l 1-1 ra-l ra-l
Eior Yial V8 = Bpoy Y40)8 - Py (FD) 7y,

- + .

5This is similar to the research strategy followed by Nickell (1984)
and Burgess (1988).



dealing with a very difficult problem (Arrow, 1962).6

Ideally what we need are direct reliable measures of technological
change, and there are some data such as expenditure on R&D and the number of
patents and product designs granted over a given period that can be used.
In the absence of suitable direct measures of technological change, here we
adopt an indirect approach and following Kaldor (1957, 1961), postulate a

distributed lag relationship between the a the technological change

t’
index, and the rate of gross investment, GIt’

o0

a_ = Intercept + E: Aj log(GIt-j). (6)

j=0

A static version of this relationship when used in a linear version of (1)
yields a log linear approximation to Kaldor'’s "technical progress function",
which relates the rate of change of productivity per worker to the rate of
change of gross investment.7 According to this model technological progress
is "embodied" in the process of capital accumulation and takes place
primarily through gross capital formation by the infusion of new equipment
and machines embodying the most up-to-date technology into the economy. The
formulation (6) can also be justified along the lines suggested by Arrow
(1962) in his seminal paper on "learning by doing". Arrow (1962, p. 157)
himself uses cumulative gross investment as an index of experience, which is

closely related to the distributed lag function in (6).

6Notice that the use of time trends in regression equations containing
integrated stochastic processes is also subject to important econometric
pitfalls and as argued in Mankiw and Shapiro (1985, 1986), and Durlauf and
Phillips (1986) can lead to spurious inference.

7See in particular Kaldor and Mirrlees (1962, pp. 176-77). Notice,
however, that Kaldor'’'s formulation abstracts from the effect of real wages
on labor productivity, while ours does not.



The technological progress function (6) is more than a theoretical
postulate. It is also based on direct empirical support. Schmookler (1966)
in his pioneering work, using patents as a measure of technological change
showed there exists strong positive correlations between gross investment
and patents in railroads, petroleum refining, and building industries over
the period 1873-1940. He also obtained similar results using cross section
data. While there is some doubt about the direction of causation in
Schmookler’s findings, there is little dispute about the existence of a
close relationship between gross investment and technological change.v8
Since our aim here is not to explain the causes of technological change but
to estimate its impact on employment demand, we feel that the controversy
over the causality of investment-patents relationship has little bearing on
our analysis.

The coefficients Aj’ j=1,2,..., measure the impact of past
investments on the current state of technological advance, and it is
reasonable to assume that they are a decreasing function of the lag length,
j =1,2,... The likely rate of decline of Aj depends on the importance of

the learning by doing component of a

Under a pure learning story (.}

t

3

will be fixed or show a very slow rate of decline. The rate of decline of

{A.} 1is likely to be much higher if one adopts Kaldor's idea. Here, for

3

the purpose of empirical analysis we assume the following geometrically

declining pattern for Aj

A = al-0)3, §-0,1,2,... a, A>0

8For a review of more recent evidence see, for example Beggs (1984) and
Baily and Chakrabarti (1985). Notice, however, that Beggs uses wage
expenditures as a surrogate for investment data and his results may not be
directly comparable to those obtained by Schmookler. On this see the
comments by Schankerman (1984) on Beggs's paper.



and write (6) as
a_ = Intercept + ad_(}) (7)
where dt(A) satisfies the following recursive formula:
d (X)) = Ad__;(A) + (1-A)1log(CI)). (8)
Substituting (7) in (5) now yields
ht = Intercept + ¢1ht-1 + ¢2ht-2 + -1y(L)yt
+ oy, (Lw, +ay (L) 4. (A) + u, (9

where 1y(L), 1w(L), and 7a(L) are lag operator polynomials of orders
ry -1, r, - 1 and r, - 1, respectively. It is clear that in general «
is not identifiable, although the decay coefficient, X, can in principle

be estimated from the data. We shall return to the issue of the estimation

of (9) in Section 5.

4, (¢] regation S; ome ations
Suppose that for a given value of the decay parameter A, the

variables in (9), namely ht’ Yer W and dt(A) are observed over the

t
period t =1,2,...,n for each of the m firms (industries), i =
1,2,...,m. Then the disaggregate employment equations can be written in

matrix notations as

Hd: hi - xiéi + Uss i=1,2,...,m (10)

where Ei is the nxl1l vector of observations on the log of man-hours

employment in the ith firm (industry), Xi is the nxk, (k = ry + r, + r,

+ 3) matrix of observations on the regressors in (9) for the ith firm

(industry). éi is the kxl vector of the coefficients associated with

columns of Xi’ and u, is the nxl vector of disturbances for the ith
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firm (industry). The aggregate equation associated with (9) that satisfies

the Klein-Nataf consistency requirement is given by9

H:h =Xb +v (11)
a’ ~a a~a -~

where

m m
Ea - }: 1-Ei.’ xa - }: xi’
=1 -1

i
and Ea is the kxl1 vector of macro parameters. The nxl disturbance

vector v, will be equal to u = = only if the perfect "aggrega-

i=1 24’

tion condition"

m
H§: £ = E: xiéi - xaha =0, (12)
i=1

discussed in detail in PPK, are satisfied. Here we focus on the problem of
aggregation bias and develop alternative methods of analyzing the extent of
this bias in economic applications. In what follows we adopt the following

basic assumptions:

Assumption 1: The n elements of the disturbance vector u; = (uit}, have
zero means, finite variances and are serially independently distributed.
They also satisfy the moment condition

|2+6 < A< oo, for some § >0, and all t.

E|u1t
Assumption 2: The disturbance vectors u, are distributed independently of

xj, and E(u B') - aijIn’ for all 1 and j, (a11 > 0).

sumption 3: The matrices Xi have full ranks, and the probability limits

QSee Lovell (1973), and the discussion in PPK (p. 25).
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1

plim (n Xin) - zij’ i,j = a,1,2,...,m,
n-—+wo
exist, and the kxk matrices zii’ i =a,l,2,...,m, are non-singular.

We also base our tests on the OLS estimates

Y ' '14 p ' '1r -

b (xaxa) Xaha, éi (xixi) xihi’ i=1,2,...,m,
although, in principle, the tests proposed below can also be constructed
using the more efficient SURE (Seemingly Unrelated Regression Equations)

estimators of éi’ due to Zellner (1962).

4.1 A Direct Test of Aggregation s

Thé problem of "aggregation bias", as originally discussed by Theil
(1954) is defined in terms of the deviations of macro parameters from the
averages of the corresponding micro parameters.10 In the context of the
linear disaggregate and aggregate models (10) and (1l1), the vector of

aggregation bias is defined by

m
Z 8, (13)
-1

0.

13
]

1o
[ ]

B

i

A test of aggregation bias then involves testing the hypothesis HO: Qﬂ -
In testing this hypothesis the case where b 1is given a priori (such as the
"consensus" estimate of the long-run real wage elasticity discussed in the
introduction) should be distinguished from the case where E is defined as
the pseudo true value of § assuming that the disaggregate model is cor-
rectly specified. In the former case the hypothesis Ho: Qﬁ = 0 can be

tested using the fact that when u, are normally,distributéd then under

i

oFor empirical analysis of agéregation bias see, for example, the
papers by Boot and de Wit (1960), Gupta (1971) and Sasaki (1978).
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Assumptions 1-3

m
1 A
P - E Z Ei - N(Qﬂ»"):
i=1
where11
m
a-L Cov(g, .B,)
m2 5 B M
i,j=1

Using standard results, it is now easily shown that under Ho and for a

fixed m

’ m
P ~-1 1 p a 2
) k-2 Ta) e
=1

where ﬁn represents a consistent estimator of €. The result (14) holds

even if u. are not normally distributed. The statistic 9, takes b as

i
a fixed vector, and tests for the deviation of the average of micro para-
meters from this fixed vector, on the assumption that Hd holds. In

practice, however, it is rare that a "consensus" value for E or some of

its elements is available, and b needs to be chosen in light of the know-

ledge of the disaggregate model. When H, holds the pseudo true value of

d
b 1is given by
m
b-plim (b | HY) = Z C.8;: (15)
nee i=1
where
-zls , i-1,2,....0 (16)
i aa“ ai’ PEr T
11

Note that Cov(éi,éj) - oy xpxp Tt @)

713 373
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satisfy the condition 2?_1 Ci - Ik' (Ik is an identity matrix of order

k). The matrices Ci are the probability limits of the coefficients in the

OLS regressions of the columns of X, on Xa, the "auxiliary" equations in

i

Theil'’s terminology.

Notice that result (15) holds only when H is correctly specified.

d

We will use this result later as the basis of a Durbin-Hausman type test of
misspecification of the disaggregate model. For the time being, however, we

assume that the disaggregate model H, 1is correctly specified and write HO

d

as

m .
: 1 -
Hy: }: (c, - = 18, = 0. (17)
i=1

A familiar method of testing (17), originally proposed by Zellner (1962), is

to test the micro-homogeneity hypothesis

Zm’

Hﬂ: él - EZ - ... =8

Testing H as an indirect method of testing H is, however, rather too

0

implies Ho, the reverse is not true. It is

B

restrictive. Although Hﬂ

possible for Qﬂ = 0 to hold even when the micro-homogeneity hypothesis is

rejected. Here we propose a direct test of H based on the OLS estimate

0
of Eﬁ’ namely

B;- (18)

13>
™
]
1o >
1
Bl

Under Ho, ﬁﬂ is given by

i

m
g = 2 By (19)
=1
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where
-1 1 -1
- ! - - ' '
P, (xaxa) x; o (xixi) Xi. (20)
This suggests basing a test of Ho on the statistic
-1 A, 2-1 &
a, -l agert g, (21)
where
m
& -nt 5., PP | (22)
n ij "1iv3°
i,j=1
and aij is a consistent estimator of 013.12 Notice that except for the
extreme case where X - m-lxa, matrix & will in general be non-
singular.

Theorem 1: Suppose

(1) The disaggregate model H, is correctly specified,

d

(ii) Assumptions 1-3 hold,

(iii) The matrix ;n defined by (22) and the matrix n-l(PiPi) both are
non-singular and also converge in probability to non-singular
matrices.

Then on the hypothesis of no aggregation bias, Ho, the statistic 9,

defined in (21) is asymptotically distributed as a chi-squared variate with

k degrees of freedom.
Proof: See the Mathematical Appendix.

This theorem provides an asymptotic justification for the use of 9, in

testing the null hypothesis of no aggregation bias, and holds for aij » 0

121n small samples we suggest using the unbiased (and consistent)

estimator of aij proposed in PPK. [See equation (5.9) in PPK.]
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and m = 2, but requires n, the sample size, to be sufficiently large.
This contrasts the asymptotic framework underlying the perfect aggregation
test proposed in PPK where n 1is fixed but m 1is allowed to increase
without bounds.

The test statistics 9 and q, are applicable when the focus of the
analysis is on all the elements of éi' In practice, however, it is often
the case that the parameters of interest are subsets, or more generally,
non-linear functions of éi' For example, in the analysis of employment
demand, the parameters of special interest are often the long run output and
wage elasticities, which assuming ry -r - 2, are given (in terms of the
elements of éi) for the ith industry by

BinPis

iy T T8, By’

BietPiy

€ = T
iv  1-B1y-By4

respectively.13 To deal with such cases we now consider a generalization of

(13) and write the null hypothesis of no aggregation bias as

m
1
n, = g® - 3 Z 8B, (23)
i=1
where g(é) is a sx1 (s=k) vector of known functions of B. As before,

we distinguish between the case where b 1is given a priori, and when it is

determined under Hd by (15).

13 ,
From (5) note that éi - (ﬁil,ﬂiz,...,ﬂik) = (Intercept, ¢il’¢i2’

‘Y]-y"yzy""; 11w"12w"“; 718’72a»---)-
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Denoting the sxk derivative matrix dg(g)/68' by G(B) and assuming
that Rank[G(g)] = g, the relevant statistic for the test of Eg = 0 when

b 1is set a priori is given by

m m
-l 3 5 ah) & o 3 Yado) a

i=1 i=1

where ﬁn is now defined by

m
a -1 }C Cov(g, , £5) cﬁ
m i,j=1

and éi - G(@i). Then on the null hypothesis of Qg = 0 (with E set a

priori), af 2 x’.

Turning to the case where b 1is defined by (15), Theorem 1 continues

to hold with this difference that the appropriate statistic is now given by

-1 A, -1+ a 2
=m0, % 0~ Xg (25)
where
ho- g - L 8, (26)
Eg 5 pt m E 297
=]

and Qn is as defined by (22), although in this more general case P, is

now given by
-1, -1 . -1
P, - éa(x;xa) X! - m éi(xixi> X{, (27)
in which éa - G(ﬁ) and ﬁi - G(éi). Notice, also that under Eg = 0, the

asymptotic distribution of q§ will be a chi-squared with s(<k) degrees

of freedom. The statistics qf and qg are direct generalizations of 94

and q, and will reduce to them in the case where g(é) - B.

~
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4.2 Misspecificat Test he Di regate Model

The tests of aggregation bias advanced above are based on the
assumption that the disaggregate model Hd is correctly specified. 1In
particular the tests based on the 9, and qg statistics assume that
estimating the macro-parameters directly from the regression of ha on Xa,
or indirectly by utilizing the expression zT—lci éi should not make any
difference asymptotically, in the sense that both are consistent estimators

of b under H This implication of the disaggregate model can be tested

q
by means of a Durbin-Hausman type misspecification test and suggests basing

a test of H on the statistic

d
m
ho=b - ) G B (28)
i=1
where Ci represents a consistent estimator of Ci defined by (16).14
Using the least squares estimates
E -(x'X)'lx'x i=1,2 m
i a a ca i’ PErrre
we have
p o= (xx) xe (29)
<s a a a~d’ .
where
m m
a Z (hy-X:8y) = 2 My (30)
i=1 i=1
and
M, -1 - X (XX )'lx'
i n s s i i’
14

See Durbin (1954) and Hausman (1978). Also see Ruud (1984), and
Pesaran and Smith (1986) for a unified treatment of misspecification tests
in the context of simultaneous equation models.
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Since (X;Xa) is by assumption a non-singular matrix, a test based on és

and Xé &4 will be equivalent and for simplicity we use the latter

statistic. Suppose now Xa and X

and write15

1 have the same p variables in common

Xa - [Xa1 | Xaz]; Xi - [xal | xi2]’ for all if

where the nxp matrix Xal contains the observations on the common set of

variables. It is now easily seen that

' - . '
xa Sa 0 . xaz 2 ’
px1 (k-p)x1

and the appropriate statistics to base the misspecification test on is given

by the non-zero components of Xa eq namely X.82 eq- Under Hd’ we have
m
' - '
X 084 }: XaoMi¥y (3L
i=1

which suggests the following theorem.

Theorem 2: Suppose
(1) Assumptions 1-3 hold,

(ii) The matrices n-l(X;zn are non-singular in finite samples, and

ixa2)
also converge in probability to non-singular matrices,

(iii) The matrix

m
- -1 A ,
Vh =n 2: aij(xhzuinhxaz), (32)
i,j=1

is non-singular for a finite n, and converges in probability to the non-

15Examples of such variables include the intercept term, time trends

and seasonal dummies.
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singular matrix, V. Then on the hypothesis that the disaggregate model is

correctly specified the test statistic

-1, -1 o,
q3 -n deaZVn Xa2 sd’

(33)
is asymptotically distributed as a chi-squared variate with k-p degrees of

freedom.
Proof: See the Mathematical Appendix.

This theorem complements Theorem 1 and in a sense preceeds it. Since
Theorem 1 assumes the validity of the disaggregate specification, it is
important that the misspecification test of Theorem 2 is carried out before
testing for aggregation bias. It is also worth noting that since in general
m X

Ei-lciéi is not necessarily a more efficient estimator of b = Z?_l ciéi

, namely

18>

than ﬁ, the familiar Hausman formula for the covariance of s
Cov(§) - Cov(ZT_lciéi) is not valid. However, when éi are estimated by
the SURE method, the resultant estimators, say éi will be efficient and

the covariance difference formula
m
COV(QS) = Cov(b) - Cov[ }Z ciéi] >0,
=]

applies. But even in this case to avoid some of the computational problems
that arise because of the possible singularity of Cov(ﬁ) - Cov(ET_lciéi),
a direct deviation of the variance of is along the above lines seems to be

more desirable.

5. ric esu
In this section the theoretical considerations on employment functions
of Sections 2 and 3, and the statistical methods of Section 4 are brought

together in the estimation of disaggregate and aggregate employment
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functions for the U.K and the analysis of aggregation bias. The data
employed is taken from the Cambridge Growth Project Databank, and full
details are provided in the Data Appendix. Figures are available annually
for the period 1954-84, and except for some public sector services, the
whole of the U.K. economy is covered, with data provided on a 41-industry
basis. As in PPK, industry 4 (mineral oil and natural gas) is excluded from
the analysis, and both the disaggregate and the aggregate specifications are
based on the remaining 40 industry groups (i.e., m = 40). Although our
data set starts in 1954, all the equations are estimated over the period
1956-84, and the data for the years 1954 and 1955 are used to generate[’ﬁ:é
lagged values of employment, output and real wages that are included in the
employment function [see equation (9)]. For the technical change variable
dt(A), we employed the recursive formula given by (8), for t = 1955,1956,
...,1984 and experimented with different methods of initializing the

recursive process. We also experimented with different estimates of the

decay rate, .

5.1 Initialization of the dt(A) Process

We tried two methods for generating the initial value, In

41954 () -

one set of experiments we derived d assuming that the process

1954}
generating log(GIt) in the pre-1954 period can be characterized by a ran-

dom walk and that on average E[log(GI = E[log(GI

1954 195301 = -+

log(GI), where we estimate GI by the average of gross investment over the

1954-58 period. Under these assumptions, the estimate of d which

19542
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we denote by 301, is given by16

A

dyy = log(GI). (34)

As an alternative procedure we followed the backward forecasting procedure
proposed in Pesaran (1973), and derived the following alternative estimate

for d1954(A)’

A zA
dy, = {;fzzf;;} 1og(GI,gs,) - (35)

This estimate assumes that in the pre-1954 period log(GIt) follows the

first order autoregressive process

log(GIt) = plog(GIt_l) + € t = 1954,1953,...,

t,
and that p can be estimated consistently by the OLS method using data over

the period 1954-84.

5.2 Estimation of the Decay Rate Parameter, A

In the initial experiments we assumed a decay rate of A = 0.10 and
estimated the employment equations under both methods of initializing the
dt(A) process described above. We found that the technological variable,

dt(A) showed éignificantly in abbut half of the industries, and of these the

A

majority demonstrated the better fit using d01

likelihood value, LLF) as opposed to d02' The difference between LLF

(i.e., had the larger log

obtained in most industries was well below 1, and in only two cases did the

difference exceed 2. In both of these d01 proved to be the more

16Notice that

o 1
d19542) = A By_g (1-1)" 1og(Cly g5, 4),

and under E[log(GI = E[log(GE - log(éi), we have

1954

dy, = Eld

195301 = -+~

10541 = log(GI).
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satisfactory measure. In view of these preliminary results we decided to

A

initialize the dt(A) process with d However, we note that, apart from

o1
the size of the coefficient on the constant in the estimated equations, there
was little qualitative difference between results obtained using either of
the two alternative initialization methods.

Using d we also estimated the industrial employment equations by the

01
grid search method, for values of X in the range (0.0, 0.30). Again re-
stricting attention to those industries with significant technological change
effects, we found for about half of these industries the maximum likelihood
estimates of A fell within this interval, with many of the rest located on
the X = 0.0 bound. In general, however, we found the results to be
qualitatively robust to the choice of the decay parameter in the range (0.0,
0.30). In the absence of any strong evidence of a more appropriate estimate

of X, therefore, we decided to maintain our original choice of X = 0.10,

in the remainder of the empirical work.

5.3 The Estimated Equations

The most general set of equations that we considered are presented in
Table 1. This includes among the explanatory variables two lagged dependent
and h

variables, and current and lagged values of industry

he 4 £-2°

17
output, wages, and technological change (yt’yt-l’yt-2’wt’wt-l’dt’dt-l)'
This equation follows from the theoretical discussion of Sections 2 and 3,
by setting ry = 3 and rw - ra = 2 in (9). Also included in the list of
explanatory variables are current and lagged aggregate output measures,

Yea and yt-l,a (yta = 1/m 2?_1 yti)' These variables were shown to be

17For each industry the technological variable dt(A), or dt for

short, is computed using (8), with the initial value given by (34) and the
decay parameter, A = 0.10.
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important in the empirical work of PPK, and it is clearly necessary to con-
sider their influence here also. Their inclusion can be justified on the
grounds that agents could use this aggregate information in the formation of

their conditional expectations of yt+j’ which we have shown to be

Yets
important in explaining current employment. This unrestricted model differs
from that in PPK by excluding the time trend, and by including Yeoor dt

and dt-l' Replacing the time trend by dt and dt-l alone caused a
serious deterioration in the performance of many of the industrial
equations, and in particular many became unstable. The inclusion of a
second lagged output term remedied this in most of the equations however,
and Table 1 represents a satisfactory set of results. The fit of most of
the equations is satisfactory, with Rz falling below 0.90 only for
industry 5 (Petroleum Products). Short run elasticities of employment with
respect to wages, employment and technological change are generally of the
expected sign, although as the standard errors of the coefficients (shown in
brackets) indicate, the equations are in many cases over-parameterized.

For this reason, a specification search was carried out on these
equations to obtain a more parsimonious set of results, and these are
presented in Tables 2 and 2(a). Coefficients with t-values less than one
(in absolute value) were omitted. Some g priori incorrectly-signed coeffi-
cients were also constrained to zero where the constraints were not violated

and the
2

by the data. Specifically, we expect the coefficient on ht-2’
long run wage and technological change effects to be negative. The x
statistic for testing the validity of linear restrictions imposed on the
parameters of the unrestricted equations to obtain the results of Table 2

are given in the second column in Table 2(a). It can be seen that the

imposed restrictions are not rejected for any industry, at the conventional
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levels of significance.

The overall performance of the equations in Table 2 is good and in line °
with those of PPK. Real wages show up significantly (and negatively) in
most industries, with no long run wage effect found only in industries 22,

33, 37, and 40. The output variable also performed well, showing
significantly and positively in all but 3 industries (6, 20, 38), the last
one of which shows a strong positive aggregate output influence. Only 15 of
the industries failed to demonstrate any technological change effects,
although there are problem industries (10, 11, 26, 36, and 39) for which the
technological change variables are (in sum) incorrectly signed. Other
industries with g priori implausible parameter estimates include 23, 26, and
31, in which an unexpected positive second lagged dependent variable
appears, and industry 25 which is unstable. Industry 20 also remains prob-
lematic: the differenced form reported in the PPK paper could not be
improved upon, and this equation is retained here.

The histograms in Figures 1.1-1.3 illustrate the long run elasticities of
employment with respect to industrial output, wages, and technological change
as obtained from the results in Table 2. Figure 1.1 shows the long run output
elasticities for 38 industries, omitting industries 20 and 25; the two
industries with incorrectly signed output effects show to the left of the
vertical axis, while industry 21 demonstrates an implausibly high positive
output elasticity (the equation for this industry has a coefficient on the
lagged dependent variable in excess of 0.9). The output elasticities for the
bulk of the industries, however, lie within the interval (0,1.5) and the mean
long run output elasticity is 0.97. The histogram in Figure 1.1 provide a
clear illustration of the variability in the responsiveness of employment to

output changes across industries, and this is confirmed by a standard
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deviation around the mean of 0.86. Similar observations can be made on the
long run real wage and technological change elasticities, which have means
(standard deviations in brackets), -0.68(0.66), and -0.41(0.81) respectively.

The preferred equations set out in Table 2 show the technological
change variable dt to be an adequate replacement for the time trend in
some industries, but not all. Of the 24 industrial equations in which a
significant time trend was found in PPK, 15 are improved upon, in terms of
the equation standard errors, by their equivalent estimate in Table 2, while
9 fit less well in the absence of the time trend. Moreover, there are a
further 11 equations which did not previously involve a time trend whose
standard error is lower in Table 2 than that in PPK, demonstrating the extra
explanatory power of the additional lagged output and technological change
variables. Since we prefer to replace a time trend with a variable with a
more satisfactory theoretical basis, and given that the fit of this new set
of equations is generally higher, these results, taken as a whole, can be
seen as an improvement over those obtained previously.

Having made these points, however, closer comparison of the results in
Tables 2 and 2(a) with those in PPK reveals that in some cases the diagnos-
tic test statistics on the new set of equations are less reasonable than
those previously found, and in all 16 industries have a preferable
specification in the PPK paper. The superiority of the original equations
in so many industries cannot of course be ignored, and for this reason we
present a third set of industrial equations in Tables 3 and 3(a) which are
an amalgamation of the results in Table 2 and those in PPK. (The PPK
results are labelled "*"). These results represent the most satisfactory
set of equations that we have been able to obtain for explaining employment

at the industrial level in the U.K. As before, the long run coefficients
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are represented diagrammatically in the histograms of Figures 2.1-2.3.
Estimated coefficients are once again largely of the expected sign, and of a
reasonable magnitude. The mean and standard deviation (in brackets) of the
plotted long run elasticities are 0.86(0.88), -0.54(0.58), and -0.27(0.72)
for output, wages, and technological change respectively, confirming the
considerable variability of long run estimates across the industries and

providing a reasonable a prior case for the use of disaggregated analysis.

5.4 Comparison With the Aggregate Relations

The following unrestricted and restricted aggregate employment
equations, corresponding to the results discussed above, were also
estimated:

Unrestricted aggregate equation:

h = -137.45 + 0.49689 y__+ 0.19565 y + 0.11375 y

ta (3.77)  (6.39) ta  (1.32) t-1,a * 103) t-2,a
+ 0.33110 h + 0.18986 h - 0.34110 w
(1.48) tLa 417y tZa (593 Ot
- 0.087043 w - 0.046365 d_ - 0.23405 d (36)
(-1.00) t-l,a  5.13) ta  (_o.gyy tc1.a
R = 0.998, & = 0.3316, n = 29(1956-1984),
2 2 2 2
xsc(l) - 3.23, xFF(l) = 1.27, XN(2) = 0.67, xﬂ(l) = 3.51.

The figures in brackets are t-ratios, & is the standard error of the regres-
sion, ﬁz is the adjusted R2, n 1is the number of observations. xgc(l),
xiF(l), x§(2), xﬁ(l) are diagnostic statistics distributed approximately as
chi-squared ﬁariates (with degrees of freedom in parentheses), for tests of
residual serial correlation, functional form misspecification, non-normal
errors, and heteroscedasticity, respectively. [For more details about these

test statistics and their computations see Pesaran and Pesaran (1987).]

Restricted aggregate equation:
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h = -99.28 + 0.49854y  + 0.67897 h

ta  (4.84) (11.06) (17.37y the
- 0.31216 w. - 0.12049 d , (37)
(-7.53) & (.33 tLa
R%2 - 0.997, & = 0.3209, n = 29(1956-1984),
2 2

2 2
Xgo(1) = 1.83, xgp(1) = 2.46, x(2) = 1.68, xy(1) = 5.29.

2
e1,aVe-2,a'Pe-2,0 61,27 %a) = 447 of X7 (5)

2
(yt-l,a’yt-Z,a’ht-Z,a’wt-l,a’dta’Tt) = 5.90, cf x"(6)

IM test on exclusion of
IM test on exclusion of

where h w

ta’ and dta are the aggregate measures of employment, wages,

ta’

and technological change derived from the industrial figures, and Tt is a

linear time trend 0).

(T1980~
To check for the possible effect of the simultaneous determination of
output, employment and real wages on the OLS estimates, we also estimated

the restricted aggregate equations using the instrumental variable method.

With z_= (1,h h

t-1,a’ t-2,a'yt-l,a’yt-Z,a’wt-l,a’wy-2,a’dt-l,a) as

instruments, we obtained:

h__ = -86.86 + 0.4708 Yea t 0.7025 h

ta  (.3.36) (7.11) (13.48) t-1,a
- 0.2783 w. - 0.1365 d , (38)
(-4.69) @ (.2.21) ¢tLa
g2 - 0.997, o = 0.3258

Sargan’s misspecification statistic = 4.40 cf x2(3),

2 2

2 2
xsc(l) - 1.53, xFF(l) = 0.48, xN(Z) - 3.83, xH(l) = 5.23,

These clearly differ only marginally from the OLS results in (37).

The parameter estimates in (36) and (37) imply long run elasticities
with respect to aggregate output, real wages and technological change of
(1.68,-.89,-.59) for the unrestricted equation and (1.55,-.97,-.38) for the

restricted equation.
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5.5 Tests Of Misspecification And Aggregation Bias

Applying the Durbin-Hausman misspecification test developed in Section
4.2 to the set of unrestricted disaggregated results of Table 1 and the
unrestricted aggregate equation (36) we obtained a value of 48.56 for 5
statistic defined by (33). The test statistic in this case has 7 degrees of
freedom (there being 3 common regressors between the aggregate and the
disaggregate specifications; namely the intercept term, Yea and yt-l,a)
so the result implies strong rejection of the orthogonality of the
disaggregate residuals to the aggregate variables. This might be due to
omitted variables, such as industry-specific variables, from the
disaggregate equations.

Table 4 presents the prediction criteria developed in PPK for the
aggregate equations (36) and (37) and the disaggregate equations of Tables
1-3. In each case the disaggregate model outperforms the aggregate equa-
tion. The superiority (in terms of predictive performance) of the
specifications in Table 3 over those in Table 2 can also be seen in the
estimates presented in Table 4. The computation of the statistic for the
test of perfect aggregation also provides evidence in favor of the
disaggregate model. In the case of the unrestricted version the value of
the test statistic is 89.6 which is approximately distributed as x2(29).
This strongly rejects the null hypothesis of perfect aggregation.

Finally, the methods for directly testing for aggregation bias
developed in Section 4.1 were applied to the aggregate and disaggregate
employment equations, and the results obtained are summarized in Table 5.
In the introduction to the paper, it was noted that much policy debate had

centered around the extent to which employment is influenced by real wage

levels and that a consensus view had emerged, based on a number of empirical



29

studies carried out at the aggregate level, suggesting a long run wage
elasticity of unity. This consensus view is precisely of the type that was
discussed in Section 4.1, where it was proposed that the average of the
micro-paraﬁeters be compared to an a priori consensus estimate as a first
test of aggregation bias. The first row of Table 5 shows the result of this
test carried out on the estimated relations set out in Tables 1-3. The
average of the estimated long run wage elasticities obtained on the basis of
the results in the three tables is -0.66, -0.68, and -0.54 respectively, and
these were each compared to the consensus value of -1. As is clear, the
hypothesized unit elasticity is accepted in the case of the unrestriéted
specifications, but when a more precisely determined set of results are
considered, as in Tables 2 and 3, the hypothesis is rejected.

Of course, the proposed consensus view is chosen rather arbitrarily, so
that the more interesting test of aggregation bias proposed in Section 4.1
is that based on the q% statistic, in which a pseudo true aggregate
elasticity is obtained through estimation of the aggregate relation. This
has the advantage that the same data and the same general specification is
used in estimating the aggregate and the disaggregate elasticities, so that
differences between the two are entirely explained through differences in
the level of aggregation employed. Row 2 of Table 5 again considers the
important wage elasticity issue for the three sets of results in Tables 1-3.
The average wage elasticity across industries in Table 1 is compared to
-0.89 (the estimated long run wage elasticity of equation (36)), while the
averages from Tables 2 and 3 are compared to -0.97 (obtained from restricted
equation (37)). Once again, the poorly determined set of equations in Table
1 provide no evidence of aggregation bias. A similar conclusion is also

obtained from the results of Table 2. However, the hypothesis of no
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aggregation bias based on the more satisfactory estimates in Table 3 is
firmly rejected at the 5% level, providing strong evidence in support of the
claim that the aggregate relation overstates the responsiveness of employ-
ment to changes in wages. Similar tests on aggregation bias are reported in
rows 3 and 4, for the long run output and technological change elasticities
in turn. Here, average output elasticities of 1.63, 1.23, and 1.24 are
obtained from Tables 1, 2, and 3 respectively, while the corresponding
average estimates for the technological change elasticity were -0.46, -0.41,
and -0.27. These estimates are compared to long run output and
technological change elasticities of 1.68 and -0.59 from the unrestricted
equation (36), and of 1.55 and -0.38 from the restricted aggregate equation
(37). In none of these tests is there any evidence of aggregation bias in

the estimated coefficients.

6. onclu Remarks

The application of the statistical methods developed in this paper to
the study of employment equations in the U.K. provides some important
insights for academics and policymakers alike. The estimated industrial
employment equations show that there is a wide diversity in the responsive-
ness of labor demand to different influences across industries, illustrated
most clearly by the histograms discussed in the previous section. In
itself, this provides strong support for employing disaggregated analysis
rather than aggregate analysis, since the latter cannot capture the

structural detail that clearly exists.18 The result of the test for perfect

18Indeed, the relatively poor diagnostic statistics obtained in the

case of some of the industrial equations indicate that there is likely to be
scope for further structural detail in the form of industry specific
variables, and the use of different functional forms across industries.



31

aggregation confirms that this detail is important even if we are interested
only in the prediction of aggregate employment levels, discounting the
possibility that errors in disaggregate relations might be offsetting ones.
Further, the results of the aggregation bias tests show that the emphasis of
policymakers on the importance of wage restraint in attempts to reduce
unemployment may be misplaced. These tests confirm the view put forward in
PPK that labor demand equations estimated at the aggregate level signifi-
cantly overstate the extra employment that might be achieved through wage
reductions, however these are achieved. 1In fact, a wage elasticity of
around -0.6 is suggested by the disaggregate results, considerably less than
the unit elasticity that has become the consensus view in the U.K. and which
is supported by our own aggregate estimates.19 The results do not, however,
provide any evidence of aggregation bias in the long run estimates of output
and technological change elasticities. Taken together, therefore, these
results provide a clear illustration of the gains to be made from

disaggregate analysis, and of the dangers involved in aggregation.

19Of course, estimated wage elasticities obtained in unconditional

labor demand equations would be somewhat higher as reduced wage inflation
helps encourage higher output levels.



1 Agrculture ete.

2 Coal Mining

3 Cake

4 Minenl Oil & Nat.Gas
S Petroleum Products

6 Electricity etc.

7 Public Gas Supply

8 Water Supply

9 Minenis & Ores nes
10 Iron & Steel

11 Non-ferrous Metals
12 Non-metallic Min.Pr.

13 Chemicals & MM Fibres

14 Metal Goods nes

15 Mech. Engineering
16 Office Machinery etc
17 Elect. Enginoering

18 Motor Vehicles

19 Acrospace Equipment
20 Ships & Other Vessels
21 Other Vehicles

22 Instr. Engineering

23 Manufactured Food
24 Alcoholic Drinks etc
25 Tobacco

26 Textiles

27 Clothing & Footwear
28 Timber & Fumiture
29 Paper & Board

30 Books etc

31 Rubber & Plastic Pr.
32 Other Manufactures
33 Construction

34 Distribution etc

35 Hotels & Catering
36 Rail Transport

37 Other Land Transpont
38 Seq, Air & Other

39 Communications

40 Business Services

41 Miscell. Services

* For source of data see the Appendix.
~ 1s equation standard errors.

a

LLF is the maximized value of log-

inpt/40

-8.3291
(101.8650)
-99.6098
(66.1970)
426,9027
(183.1692)

69.7436
(233.7634)
-26.1434
(51.5244)
184.9195
(131.9965)
-187.1010
(93.4028)
79.1062
(171.5604)
-114.7884
(76.2388)
-31.6300
(33.2585)
-412.1530
(163.0320)
-185.8193
(45.5295)
54.6916
(125.6380)
-61.0479
(69.0331)
-469.2709
(238.0055)
116.3987
(26.1750)
-26.1567
(88.6237)
222.3672
(112.9182)
-234.0763
(75.5925)
-168.3526
(135.2829)
467.8993
(122.7449)
-96.1864
(138.7636)
-106.2884
(190.7833)
150.5910
(238.0243)
-163.5445
(110.9788)
-50.6793
(62.0796)
57.3350
(83.7562)
92.5460
(49.1811)
116.8745
(38.6891)
-114.0693
(68.7654)
157.9064
(71.7964)
0.1708
(72.0577)
165.8094
(89.2530)
424162
(100.6322)
120.7537
(103.6046)
191.4749
(77.5060)
63.4575
(132.2929)
259.2154
(82.3347)
354.3580
(95.7801)
-248.5543
(145.5570)

Nt

0.3996
(0.1641)
0.3380
(0.0499)
0.4256
(0.1479)

0.7333
(0.4544)
0.0030
(0.1887)
-0.1753
(0.2299)
1.0830
(0.4370)
0.2078
(0.1627)
0.3066
(0.1046)
0.2543
(0.1174)
0.3213
(0.1825)
0.0643
(0.1694)
0.2179
(0.1241)
0.4429
(0.1756)
0.3130
(0.1262)
0.3691
(0.0762)
0.5670
(0.0721)
0.0106
(0.0956)
0.5828
(0.1078)
0.2968
(0.1062)
0.0851
(0.1390)
0.7245
(0.3199)
0.4993
(0.5409)
1.3370
(0.4483)
0.4008
(0.1809)
05050
(0.1060)
02824
(0.1185)
0.1240
(0.2041)
0.2547
(0.1161)
0.3664

0.2515)
03169
(0.0739)
0.3346
(0.1097)
0.0730
(0.229%)
0.3120
(0.2517)
0.3027
(0.1210)
-0.0685
(0.1657)
0.2006
(0.1897)
05147
(0.2695)
0.0441
(0.1496)
0.4159
(0.1826)

likelihood function.

TABLE 1.

DMMESTRICTED INUUSTRIAL LAROUR DIMAND EOUATIONS *
Yt N2 hy ho "t
0.3135 0.2215 0.5188 0.0008 -0.5179
(0.1996) (0.1442) (0.2661) (0.1542) (0.1006)
-0.5043 0.1258 1.3944 -0.3702 0.2331
(0.0953) (0.1254) (0.2044) (0.2355) (0.0369)
0.2996 0.1716 0.0496 0.1848 -0.6430
(0.2329) (0.2395) (0.2288) (0.1285) (0.1066)
-0.0163 0.0576 0.6440 -0.0224 -0.4099
(0.4349) (0.2395) (0.2651) (0.2815) (0.1412)
0.3339 -0.2057 0.8984 -0.3624 -0.1186
(0.2606) (0.1605) (0.2033) (0.1964) (0.0768)
0.6582 -0.6325 0.5349 0.0739 -0.3584
(0.2748) (0.2016) (0.1630) (0.2029) (0.0857)
0.2506 0.4169 0.5300 0.0286 -0.4472
(0.5354) (0.4807) (0.1454) (0.1480) (0.1069)
-0.0659 -0.1183 0.5591 0.2587 <0.1445
(0.1775) (0.1319) (0.2462) (0.1974) (0.0952)
0.2143 0.1191 0.5330 0.1296 -0.1959
(0.1108) (0.1014) (0.2617) (0.1659%) (0.1471)
013N -0.0952 1.0529 -0.2393 -0.1066
(0.1294) (0.1154) (0.1748) ©.1712) (0.0465)
00723 0.1101 04784 0.4562 -0.3170
(0.1916) (0.1663) (0.2423) (0.2947) (0.1253)
0.0698 -0.0238 0.0445 04134 0.3640
(0.1161) €0.0925) (0.2309) (0.1742) (0.0978)
0.0515 -0.1951 0.5656 0.1800 -0.2192
(0.1540) (0.1097) (0.2116) (0.1728) (0.1143)
-0.2644 0.0449 0.4550 -0.0847 -0.1736
(0.1849) (0.1384) 0.2231) (0.2248) ©0.1317)
-0.1861 0.2028 1.0064 0.1025 -0.6552
(0.1643) (0.1074) (0.2490) 0.2170) (0.212%)
0.0526 0.0530 0.1906 0.1288 -0.2311
(0.1130) (0.0950) (0.1719) (0.1140) (0.0838)
-0.2497 0.0747 0.806S 0.0150 0.1033
(0.1452) {0.1808) (0.1991) 0.2676) (0.1286)
0.0719 -0.0980 0.8612 -0.3314 -0.0477
(0.0983) (0.0900) {0.2301) (0.2567) (0.1001)
£0.1839 -0.3240 1.0843 0.1554 0.0276
(0.1700) (0.1530) (0.1868) (0.2188) (0.0654)
0.1114 -0.0248 1.0604 -0.1252 -0,1545
(0.1206) (0.1278) 02377 (0.2550) (0.0741)
0.1219 0.3384 0.2943 0.2474 0.1954
(0.1263) €0.1302) (0.1752) (0.1310) {0.0850)
-0.3829 0.195 0.4446 0.2049 01728
0.2337) (0.2045) (0.1915) (0.1648) (0.0757)
0.0207 0.3969 1.0974 0.1643 0.1113
(0.5076) (0.5117) (0.2355) (0.3246) (0.1279)
04851 0.5259 0.6519 1.0220 0.0061
(0.4499) (0.4638) (0.2606) (0.3253) (0.0687)
0.0199 -0.3391 0.3040 0.1939 04269
(0.1746) (0.1339) 0.2162) (0.1579) (0.0865)
0.0437 0.0218 05797 0.0361 0.4216
(0.1899) (0.1111) (0.2890) 0.1783) (0.0871)
0.0633 0.0163 0.3%%92 0.0730 0.2734
(0.1490) ©.1127) MU69) (0.1428) (0.0935)
0.1082 0.0645 03571 0.3316 -0.1795
(0.1692) (0.1207) (0.2419) 0.1362) (0.0769)
0.0013 -0.0353 0.8079 0.2086 £0.0864
(0.1355) (0.0777) (0.2747) (0.2297) (0.0590)
-0.0228 -0.3178 0.4959 0.3564 -0.2941
(0.2248) (0.1387) (0.2956) 0.2238) (0.2183)
0.0061 0.0167 0.6974 -0.03% -0.1025
(0.1356) (0.1194) (0.1986) 0.2011) (0.0938)
04336 0.1650 1.1032 0.2506 -0.3106
(0.1464) (0.0958) (0.1785) ©.1212) (0.0893)
0.6536 0.1662 0.7386 02110 0.1118
(0.3158) (0.1553) (0.2320) ©.17%) (0.1285)
0.3603 0.2291 0.5370 0.0360 0.3282
(0.4124) (0.3271) (0.3278) (0.2834) (0.1593)
0.4311 -0.0013 0.4013 0.1819 -0.1381
€0.1312) (0.1354) ©0.1979) (0.1413) (0.1133)
0.2417 0.2581 09714 0.3262 0.0266
(0.1952) 0.1712 (0.2405) ©0.2238) (0.0591)
0.5264 -0.1053 1.15587 0.5003 0.2569
(0.2355) (0.1519) (0.2143) (0.2906) (0.1420)
0.4403 02152 0.6941 £0.3138 0.1371
(0.4696) (0.3093) (0.2071) 0.20954) (0.1147
0.1689 -0.1074 0.3361 0.1646 0.0769
(0.1514) (0.1404) (0.2678) (0.2481) (0.0859)
-0.2700 0.2990 1.0218 0.0167 0.2817
(0.1973) (0.1843) (0.2370) (0.2849) (0.1608)

i1

0.0399
(0.1531)
-0.0772
(0.0777)
0.0465
(0.1225)

0.0223
0.1804)
-0.1291
(0.0845)
0.2904
(0.0858)
0.3289
(0.1258)
0.0586
0.1142)
-0.0661
(0.1674)
<0.0500
(0.0576)
-0.1929
0.1451)
<0.0953
(0.1229)
0.0742
(0.1190)
-0.3027
(0.1531)
-0.0961
(0.2181)
0.0905
(0.0842)
-0.2076
(0.1413)
-0.1448
(0.1029)
0.0009
(0.0839)
0.1153
(0.0652)
0.2810
0.0897)
-0.0398
(0.1034)
0.0734
0.1178)
-0.1808
(0.0846)
-0.1452
(0.1585)
0.0527
(0.1505)
0.0530
(0.0981)
0.1637
(0- 1279)
-0.0626
(0.0617)
0.0733
(0.1234)
0.0520
(0.0909)
04361
0.2073)
-0.0537
(0.1296)
0.1610
0.1738)
-0.0703
(0.1043)
0.0380
(0.0650)
02130
0.1521)
0.1954
(0.1024)
-0.1400
(0.0939)
0.1537
(0.1468)

ytl Yea1 ,a
-0.1477 -0.1409
(0.1740) (0.1704
0.0075 0.1290
0.1254) (0.1402
0.2449 0.1604
(0.3889) (04312,
0.1563 -1.0622
(0.8680) (0.8383
0.0347 0.3182
(0.1893) (0.2049:
0.2904 0.1382
(0.2853) (0.2625;
-0.0699 0.7324
0.3251) (0.2887
-0.5481 0.4380
(0.4423) (0.6235;
0.2340 -0.2408
(0.3665) (0.3609;
0.6953 -0.6961
0.2225) (0.1985)
0.5393 0.2921
(0.3488) (04147;
0.3515 0.2586
(0.3008) 0.2523;
0.1296 -0.2402
(0.3236) (0.3611)
<0.1211 0.4252
0.1878)  (0.2083;
04731 0.2497
(0.3203) 0.30343
-0.0759 0.5089
0.1322) (0.1589;
0.2030 -0.0142
(0.2125) 0.2216
-0.2439 0.2692
(0.2800) (0.2864}
0.8235 -0.4509
(0.2530) (0.2490;
0.2878 0.1187
0.2332) (0.2443;
0.0956 0.1420
0.2179) (0.2458)
-0.0032 0.2371
(0.1593) (0.1614.
0.0755 0.2879
(0.6244) (0.4363;
20127 0.0303
(0.5811) (0.5378;
02241 0.1107
(0.2388) (0.3882)
20.1067 0.0706
(0.1944) (0.1993;
0.0904 -0.0689
(0.2622) (0.3858
0.4807 0.1567
(0.3626) (0.3013;
-0.1167 -0.2457
(0.1828) (0.1840;
0.0953 0.0950
(0.4141) (04318
0.1378 0.6710
(0.2044) (0.2084}
0.3935 0.0579
0.1970) (0.1980:
-0.0828 -0.5416
0.1893) (0.2348)
0.0757 0.1791
02217 02135}
-0.1976 -0.3762
(02297) (0.2246)
0.0908 0.0147
0.1671) (0.1733)
0.0463 0.6873
(0.2573) (0.3391)
0.1709 0.1549
(0.2188) ©Inn
£0.0283 0.2971
0.1137) (0.1173
0.0955 0.1960
(0.2302) (0.2065}

2
Standard errors in brackets, R” is adjusted
multiple correlation coefficient.

/Continued



TABLE 1. (¢ontinued)

1 Agriculture etc.

2 Coal Mining

3 Cake

4 Minenl Oil & Nat.Gas
5 Petroleum Products

6 Electricity etc.

7 Public Gas Supply

8 Water Supply

9 Minenls & Ores nes
10 Iron & Steel

11 Non-ferrous Metals
12 Non-metallic Min.Pr.

13 Chemicals & MM Fibres

14 Metal Goods nes

15 Mech. Engineering
16 Office Machinery etc
17 Elect, Engineering
18 Motor Vehicles

19 Aervspacs Equipment
20 Ships & Other Vessels
21 Other Vehicles

22 Instr. Engineering
23 Manufsctured Food
24 Alcoholic Drinks ewc
25 Tobacco

26 Textiles

27 Clothing & Footwear
28 Timber & Fumiture
29 Paper & Board

30 Books ec

31 Rubber & Plastic Pr.
32 Octher Manufactures
33 Construction

34 Dimribution etc

35 Hotals & Catering
36 Rail Transpan

37 Other Land Transport
38 Sea, Air & Other

39 Communicstions

40 Business Services
41 Miscell. Servioms

4

-0.4305
(0.4127)
0.4265
(0.2022)
-1.3583
(0.4749)

0.5526
(0.3451)
0.6020
(0.2726)
0.2513
0.1922)
-2.8566
(0.7126)
-0.2124
(0.3888)
0.4557
(0.1928)
0.2762
(0.1125)
-0.0472
(0.4862)
0.4584
(0.2036)
1.1805
(0.6468)
0.6855
(0.4794)
-0.7454
(1.1230)
0.5176
(0.2558)
-0.0786
(0.3168)
-0.0317
(0.5831)
-0.9083
(0.5227)
0.9568
(0.4453)
09770
(0.4345)
0.6892

(0.4956)

4oy

0.3869
0.3583)
0.3679
(0.2374)
1.8793
(0.5582)

0.6812
(0.3579)
0.7048
0.2477)
-0.1382
(0.2368)
2.0447
(0.5450)
0.1637
0.4321)
-0.2938
(0.2185)
-0.0547
(0.1306)
-0.2831
(0.4049)
-0.3184
(0.2028)
-1.0864
(0.4716)
0.5910
(0.5 108)
0.3020
(1.1174)
-1.3098
(0.2954)
-0.2601
(0.3650)
-0.6019
(0.4519)
0.8595
(0.3407)
-0.8510
0.3900)
-24352
(0.5578)
-1.0381
(0.3510)
0.2831
(0.5310)
-0.6736
0.7384)

RZ
(uF)

0.9982
(90.1369)
0.9986
(86.5871)
0.9710
(53.1491)

0.8841
(44.3366)
09917
(87.3926)
0.979
(69.6787)
0.959%4
(67.4242)
0.9706
(63.7”)
0.9923

(69 $891)
0.9906
(78.“3!)
0.9932
(829853)
0.9819
(89.0752)
0.9893
(83.2485)
0.9917
(90.3325)
0.9331
(71.1734)
0.9894

(93.5970)
0.9453
(613)

A

o

0.0141
0.0160
0.0506

0.0672
0.0155
0.0286
0.0309
0.0351
0.0284
0.0208
0.0181
0.0146
0.0179
0.0140
0.0m
0.0102
0.0191
0.0310
0.0261
0.0262
0.0155
0.0151
0.0301
0.0454
0.0160
0.0123
0.0145
0.0171
0.0112
0.0133
0.0136
0.0142
0.0148
0.0218
0.0170
0.0165
0.0224
0.0174
00125
0.0229



1 Agriculture ec.

2 Coal Mining

3 Coke

4 Mineral Oil & Nat.Gas
5 Petroleum Products

6 Electricity etc.

7 Public Gas Supply

8 Water Supply

9 Minenals & Ores nes
10 Iron & Steel

11 Non-ferrous Metals
12 Non-metallic Min.Pr.
13 Chemicals & MM Fibres
14 Meul Goods nes

15 Mech. Engineering
16 Office Machinery etc
17 Elect. Engineering

18 Motor Vehicles

19 Aecrospace Equipment
20 Ships & Orher Vessels
21 Orher Vehicles

22 Instr. Engineering

23 Manufactured Food
24 Alcoholic Drinks etc
25 Tobacco

26 Textiles

27 Clothing & Footwear
28 Timber & Fumiture
29 Paper & Board

30 Books atc

31 Rubber & Plastic Pr.
32 Other Manufactures
33 Construction

34 Distribution etc

35 Hotels & Catering

36 Rail Trnsport

37 Other Land Transport
38 Ses, Air & Other

39 Communications

40 Business Services

4] Miscell. Services

* See notes to Table 1.

inpt/40

5.9025
(57.5851)
-24.6379
(10.1993)
-81.9147
(66.9629)

-92.6973
(88.2755)
42.7381
(26.8282)
112.7709
(44.4602)
-167.9418
(62.5607)
172.9158
(79.1246)
-155.7089
(20.5070)
-21.3448
(27.8342)
-236.8126
(65.3042)
-99.1032
(28.1020)
-51.0504
(67.1158)
-101.2152
(51.8451)
£7.1178
(75.6691)
106.1219
(25.5818)
-74.0164
(48.8105)
246.9802
(75.2084)
-0.7667
(0.2086)
-165.4705
(58.7346)
423.2630
(55.7285)
-1729101
(63.0103)
-96.0446
(69.2247)
155.5488
(182.3643)
£69.3333
(39.2933)
-653.9489
(11.9600)
215732
(13.7004)
39.4291
(31.8083)
96.1742
(32.3071)
-81.7005
(16.8687)
$69103
(51.0746)
3.3516
(27.4087)
141.2744
(41.2202)
-58.7494
(44.4425)
-50.9886
(25.3141)
118.4359
(34.6439)
67.2451
(92.1103)
309.7212
(57.1105)
209.6513
(49.1545)
-39.9043
(33.3057)

M

0.4080
(0.1365)
0.2845
(0.0338)
03733
(0.1351)

0.3475
(0.1847)

(0.0858)

0.3544
(0.1150)
0.1307
(0.0894)

0.1608
(0.1269)

0.3108
(0.0718)
02123
(0.0790)

TABLE 2.

BESTRICTED INDUSTRIAL LABOUR DEMAND FOUATIONS %

i

0.3215
(0.1440)
-0.4268
(0.0716)
0.5137
(0.2122)

0512
(0.1342)
0.4462
(0.1803)

0.1997
(0.0711)
-0.1825
(0.1138)

-0.3408
(0.1484)

-0.2618
0.1197)

-0.4809
(0.1171)

0.2115
(0.0825)

-0.4827
(0.4058)

0.1830
(0.0929)

(0.0681)

-0.3710
(0.1167)
0.7842
(0.1615)

0.3372
(0.1055)
02123
0.1302)
-0.3506
(0.1263)

.2

-0.1981
(0.1169)
0.2247
(0.0957)

-0.3648
(0.1475)
-0.5338
(0.1653)

0.1184
(0.0960)
02278
(0.0600)

0.3539
(0.0987)

05240
(0.3982)
-0.2759
(0.0871)

-0.2463
(0.0729)

0.1345
(0.0835)
0.2726
(0.1207)

-0.2016
(0.1434)

hey

0.4782
(0.0669)
13624
(0.1359)
0.1876
(0.1151)

0.7915
(0.1253)
1.1202
(0.1862)
0.6934
(0.1060)
0.4752
(0.1039)
0.6931
(0.0790)
0.5533
(0.0854)
1.0929
(0.1544)
0.8437
(0.0450)
0.5831
(0.0710)
0.6006
(0.0653)
0.5996
(0.2087)
0.8571
(0.0721)
0.3886

(0.1759)
0.8264
(0.0970)

he o

04332
(0.1680)

0.4619
(0.1803)

-0.3288
(0.1229)

-0.6121
(0.1602)
0.3160
(0.1195)

-0.2355
(0.0955)

-0.2638
(0.1884)
0.6002
(0.1363)
0.4744
(0.1616)
-0.3104
(0.1680)

¥t
-0.5134
(0.0836)
0.2194
(0.0297)
0.4294
(0.0790)

-0.2882
(0.1086)
-0.1490
(0.0746)
-0.2975
(0.0681)
-0.4094
(0.0976)
0.1494
(0.0622)
-0.3402
(0.0596)
<0.1061
(0.0439)
<0.2505
(0.1029)
-0.273§
(0.0329)
0.2355
(0.0763)
-0.1979
(0.1133)
-0.2389
(0.1049)
02592
(0.0771)

(0.1191)
-0.2545
(0.0718)
0.2432
(0.1204)
-0.0937
(0.0631)

-0.1408
(0.0747)

W1

0.2300
(0.0774)
0.1846
(0.1085)

-0.0520
(0.0496)
0.1262
(0.1188)

-0.3348
(0.1163)

0.1351
(0.0637)
-0.2102
(0.0666)
01797
(0.0720)

0.1064
(0.0564)
0.2377
(0.0581)

-0.1781
(0.0668)

0.1108
(0.0681)

0.3435
(0.0704)

0.1959
(0.1094)

0.1835
(0.1255)

(0.0664)

Yea Ye-l.a

-0.3886

(0.0480)

-0.1354

©0.1158)

05337

(0.2560)

0.6320 -0.7019

0.2043)  (0.1920;

03674

0.2118)

0.5764

(0.0769)

02716

(0.2663)
04802
(0.1746)

0.2548

(0.1399)
0.3684
©0.1099)

0.2625

(0.1099)

05103 05103

(0.2000)  (0.2000)

0.2078

(0.1235)

0.4479

(0.1457)

.20136

0.5337)

0.0882

(0.1207)

02125

(0.1434)

0.4043 -0.6459

0.1692)  (0.1125)

0.3916

(0.1500)
05717
©0.1527)
0.3148
(0.1521)
-0.1633
(0.0486)

/Continued




Table 2. (continued)

1 Agriculture etc.

2 Coal Mining

3 Coke

4 Minen] Oil & Nat.Gas
5 Petroleum Products

6 Electricity etc.

7 Public Gas Supply

§ Water Supply

9 Minemis & Ores nes
10 Iron & Steel

11 Non-ferrous Metals
12 Non-metallic Min.Pr.

13 Chemicals & MM Fibres

14 Metal Goods nes

15 Mech. Engineering
16 Office Machinery etc
17 Elect. Enginearing
18 Motor Vehicles

19 Aerospece Equipment
20 Ships & Other Vessels
21 Orther Vehicles

22 Instr. Engineering
23 Manufsctured Food
24 Alcohalic Drinks ete
25 Tobacco

26 Textiles

27 Qlothing & Footwear
28 Timber & Fumiture
29 Psper & Board

30 Books ec

31 Rubber & Plastic Pr.
32 Other Manufactures
33 Construction

34 Distribution eic

35 Hotals & Catering

36 Rail Trnspart
37 Other Land Transpont

38 Ses, Air & Other
39 Communicstions
40 Business Services
4] Miscell. Services

¢

0.126
0.0326)

-1.4606

(0.4225)

0.3281
(0.2698)
0.2193
(0.2408)

-3.0778
(0.6623)

0.2278
(0.0572)

0.2720
(0.1678)
0.4410
(0.3831)

1.0366
(0.5489)
0.2694
(0.1979)
-0.2471
(0.0892)
-0.6598
(0.2197)

0.7687
(0.3109)

0.1174
(0.0282)

-028%0
(0.0705)

0.8608
©.2211)

(0.2304)

1.08%9
(0.2010)

4

©0.1838)

24681
(0.3508)

0.1489
(0.0636)

-0.2609
(0.1336)

-0.5252
(0.1523)

0.1953)
035162
0.1937)

09139
0.1745)



TABLE 2(A).

Y D STIC C ICTED
PLOYM UATIONS OF

Industry & X o D g 2@
1 Agriculture etc. 09983 5.00 (5) 0.0136 0.08 5.96 0.02 0.06
2 Coal Mining 09987 4.02 4 0.0155 000 025 1.18 0.32
3 Coke 09656 10.10 (5) 0.0551 0.00 13.82 050 296
4 Mineral Oil & Nat.Gas - i —— - -— — -
5 Petroleum Products 0.8874 6.94 (6) 0.0663 0.00 1.89 1.93 0.33
6 Electricity etc. 09909 7.59 4) 0.0163 1.08 1.26 0.22 258
7 Public Gas Supply 09773 8.14 (6) 0.0290 4.60 1.11 412 542
8 Water Supply 09520 10.06 (5) 0.0336 0.01 0.38 0.71 0.00
9 Minerals & Ores nes 09760 3.84 (1) 0.0318 136 016 3270 0.00
10 Iron & Steel 09919 8.63 (6) 0.0291 020 459 208 0.77
11 Non-ferrous Metals 09912 131 (2 0.0202 425 2.19 275 0.05
12 Non-metallic Min.Pr. 09937 4.82 (5) 0.0174 1.82 4,70 209 448
13 Chemicals & MM Fibres 09808 9.67 (7) 0.0151 4.76 3.53 1.65 129
14 Metal Goods nes 0.9898 5.39 (5) 0.0174 0.21 5.96 1.69 4.74
15 Mech. Engineering 09916 4.60 (3) 0.0141 0.17 0.21 002 1.09
16 Office Machinery etc 0.9291 7.85 (5) 0.0280 0.38 .10 076 448
17 Elect. Engineering 09893 5.82 (4) 0.0103 1.79 0.01 041 1.12
18 Motor Vehicles 09887 143 4) 0.0176 4.16 0.88 1.55 1.58
19 Aerospace Equipment 09847 17.20 (D) 0.0301 3.56 1.04 006 2.78
20 Ships & Other Vessels 09818 16.13(8) 0.0323 045 0.61 040 446
21 Other Vehicles 09972 2.85(5) 0.0243 0.90 2.10 0.33 259
22 Instr. Engineering 09759 244 4) 0.0146 1.57 1.29 214 1.02
23 Manufactured Food 0.9856 7.50 (5) 0.0154 0.43 0.48 6.76 2.46
24 Alcoholic Drinks etc 0.9119 549 (6) 0.0288 0.10 1.43 0.71 3.57
25 Tobacco 0.9101 0.02 (2) 0.0430 4.95 16.07 0.09 004
26 Textiles 09985 5.09 (5) 0.0155 421 2.46 220 2.03
27 Clothing & Footwear 09984 4.32 (8) 0.0110 0.36 1.92 0.62 0.03
28 Timber & Fumiture 0.9873 3.76 (6) 0.0133 0.08 373 091 085
29 Paper & Board 09932 10.81(6) 0.0186 530 0.14 173 6.16
30 Books etc 09341 9.52 (5) 0.0120 176 000 000 1.13
31 Rubber & Plastic Pr. 09834 2.51 (6) 0.0165 014 245 050 001
32 Other Manufactures 0.9908 9.82 (6) 0.0144 0.22 0.37 1.11  0.02
33 Construction 09819 242 (3) 0.0137 002 010 073 027
34 Distribution etc 09603 4.63 (6) 0.0139 0.32 1.96 023 247
35 Hotels & Catering 0.9169 4.17 (7) 0.0198 0.58 1.88 045 0.63
36 Rail Transport 09975 9.84 (5) 0.0183 0.03 0.38 2.66 0.86
37 Other Land Transport 09766 4.12 (5) 0.0157 0.13 0.98 1.02 0.02
38 Sea, Air & Other 09278 2.87 (4) 0.0212 223 7.95 1.88 091
39 Communications 09388 7.59 (5) 0.0178 0.53 1.51 1.16 4.09
40 Business Services 09940 9.26 (7) 0.0128 098 2.01 198 0.17
41 Miscell. Services 09512 8.14 (8 0.0222 006 047 039 191
Notes:
x2 is tbe chi-squared statistic for the test of r linesr restrictions on the parsmeters of unrestricted
r employment equations (see Table 1). The value of r is given in brackets after the statistic.
xgc(l) is the first order LM test of residual serial Xfr(l) is Ramsey’s RESET test of order

correlation. 1.

; ; 2 o8 icity test
xﬁ (2) is & test of normality of the errors. 7‘(1) :: :r::.; cedasticity
) is equations’ standard errors. w2 is the adjusted multiple

correlation coefficient.
The underlying regressions and the test statistics reported in this table sre computed on Data-FIT package.
For details of relevant algorithas and references -~ ses Pesaran and Pesaran (1987).



inpt/40 % Yl N2 by B2 " "l Yea Ye-l.a

1 Agdculture ec. 5.9025 0.4080 0.3215 -0.1981 0.4782 -0.5134 .0.3886
(57.5851) (0.1365) (0.1440) (0.1169) (0.0669) (0.0836) (0.0430)
2 Coal Mining -24.6379 0.2845 -0.4268 0.2247 1.3624 -0.4332 -0.2194
(10.1993) (0.0338) (0.0716) (0.0957) (0.1359) (0.1680) (0.0297)
3 Cake -351.5712 0.6330 -0.3005 1.0448
(44.6561) (0.1471) (0.0418) (0.1564)
4 Mineral Oil & Nat.Gas
5 Petroleum Products -70.7959 0.3640 05185 -0.3144
(71.7711) (0.1324) (0.1348) (0.0869)
6 Electricity etc. 42,7381 05112 -0.3648 1.1202 0.4619 -0.1490
(26.8282) (0.1342) (0.1475) (0.1862) (0.1803) (0.0746)
7 Public Gas Supply 47.1096 0.0611 0.4191 0.1507 0.5379
(97.2188) (0.0659) (0.1524) (0.0496) (0.1827)
8 Water Supply -167.9418 1.4846 0.4752 -0.4094 0.1846
(62.5607) (0.3476) (0.1039) (0.0976) (0.1085)
9 Minenals & Ores nes 1729158 0.2655 0.6931 0.1494 -0.5337
(79.1246) (0.1265) (0.0790) (0.0622) (0.2560)
10 Iron & Steel -349.9558 0.1083 0.4978 -0.3873 1.1803
(58.8686) (0.0893) (0.0832) (0.0777) (0.2928)
11 Non-ferrous Metals -84.8257 0.1817 -0.3091 1.2461 -0.4796 -0.0756 0.0756 05854
(30.7245) (0.1236) (0.1273) (0.1458) (0.1229) (0.0481) (0.0481) (0.1789)
12 Non-metallic Min.Pr. -2805702  0.3101 : 0.6919 02356 0.2214 05170
(60.6439) (0.1511) (0.0877) (0.1075) (0.0959) (0.2901)
13 Chemicals & MM Fibres -125.0557 0.6205 -0.2810 0.6049
(23.8339) (0.0693) (0.0337) (0.0773)
14 Metal Goods nes -32.2448 0.4365 05798 0.1671
(25.5280) (0.0444) (0.0542) (0.0817
15 Mech. Engineering -101.2152 04909 -0.3408 0.1184 0.5996 -0.2925 -0.1979 -0.3343 0.4802
(51.8451) (0.0750) (0.1484) (0.0960) (0.2087) 0.1792) (0.1133) (0.1163) (0.1746)
16 Office Machinery &ac £7.1178 02278 08571 -0.2389 0.2548
(75.6691) (0.0600) (0.0721) (0.1049) (0.1399)
17 Elect. Engineering 106.1219 0.3463 0.3886 £0.2592 0.1351 0.3684
(25.5818) (0.04562) (0.0646) (0.0771) (0.0637) (0.1099;
18 Motor Vehiclos -74.0164 0.5451 -0.2618 0.8395 -0.1165 -0.2102 0.2625
(48.8105) (0.0470) (0.1197) (0.1614) (0.0909) (0.0666) (0.1099)
19 Aerospace Equipment 200.3920 0.0732 0.7560 -0.4659 0.1252
(53.1219) (0.0654) (0.1659) (0.1440) (0.0674)
20 Ships & Other Vessels -0.7667 0.4809 -0.4809 147117 -0.4717 05103 -0.5103
(0.3086) (0.1171) (0.1171) (0.1543) (0.1543) (0.2000) (0.2000)
21 Other Vehicles -165.4705 0.389%6 0.9154 -0.1680 0.1064 0.2078
(58.7346) (0.0706) (0.0419) (0.0552) (0.0564) 0.1235)
22 Instr. Engineering 423.2630 0.2115 0.3539 077 -0.2486 0.2377 02377
(55.7285) (0.0825) (0.0987) (0.1267) (0.1064) (0.0581) (0.0581)
23 Manufactured Food -1721572  0.6697 03177 0.2237 -0.1962 0.1157
(76.0519) (0.1734) (0.1742) (0.1560) (0.064S) (0.1233;
24 Alcoholic Drinks etc -15.1802 0.2933 0.7283 -0.0945 0.0591
(73.4889) (0.1167) (0.12%9) : (0.0919) (0.0882)
25 Tobacco -213.3698  0.7424 0.7367 0.2633
(80.8449) (0.2840) (0.2225) (0.2225)
26 Textiles £69.3333 0.3637 -0.2759 0.5652 -0.4337 0.0882
(39.2933) (0.0675) (0.0871) (0.0657) (0.0753) (0.1207)
27 Clothing & Footwear -£68.9489 0.4514 05364 0.3756
(11.9600) (0.0372) (0.0411) (0.0284)
28 Timber & Fumiture 215732 0.3925 0.5144 -0.2885 0.1108
(13.7004) (0.0352) (0.0572) (0.0599) (0.0681)
29 Paper & Board -44.7%94 0.4680 0.1585 0.3644 -0.2503
(13.2869) (0.0652) (0.0925) (0.0842) (0.0433)
30 Books etc 96.1742 0.4094 -0.2040 1.3273 -0.6121 0.0578 02125
(32.3071) (0.0946) (0.0681) (0.1955) (0.1602) 0.0477) (0.1434)
31 Rubber & Plastic Pr. £4.4432 05398 -0.1401 0.6844 0.1820
(14.2846) (0.0588) (0.0963) (0.0818) (0.1007)
32 Other Manufactures 60.3555 0.2345 0.6028 04274 -04274
(20.0274) (0.0435) (0.0933) 0.1287) (0.1287)
33 Construction 3.3516 0.3475 £0.3710 0.1345 098514 -0.2355 4.3435 0.3435 0.3916
(27.4087) (0.0858) (0.1167) (0.0835) (0.0957) 0.0955) €0.0704) (0.0704) 0.1500)
34 Distribution etc 141.2744 0.7842 02726 0.6360 -0.0409 -05717
(41.2202) (0.1615) (0.1207) (0.0917) (0.0356) 0.1527)
35 Hotels & Catering -58.74594 0.3544 0.7096 -0.3876 0.1959
(44.4425) (0.1150) (0.1022) (0.1191) (0.1094)
36 Rail Transport -50.9886 0.1307 03372 05187 -0.2545
(25.3141) 0.0894) (0.1085) (0.0978) (0.0718)
37 Other Land Transport 118.4359 02123 -0.2016 1.0003 -0.2638
(34.6439) (0.1302) (0.1434) (0.1803) (0.1884)
38 Sea, Air & Other 67.2451 0.1608 -0.3506 1.2952 <0.6002 0.2432 0.1835 0.3148
(92.1103) (0.1269) (0.1263) (0.1450) (0.1863) 0.1204) (0.1259) (0.1521)
39 Communications 14.3221 0.9014 -0.4533 0.8261 -0.2785 0.1686 0.1565
(41.3966) (0.1808) (0.1966) (0.1727) (0.1579) ©.0822) (0.0807)
40 Business Services 209.6513 0.3108 0.6781 -0.3104 -0.1633
(49.1545) (0.0718) (0.1759) {0.1680) (0.0486)
4] Miscell. Services -39.9043 02123 0.8264 0.1408
(33.3057) (0.0790) (0.0970) (0.0747)

* See notes to Table 1. ' /Continued



Table 3 (continued)

1 Agrcultre etc.

2 Coal Mining

3 Coke

4 Minenal Oil & Nat.Gas
5 Petroleum Products

6 Electricity etc.

7 Public Gas Supply

8 Water Supply

9 Minenls & Ores nes
10 Iron & Steel

11 Non-ferrous Metals
12 Non-metallic Min.Pr.

13 Chemicals & MM Fibres

14 Metal Goods nes

15 Mech. Engineering
16 Office Machinery etc
17 Elext. Engineering
18 Motor Vehicles

19 Aerospace Equipment
20 Ships & Other Vessels
21 Other Vehicles

22 Instr. Enginesring
23 Manufsctared Food
24 Alcoholic Drinks etc
25 Tobacco

26 Textiles

27 Clothing & Footwear
28 Timber & Pumiture
29 Paper & Board

30 Books ec

31 Rubber & Plastic Pr.
32 Other Manufactures
33 Construction

34 Distribution etc

35 Hotels & Catering
36 Rail Trensport

37 Other Land Transpont
38 Ses, Air & Other

39 Communicstions
40 Business Services

41 Misoell. Services

0.2793
(0.2408)

-3.0775
(0.6623)

1.0366
(0.5489)

(0.1979)
-0.2471
(0.0892)

0.7687
(0.3109)

(0.3043)

0.1174
(0.0282)

02830
(0.0705)

0.8608
(0.2211)
0.4509
(0.2304)

T

dt-l t
-1.3100
(0.1752)
0.5087
(0.1297)

0.3007

(0.1838)
0.6014
(0.1995)

24681

(0.5508)
-0.9045
0.2732)
-0.5749
(0.1517)
-0.3729
(0.2148)
£0.1231
(0.0976)

-1.5206

(0.5314)

0.9762

(0.2051)
-0.6788
(0.1586)

-0.7687

(0.3109)

-2.6097

(0.3537)
04510
(0.1973)
0.4844
(0.1411)
0.9%9
(0.1161)

0.2960

(0.1265)
-0.3259
(0.1040)
£0.3192
(0.1872)
03233
(0.0653)

-0.6958

(0.1953)

05162

©0.1937)
-0.6566
(0.2384)



TABLE 3(A).

0. T CS FOR E S
UATIO| OF TABLE 3
Industry g2 2 5 e XD @
1 Agriculture etc. 09983 5.21 (6) 0.0136 0.08 596 0.02 0.06
2 Coal Mining 09987 6.84 (5 0.0155 000 025 1.18 0.32
3 Coke (*) 09771 10.15(8) 0.0449 024 067 027 187
4 Mineral Oil & Nat.Gas — -—— -— —— — —— ———
5 Petroleum Products (*) 09178 1340(8) 0.0566 048 0.01 1.83 0.85
6 Electricity etc. 09909 14.25(5) 0.0163 1.08 1.26 022 258
7 Public Gas Supply (*) 09719 2336 (7) 0.0322 129 000 486 142
8 Water Supply 09520 10.18 (6) 0.0336 0.01 0.38 0.71 0.00
9 Minerals & Ores nes 0.9760 3.90 (8) 0.0318 1.36 0.16 3270 0.00
10 Iron & Steel (*) 09933 1288 (7) 0.0265 0.08 0.19 142 043
11 Non-ferrous Metals (*) 09864 13.33(5) 0.0250 0.01 347 020 1.89
12 Non-metallic Min.Pr. (*) 09935 1221(6) 0.0177 1.11 0.23 0.76 3.15
13 Chemicals & MM Fibres (*) 09795 11.78 ¥) 0.0156 3.51 1.80 096 1.14
14 Metal Goods nes (*) 09877 1231 (8) 0.0192 009 027 038 1.00
15 Mech. Engineering 09916 4.63 (4) 0.0141 017 021 002 1.09
16 Office Machinery etc 0.9291 9.49 (6) 0.0280 0.38 .10 076 4.48
17 Elect. Engineering 09893 11.58(5) 0.0103 179 0.1 041 1.12
18 Motor Vehicles 09887 4.82 (5) 0.0176 416 0.88 1.55 1.58
19 Aerospace Equipment (*) 0.9878 6.31 (7) 0.0268 0.90 0.30 1.81 1.30
20 Ships & Other Vessels 09818 1691 (9) 0.0323 0.45 0.61 040 4.46
21 Other Vehicles 09972 1207 (6) 0.0243 090 210 033 259
22 Instr. Engineering 0.9759 246 (5) 0.0146 1.57 129 214 102
23 Manufactured Food (*) 09837 13.89(6) 0.0164 1.69 2.78 133 438
24 Alcoholic Drinks etc (*) 09232 1542 (7) 0.0269 1.32 0.2 094 206
25 Tobacco (*) 08796 16.63 (9) 0.0497 0.25 822 065 7.62
26 Textiles 09985 5.59 (6) 0.0155 4.21 246 220 203
27 Clothing & Footwear 09984 4.37 (9 0.0110 0.36 1.92 0.62 0.03
28 Timber & Furniture 09873 6.05 (7) 0.0133 0.08 3.73 091 0.85
29 Paper & Board (*) 09927 1200(7) 0.0192 1.09 1.33 1.74 441
30 Books etc 0.9341 9.55 (6) 0.0120 1.76 000 000 1.13
31 Rubber & Plastic Pr. (*) 09818 8.01 (7) 0.0173 0.21 1.59 096 1.03
32 Other Manufactures (*) 0.9917 1349 (8) 0.0137 0.37 0.21 1.12 0.00
33 Construction 0.9819 2.58 4) 0.0137 002 010 073 027
34 Distribution etc 09603 13.35(7) 0.0139 0.32 196 023 247
35 Hotels & Catering 09169 5.59 (8) 0.0198 0.58 1.88 045 0.63
36 Rail Transport 09975 11.38(6) 0.0183 0.03 0.38 2.66 0.86
37 Other Land Transport 09766 8.48 (6) 0.0157 0.13 0.98 1.02 0.02
38 Sea, Air & Other 09278 6.26 (5) 0.0212 2.23 7.95 1.88 0.91
39 Communications (*) 0.9351 8.03 (5) 0.0184 156 048 0.14 181
40 Business Services 09940 9.33 (8) 0.0128 098 201 198 0.17
41 Miscell. Services 09512 8.20(9) 0.0222 006 047 039 191

See the notes to Table 2(a).



TABLE 4
Relative Predictive Performance of the Aggregate and the

*
Disaggregate Employment Functions

Unrestricted Restricted
Specifications Specifications
(Table 1) (Table 2) (Table 3)
Disaggregate 0.1007 0.0856 0.0737
criterion
Aggregate 0.1100% 0.1030° 0.1030°
criterion

*
Results exclude industry 4 (Mineral 0il and Natural Gas).
aCorresponds to the unrestricted aggregate equation (36)

bCorresponds to the restricted aggregate equation (37).



TABLE 5

Tests of Aggregation BiasT
Unrestricted Restricted

c ations Specifications

(Table 1)2 (Table 2)® (Table 3)°
qf(l) 0.63 5.13 17.20
[wages]
q%(l) 0.32 2.46 5.18
[wages]
qg(l) 0.00 1.68 1.66
[output]
q%(l) 0.07 0.05 0.34
[technology]

TSquare brackets indicate variables over which restrictions are imposed;
figures in round brackets show the number of restrictions imposed, s.

Test statistics are compared to x2(s). The qf and q5 statistics are
computed using the results (24) and (25), respectively.

®Results compared to unrestricted aggregate equation (36)

bResults compared to restricted aggregate equation (37).



FIGURE 1.1
Long Run Industry Output Elasticities from Table 2
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MATHEMATICAL APPENDIX

Proof o Q 1: Under Ho defined by (17), the statistic q2 in (19)

can be written as

9 = 4nd, (A1)
where
m
gn - }: Zin’ (A2)
i=1
and
z, =0 8 ru, 1-1,2,...m a3)

A

The matrices @n and Pi are defined by (22) and (20) in the text,
respectively. The proof we offer here has two stages: we first show that
for each i and for any real kxl vector A such that A') =1,
A'Ein 2 N(0’¢ii) where ¢ii > 0. Using this result in (A2), we then show
that é'gn 2 A’'d, where d -~ N(O,Ik). From this it follows that

k), and gﬁgn 2 xi. [See, for example, Proposition 5.1 in White

d 2nNe,1
-~Nn
(1984). ]

Under Assumptions 1-3 it readily follows that

plim (o

) = o
N 1]

ij’

plim (2 ) = @,

n—o

where

®- Z 713%;

i,j=1
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and the matrices Qij defined by
Qij - ziim (n” Pi 3

1 -1 -1 1 -1 -1 1 -1 1

~2%am zaazaj 35 " m Z11%iavaa * 2 211%5%5

are finite for all i and j and are non-singular for i = j. Now noting

that by assumption @ is also non-singular we have

’ ’ ';5
2'2in =0 4Ry }: 1e%¢ (&%)
t=1

where p = Q-%é, and sit stands for a typical element of vector Pip It
is now easily seen that under assumptions of the theorem, thé conditions for
the application of the version of Liapounov's Theorem cited in White (1984,

Theorem 5.10) to the right hand side of (A4), which is a sum of independent-

ly, but non-identically distributed random variables, are met and
' a
Az 2 N0,8,0),

where

- ’
S35 = 0qy8'Qqp > 0.

Therefore, asymptotically é'gn -3 'z is distributed as a linear

i=1 =~ =Zin
function of m normal variates and itself will be distributed normally with

20
zero mean and variance

20 ’ ’ ’
Notice that since limnam V() Einfjné) aijﬁ Qijﬁ ¢ij’ then

1imn*w vQa'd) = limn*w V(ZT-I A'240) = zlil.l,j-l ¢ij
- Ev(zm

- R
1,51 %13 YL =g @ - areTiee T - 1
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2im V(A'd ) = A2 = 1.

by el

Hence, for a finite m,

a

gn - N(O’Ik)’

and
, a 2

gngn ~ X+ Q.E.D.
Proof of Theorem 2: The proof is similar to that presented for Theorem 1.
Under Hd the statistic 9,5 defined by (33) can be written as

- !
93 éngn

where gn is defined by (A2), but Ein is now given by

4

= R T
Zin n vnkvaHiEi'

A

Since by assumption Vn converges in probability to a non-singular matrix,

say V, we also have

' a -k 28 ’ -k ry
Va2 AV R M, = 0 K

where A is now a (k-p)xl vector of constants such that A'A =1, and p
-3

= V “A. Denoting the tth element of HivaE by Ny, We now have

n
, -k
A2 - Z "ietse (A3)
e-1

which is a sum of independently, but non-identically distributed random
variables. As in the proof of Theorem 1, it is easily seen that under
assumptions of Theorem 2, the Liapounov’s theorem (White, 1984, Theorem

5.10) is applicable to (A5) and

-
Az 2 NGO,
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where

' -1 [] ;
¢ii -y {plim (n xhzuixaz))g > 0.
-+

Hence, by a similar reasoning as in the proof of Theorem 1, we have
'a 8
rda 2N,
and
a
gn - N(O’Ik_p)l

which establishes that

Q.E.D.
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DATA APPENDIX

With the exception of data on industrial investment, the data used in
this study are the same as théE employed in Pesaran et al. (1988), and are
taken from the Cambridge Growth Project (CGP) Databank. For the sources of
the data and the classifications of industry groups see the Data Appendix
and Table A in PPK. For convenience, Table A is reproduced at the end of
this Appendix.

.Data on industrial investment in vehicles, in plant and machinery, and
in buildings are available separately for the period 1954-84, from which
total gross investment is constructed. There is not a one-to-one corres-
pondence between the Blue Book (BB) industrial classifications for which the
data is published and our own, however. Where the BB data is more
disaggregated, this causes no problem, since we simply amalgamate the
appropriate industries. There remains six areas in which the BB data is
more aggregated than our own. These are listed in Table B.

In these cases, we have made the simplifying assumption that the
investment reported by BB classification can be divided equally over the
(more disaggregate) CGP industrial groups. This procedure is satisfactory
if the CGP industry groups within the BB classifications show similar
investment growths over the 1954-84 period. This is likely to be the case
for the Coal and Coke industries, but is less likely to hold in the case of

the BB industry classifications 13 and 17.
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TABLE A

Classification of Industry Groups

(In Terms of the 1980 Standard Industrial Classification)

ndust Groups (CGP classificatio

O 000 N oy W N

RN N N NN NN N NN e e s e e s
O 00 N O O & W N = O W o N O B & W Ny = O

Agriculture, Forestry and Farming

Coal Mining

Coke

Mineral 0il and Natural Gas
Petroleum Products
Electricity, etec.

Public Gas Supply

Water Supply

Minerals and Ores n.e.s.
Iron and Steel

Non-Ferrous Metals
Non-Metallic Mineral Products
Chemicals and Manmade Fibers
Metal Goods n.e.s.
Mechanical Engineering
Office Machinery, etc.
Electrical Engineering
Motor Vehicles

Aerospace Equipment

Ships and Other Vessels
Other Vehicles

Instrument Engineering
Manufactured Food
Alcoholic Drinks, etc.
Tobacco

Textiles

Clothing and Footwear
Timber and Furniture

Paper and Board

Division, Class or Group

0

1113, 1114

1115, 1200

1300

140

1520, 1610, 1630
1620

1700

21, 23

2210, 2220, 223
224 '
2

25, 26

31

32

33

34

35

3640

3610

3620, 363, 3650
37

41, 4200, 421, 422, 4239
4240, 4261, 4270, 4283
4290

43

45

46

4710, 472



Table A (cont.)

Industry Groups (CGP classification)

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

Books, etc.

Rubber and Plastic Products
Other Manufactures
Construction
Distribution, etc.
Hotels and Catering
Rail Transport

Other Land Transport
Sea, Air and Other
Communications
Business Services

Miscellaneous Services

38

v

475
48
44,

61,
66
71
72
74,
79
81,
94,

si Class o ou

49

62, 63, 64, 65, 67

75, 76, 77

82, 83, 84, 85
98, 923, 95, 96, 97



10.
11.
12.

16.
17.
22.

19.
20.
21.

24.
25.

29.
30.

39

IABLE B

CGP Classification

Coal
Coke

Minerals and ores nes

Iron and steel

Non-ferrous metals
Non-metallic mineral products

Office machinery
Electrical engineering
Instrument engineering

Aerospace equipment
Ships
Other vehicles

Drink
Tobacco

Paper and board
Books

O 0o

13.

15.

17.

21.

" Blue Book and Cambridge Growth Project Industrial Classifications

C sification

Coal and coke

Metals
Other minerals

Electrical and instrument
engineering

Transport, other than motor
vehicles

Drink and tobacco

Paper, printing and publishing
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