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ABSTRACT

This paper extends the results obtained by Pagan (1984), and
Turkington (1985) for single equation rational expectation (RE) models to
the multivariate RE models and shows that the errors-in-variables method and
the substitution method discussed in Wickens (1982) lead exactly to the same
likelihood function. Therefore, as far as the maximum likelihood estimation
of RE models is concerned, the paper argues that there is little to choose
between the substitution and the errors-in-variables methods. The paper
also considers multivariate RE models with unanticipated variables, and
demonstrates that in the simple case where only current values of the
unanticipated variables are included in the RE model, the IV and the two-
step estimators of the coefficients of the included unanticipated variables
will be asymptotically efficient irrespective of whether the predetermined
variables of the RE model are included amongst variables of the expectations
formation model. This result does not, however, carry over to models with
lagged values of unanticipated variables, unless it is assumed that the
expectations errors are distributed independently of the future as well as
the current and the past values of the explanatory variables of the RE

model: an assumption which is not warranted under the REH.



1. Introduction

This paper extends the results obtained by Pagan (1984) and Turkington
(1985) and reviewed in Pesaran (1987, Ch. 7) for single equation rational
expectations (RE) models containing unobserved expectations of a single
variable to the multivariate RE models. Apart from providing a generaliza-
tion of Pagan-Turkington results, the paper also shows that the errors-in-
variables method (EVM) and the substitution method (SM) discussed in Wickens
(1982) for estimation of RE models lead exactly to the same likelihood
function. It will be therefore shown that as far as the maximum likelihood
(ML) estimation of the RE model is concerned, the two estimation methods are
equivalent.

The plan of the paper is as follows: Section 2 deals with the basic RE
model which is a multivariate version of Pagan’s model 2. 1In the case of
this model we obtain the asymptotic covariance matrices of the ML, the two-
step, and the instrumental variable (IV) estimators and show that in general
the two-step and the IV estimators are asymptotically less efficient than
the ML estimators. The condition for the full asymptotic efficiency of the
two-step and the IV estimators turns out to be the same as that already
derived in the literature for the univariate case: mnamely that all the
predetermined variables of the RE model should also be included amongst the
explanatory variables of the expectations formation model. The exact
equivalence of the likelihood functions of the EVM and the SM applied to the
multivariate RE model of Section 2 will be demonstrated in Section 3. This
result also establishes the full asymptotic efficiency of the three-stage
least squares (3SLS) estimation method when applied to the errors-in-
variable version of the RE model. In Section 4, we turn our attention to

multivariate RE models with current and lagged unanticipated variables. We



show that contrary to what is stated in the literature, it is possible to
employ the EVM to obtain consistent estimates of the parameters of the
unanticipated variables. We also demonstrate that in the simple case where
only current values of the unanticipated variables are included in the RE
model, the IV and the two-step estimators of the coefficients of the
included unanticipated variables will be asymptotically efficient irrespect-
ive of whether the predetermined variables of the RE model are included
amongst the variables of the expectations formation model. This result does
not, however, carry over to models with lagged values of unanticipated
variables, unless it is assumed that the expectations errors are distributed
independently of the future as well as the current and the past values of
the explanatory variables of the RE model; an assumption which is not

warranted under the REH.

2. The Basic Multivariate RE Model

Consider the model

= A'x* !
Te = AEE + Aj¥ * 2 (L
X, = Bz + v, 2)
x¥ = E(x [0 ), t=1,2,...,n, (3)

where and z, are column vectors of predetermined variables of orders

w
~t
p and q respectively, and Ye and x,  are column vectors of endogenous

variables of orders m and k respectively. The kxl vector 5% stands

for the unobserved values of expectations of X formed at time t-1.
Under the REH, §§ is given by (3) where E(§t|ﬂt_l) represents the mathe-
matical expectations of X, conditional on the information set ot-l’

which is assumed to include current observations on at least the variables
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W, , Z and observations on the past values of Yoo X z_, namely

~t’ =t e e’

Q1= WerZe Yo Fe-1 %1261 Le-2%e-20%e-20 %20
model characterizes a general multivariate version of model 2 analyzed by
Pagan (1984), and more recently by Turkington (1985). The Pagan-Turkington
model corresponds to the simple case where m = k = 1. The unobservable
variables models discussed in the literature by Zellner (1970), Goldberger
(1972), and Aigner (1974) can also be viewed as special cases of the above
basic model.

For the purpose of comparing the asymptotic efficiency of the

alternative estimators of the parameters of the RE model (1), namely A1

and A2, we make the following standard assumptions.
Assumption 1: Conditional on the information set nt-l’ the disturbances
ét = (gé,yé)' are normally distributed with zero means and the non-singular

variance matrix 3 of order mtk.

Assumption 2: For the predetermined variables of the model, gt - (Eé’Yé)'

the following probability limits exist

n b b
1 R ZZ zZwW
ot ) £ B - , )
p b
t=1 wZ ww

and
n
-1 B
n Z gtg-t 0,
t=1
where 2 is a finite non-negative definite matrix.

ff
Assumption 3: For the explanatory variables of the RE model (1), namely

hi = (EéB,yé)’, the following probability limit exists and is non-singular.
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Assumption 4: The matrix zzz is non-singular.

Remarks: The assumption that conditional on nt-l the disturbances are

normally distributed is only needed for the derivation of the ML estimators.
In general the normality assumption can be relaxed without in any way
is

affecting the results obtained in this paper. The assumption that Eff

a non-negative definite matrix allows for the possibility of linear depend-
encies between the elements of z, and We- As will be shown below, this
is an important consideration for the comparison of the asymptotic

efficiency of the alternative estimators of A1 and A Assumption 4

X
ensures that the parameter matrix B 1is identified, while for a given value

of B, Assumption 3 ensures the identification of A1 and A Assumption

9
3 also implies that B'ZZZB and zww are non-singular. A necessary
condition for B'ZZZB to be non-singular is given by q = k which is
clearly satisfied in the case of Pagan-Turkington univariate model where

k=1. The orthogonality condition E(§t|ﬂ = 0 implicit in Assumption 1,

t-l)
also ensures that ét have zero means (unconditionally) and are uncorrelat-
ed with their own past values and all the current and past values of gt'
Notice, however, that under the REH, ft are not necessarily uncorrelated

with the future values of gt' More specifically, the important implica-

tions of the orthogonality condition which will be used in this paper are
E(§,) = O,

- x%* = B’
E(§t|n xk = B'z

t-l) t’

E(§ 6L ) =0, for i=1,2,...



and E(étfé-i) = 0, for 1 =20,1,...

although Et need not be uncorrelated with the current and the future

values of gt'

2.1 The ML Estimators

In matrix form the equation system (1)-(3), can be written as:

y = (Imex*)él + (ImQW)g2 + u, (1)

x = (1,eZ)b + v, 2"

X, = ZB, (3")
where Im and Ik are the identity matrices of orders m and k respect-
ively, y is the mnmxl vector formed by stacking zl,zz,...,zn, and X
is an nkxl column vector formed by stacking §1’§2""’§n' Similarly, u
- (gi,gé,...,gé)', and v = (Xi,yé,...,gé)'. The other notations are as
follows: X' = (§1,§2,...,§n), Z' = (51’52""’En)’ W =
(yl,yz,...,yn), a = Vec(Al), a, = Vec(Az), E = Vec(B), where Vec(Al)

stands for the column vector of order mk formed by stacking the columns of
Al' Notice that in this notation x = Vec(X').1
Under Assumption 1 the log-likelihood function of the model is given by

n
2(A),A,,B.3) « Z logip(£ |8, ),
t=1
where p(étlﬂt_l) is the conditional probability density function of ét
assumed to have the multivariate normal distribution with zero means and the
variance matrix X. In terms of the above notations the log-likelihood

function can be written as

1 . :
The operation A ® B represents the Kronecker product of the matrices
A and B.



2(8) « - % log|=| - %g_'(z'leln)g_, (6)

where § = (5',E',g’)', a' = (gi,gé), g is the % (k+m)(k+m+l) x 1
column vector containing the distinct elements of X, and

y - (T 8% )a; - (I eWa,

§ = ; (7)
X - (Ik®Z)P_
which in view of (3') can also equivalently be written as
y - (Ai@Z)b - (ImGW)g2
¢ = (7")
X - (Ik®Z)§
Let ML and N be the ML estimators of ¥ - (g ,E )', and o
respectively. Then it is easily seen that under our assumptions QML and

éML are asymptotically independently distributed and that /n(iML-z) has a

limiting normal distribution with zero means and the asymptotic covariance

matrix given by the Cramer-Rao lower bound I;i, where

a22(0) 90(8)y ,BL(O)N"
1, - ebin {} i} - o 2 (57 () )
w™ P Taey) TR Uy 3y ) I

To obtain 177, using relations (6) and (7) we first note that

I ®H' 0
m *
92(8)
ay

-1
- (=8I )¢, (8)

A1®Z' IkQZ’

where H, - (X* : W) = (ZB : W). Let Z be partitioned into m and k

columns



zuu zuv zuu zuv -1
Z = - ,
Evu zvv zvu 2vv

then using (8) it is easily established that

utt
N

R

K ®zzh* Q@Ezz

where zh*h* is already defined in (5), and

K = ZuuAi + =,

® = Alz““Ai + z"“Ai + Alz“" +37 >0,

2zh* = (zzzB’zzw)'

The asymptotic variance matrix of /n(éML-E) can now be obtained from I

and is given by

1 1 -1

, -
K'® zh*zzzz zzh*)

However, using result 2.9 in Rao (1965, p. 29) we have

Vi/n &) = (56T, - K

1,.-1

YU KeTR) T -,

=
where
- [ - - ’
¥ Alzval 2uvAl A1zvu + zuu'

Therefore, asymptotically

A uu -1 uu -1 -1
Vi/na,)=[z®eg  +@®F -3 )ex, = = 1"

The first term in the square bracket represents the sampling error of

(9)

(10)

(11

A4

(13)

estimating a for a known value of b, while the second term in the square

bracket represents the sampling error associated with the estimation of b.



2.2 The Two Step Estimators

The first step of the two-step estimators employed in the literature
involves estimating B by the OLS regressions of the columns of X on Z.
In the second step the parameters A1 and A2 are then estimated by
regression of Y on ﬁ* and W, where ﬁ* = Z(Z'Z)‘lz'x = PZX. In terms

of our notations the two-step estimators of a (say éZs) is given by

i, - (Ledf) )y, (15)

where ﬁ* = (PZX : W). In order to give some idea of the properties of the

- A - 3
two-step estimator a we first rewrite (1') as

~2s’

y = (Lefl)a+ ¢, (16)
where
€=1u - (Ai@Pz)y.

It is now clear that unlike wu, the variance matrix of the compound

disturbance vector ¢ 1is not spherical. We have

-~

T, =W =3 eI +(¥-3 )eP, (17)

where ¥ 1is already defined by (13). Seen in this light it is not

- I3 - A 3 - o - 3
surprising that in general a is not an efficient estimator of a, since

2s
it does not allow for the fact that V(e) 1in general is non-spherical. A
two-step estimator of a which takes account of the specific structure of

V(e) can be obtained by application of the generalized least squares method

to (16). The resultant estimator

A

S - (el L1 ef,)) (1 o)) Ly, (18)

will not, however, be of much practical value, since its computation is

complicated and requires an a priori estimate of X and A But it may be

1°



interesting to note that in the special case where W is contained in Z

(i.e., W cC Z), the two-step estimator §25 and the generalized least
squares estimator éGLE will be algebraically identical. This result

follows from the fact that when W C Z then Pzﬁ* - ﬁ*, and

-1 -1 -1
(= efl) =% ¥ ef, + (I -3 ¥)ePAf,

-1 ef,,
or 2-1(1 ofi ) = i-l e fi Using this result in (18) now gives a -a
cetmo ¥ * & 22¢ ~ ZGLE
To obtain the asymptotic variance matrix of éZs we note that using

(16) in (15) yields

ézs -a= [Im®(ﬁ;ﬁ*)-1ﬁ;]i’

from which and with the aid of (17) the following expression for the

asymptotic variance matrix of éZs can be obtained2

Vn 8,0 = ¥ O F (B, - 0 T T (19)
where

= = - > 20

0 zh*h* Eh*z zz zh*’ (20)

Similarly, in terms of 20 the asymptotic variance matrix of éML’ given
by (14), becomes

Vi/n &) = (¥ len, 43 - ¥ e 517 (21)

2.3 The IV Estimators

Underlying the IV estimators for a 1lies the errors-in-variables
method of solving and estimating the RE models first suggested by McCallum

(1976) and more recently advocated by Wickens (1982). Since under the REH

2A general derivation of the asymptotic variance matrix of two-step
estimators in the case of a univariate model can be found in Newey (1984)
and Murphy and Topel (1985).
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x% = B'zt =X - Vo then the system of equations (1') and (2') can also be

written as
y = (Im®H)g + e, i
x = (LeZ)b + v, (2")
where H= (X : W), and
e=u - (Ai@In)g. (22)

In this characterization of the RE model, H and e will be correlated
irrespective of whether zuv = 0 or not. An obvious estimation method
therefore would be to apply the IV procedure to (1") using all the

predetermined variables of the model, namely F = (Z : W), as instruments.
This gives the following IV estimator of a,

apy - [Ims(u'rfu)'lu'Pf]z (23)
where Pf = F(F'F)-lF’. Furthermore, it is easily seen that

V(e) = E(ee’) =¥ 01,

where ¥ is already defined by (13). The relevant expression for the

asymptotic variance of /n(élv-g) will therefore be
V(/n &) = ¥ ® plin (H'PH/n) " (24)
n~+co
-1
=¥ Q® zh*h*'

2.4 A Comparison of Alternative Estimators

From the above results, it is firstly clear that in general the two-
step and the IV estimators are less efficient than the ML estimators. Under
our assumptions all the three estimators are equally efficient only in two

circumstances: (i) 1if A1 = Q0 and zuv =0 or (ii) if Wc Z. 1In the
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case where A1 = 0 and zuv = 0 the asymptotic variance matrices of all
. -1 -
the three estimators collapse to zuu ® zh*h*’ and when W c Z then EO
: -1
0 and all the three variance matrices reduce to the expression ¥ @ zh*h*'
In general, however, the two-step and the IV estimators are less efficient
than the ML estimators. Furthermore, as shown by Turkington (1985) for
the univariate case (k=m=1), ranking of the IV and the two-step estimators
by their asymptotic variance matrices, in general, is not possible. But
when zuv = 0 it is easily seen that the two-step estimators are asymptot-
ically more efficient than the IV estimators. From (19) and (24) we have
V(/na.) -V(/ni, )= (¥-% )exL mx1
21v 225 uu) ® FhshaZ0Thrh
Therefore, the asymptotic efficiency of the two-step estimators relative to
i " " - - ’ - ' -
the IV estimators depends on the "sign" of ¥ zuu Alzval Alzvu
Z A.. In the special case where £ = 0 the matrix ¥ - Z = A3 A
u uv uu

v 1l vl

is non-negative definite and V(/n éIV) - V(/n :23) = 0.

3. Likelihood Function For The Errors-In-Variables Method

In this section we show that the log likelihood function associated
with the errors-in-variables version of the RE model (1)-(3) is
algebraically equal to the log likelihood function (6) obtained in the
previous section via the substitution method. Thus we demonstrate that
insofar as the ML estimation of our basic RE model is concerned there is
little to choose between the errors-in-variables and the substitution
methods discussed in Wickens (1982). The equivalence of the likelihood
functions under these two solution methods, however, establish that the
three stage least squares estimators of a in the equations system (1") and
(2') will be asymptotically as efficient as the ML estimators éML

discussed in Section 2.1.
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Consider the errors-in-variables representation of the RE model given
by (1") and (2'). Let g = (e',v')'. Then the log likelihood function
associated with the EVM will be

n' V(1 M, (25)

~

N =

25,(8) & - 5 log|V(n)| -

where V(Q) is the variance matrix of n. We, however, know from (22) that

®
]
c

u - (Ai®In)Y' Therefore we can write

ALY
Im®1n A1®In é

18
]

0 Ik®In

or

-3

- (R®In)§’ where
L A

0 Ik

R =

Using (26) it follows that V(p) = (RZR'@In), and since R 1is a block
triangular matrix with all its diagonal elements equal to unity then IV(2)|

= |2|n. Substituting these results in (25) now yields

n 1 ,,<1
2ey(8) « - 35 log|Z| - 5 v’ (Z 7€l )y,

where v = (R-1®In)g. But it is easily seen that

Ixnn A]'.®In

1o

e + (AjeI )y

0 Ikn

t<
<

which in view of (22) establishes that v o= é. Therefore, IEV(Q) given by

(25) is algebraically equivalent to the log likelihood function associated

with the substitution method given by (6).
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4. Some Extensions Of The Basic Model

4.1 Model With Current Unanticipated Effects

Consider first the following important extension of the basic model
Yo = ApXE ¥ Ajgw + CT(X -XE) + U, (27)
where as before X, is jointly determined by (2'). This is a multivariate
generalization of Pagan’s model 4 and allows for the possible effects of the
"unanticipated"” components of §t on zt' Univariate versions of (27) have
figured prominently in the literature on the empirical analysis of efficient
market hypotheses and the natural rate-rational expectations hypothesis.
The present model can be estimated as before. But the parameter
matrice C cannot be identified unless one is prepared to impose the a

priori restriction that zuv = 0. To see why this is so note that under the

REH, x_ - x¥ = Ve and the errors-in-variables version of (27) becomes
= ' '
Lo = BXp T AV Y e (28)
where e. is now given by
= - - !
e u, (A1 C) Ve (29)

It is clear that the simultaneous system (28) and (2') which is a
reparameterization of (27) and (2') will in general be "observationally
equivalent" to the basic model; unless it is assumed that zuv = (. Under

the restriction zuv = 0, wusing (29) we have

=, = - - O'F , (30)

== ! i
where Eev E(gtgt). The parameter matrices Al’ A2, B, zev and zvv are
all identifiable (irrespective of whether zuv =0 or not), and C can be
identified from (30). Thus contrary to what is stated in the literature,

the EVM can be employed to obtain consistent estimates of the parameters of
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the RE model (27), in spite of the fact that it contains realized and
expected values of the same variables (Wickens, 1982, pp. 56-57). The
estimation of (27) by the EVM can be carried out in two stages: First the
IV method can be applied to (28) to obtain the IV estimates of A1 and A2
using, as in the case of the basic model, all the predetermined variables of
the model, F = (Z : W) as instruments. Then C can be consistently

estimated by means of (30) noting that
-1
£ =n (XM X),
v z

and

1 « « ,
So=1 (Y- XA L, - VA [O)ME,

where M =1 - P .3 That is
z n z

' -1 ' A
éIV - (XM X)7 XM (Y - WAZ,IV). (31)

The asymptotic variance matrix of Jn(é is still given by (24)

w'd

but with this difference that ¥ 1is now equal to

zee - zuu + (A1 - C)'E_VV(A1 - C). (32)

To obtain the asymptotic variance matrix of Jn(ﬁIV-C) we first note that by

utilizing the matrix forms of (28), (29) and (2') in (31) we can arrive at

] -1 ' -1 ' A
éIV - C= (VM) (WMD) - (VYY) (VMDA - A),
where V' = (21’22""’Xn) and U’ = (El,gz,...,gn). But under Assumptions

1 and 2 and the identification restriction zuv = 0, we have

n'l(v'MZV) Rs n'1<v'an) Ro, n'l(v'uzm Ro.

3 A N A ~ A
Recall that él,IV - Vec(Al’Iv), EZ,IV - Vec(AZ,IV)’ g =

(El,IV’EZ,IV) , and 4 is already given by (23).

v



15

We also know that J/n(A - A

2 IV 2) is asymptotically normally distributed

with a finite variance. Hence it follows that éIV is a consistent esti-
mator of € and Jn(éIV-C) has the same asymptotic distribution as

z;i(V'U/Jn). Therefore, in stacked form
R da -k, -1
/n(Cryme) & n C(U'eR)Y,

and since by assumption U, and v, are independently distributed, then

asymptotically
V(/né..) = plim n'l{(u'ssz'l)(w')(U@x'l)}
~IV v’ te— v
n-eo
. U'u -1
= plim { () ® 2},
n-ro
- esxt,
uu v
and
A d -1
Jn(SIv-S) -+ N(O, zuuezvv)'
The above results also show that éIV and éIV are asymptotically

independently distributed. This is hardly surprising considering that under

the REH, the term Ve = X - §§ in (26) is distributed independently of the

other explanatory variables included in the model.
To examine the asymptotic efficiency of the above IV estimators, let
éML and éML by the ML estimators of a and c¢ in (27) respectively.

Then along the lines similar to that in Section (2.1) we obtain

A '1 '1 '1 ‘1
v(/nEML) = [zee® *h* + (zuu i} zee) ® 20] i
and
V(/nc,.) = @ 51
~ML uu v’

where zh*h* and ZO are given as before by (5) and (20) and zee is
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defined above by (32). These results firstly establish that the IV
estimator of ¢ given by (31) is asymptotically efficient irrespective of
whether W is contained in Z or not. But as in the case of the basic
model, the asymptotic efficiency of éIV depends on whether W C Z. The
same is also true of the two-step estimators of a and c. Asymptotically

nothing can be gained by the ML estimation of c¢. As far as the estimation

of a 1is concerned the two-step estimator, é2s is less efficient than the
ML estimator, QML if W 1is not contained in Z, but nevertheless is more

efficient than the IV estimator, a This is because under the identifying

~Iv’

restrictions zuv = 0, asymptotically we have (see Section 2.4)

~ A , -1 -1
V(/nar) - V(/na, ) = (A - O)'Z (A - € & Fp 1y, ZoF s
which is a non-negative definite matrix for the values of the unknown
parameters. In general, therefore, the two-step estimator of a in (27) is

to be preferred to the IV estimators, assuming of course that the processes

generating X, are correctly specified.

4.2 Models With Current and Lagged Unanticipated Effects

Consider now the following general distributed lag version of (27)

where lagged values of xt and X, - x: as well as their current values

appear amongst the explanatory variables:

S S
S ' * ’ ' -
Le Z Ap XEg Y hs ¥t z Ci (e 1 XE.g) * e (33)
i=1 1=0

The univariate version of this model used in empirical work, for example, by
Barro (1977) and Mishkin (1982), has been extensively analyzed in the econo-
metric literature, notably by Abel and Mishkin (1983), Leiderman (1980), and

Attfield et al. (1981). The presence of lagged values of the unanticipated
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variables amongst the explanatory variables has important consequences both
for the asymptotic distribution of the ML estimators and for the efficiency
of the two-step estimators. This is primarily due to the fact that although
under the REH V.~ Et - §§ is uncorrelated with X Ve and their lagged

values, the same is not necessarily true of v, and the future values of

x* and o As a result the asymptotic distribution of the various esti-

’

mators of ¢ = (c¢/,c

c ~O,~i,...,g;)' will not be independent of the asymptotic

1 r

a!,...,a’ . One important
0'21" " 22g41) P

distribution of the estimators of a = (a
consequence of this is that the two-step estimator of ¢ in the general

distributed lag model (33) will no longer be asymptotically efficient,

unless it is assumed that

n
nt }: £ .viBo, for 1=-1,2,...
-1

which is not warranted under the REH.

The errors-in-variables method can still be applied to the general
distributed lag model (33), but will be much more cumbersome to implement
than the two-step estimators. The errors-in-variables version of (33) can

be written as

S
= ! .+ A +
yt Z Ai >~(t-1 és+1 ‘jt Se-t’
i=0

where

S
= - _ '
e T % }: (A= C)'Ye s
i=0

Now even if the REH holds, the orthogonality conditions E(Stlgt-j) = 0 need

not hold for j = 0,1,2,...,s-1. The REH only ensures that E(gtl ) =0,

£
~t-j
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for j = s,s+l,..., and as a result the use of 5: or its lagged values
Et-l’£t-2""’£t-s+1 as instruments for the IV estimation of (34) need not

be valid. The appropriate set of instruments in this general case would
include ft-s’gt-s-l"" and R -1 Xp.g-2" "
To obtain the IV estimates of C, we can again use the following

moment relations

2, = (C- A)'Z for i=20,1,...,s

. L}
where Zei E(gtgt_i).
The two-step estimation of the parameters of the general model (33)

does not, however, pose any special problems. Rewriting the general model

in terms of the first step estimators g = (Z'Z)-lz'X, we have

s s
- PR .+ AW, + c!v,_ .+ 35
Le ZAi~t-1 s+1%¢t Z iYe-i 7 Ee (35)
i=0 i=0
h G = - % gk = B’
where vt gt Et’ §t .3 Et and

s

Se 7 % Z (Ay- Ci)'(g “ Bz

i=0

Therefore, so long as f converges in probability to B, the two-step
estimators will be consistent and the addition of lagged values of v, to
the model does not create new problems, at least as far as the consistent
estimation of the parameters are concerned. By contrast the IV method, when
appropriately implemented, will lead to consistent estimates of AO’ 10

even if the expectations formation model (2') happens to be misspecified.
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5. Concluding Remarks

Most tests of the rational expectations hypothesis, whether in the area
of market efficiency or the policy neutrality, utilize univariate models;
although given the interactions between markets and nominal and real vari-
ables in the economy a multivariate framework may often be more appropriate.
In this paper we have considered a number of multivariate RE models that
should be of interest in analysis of market interactions under the REH. We
show that most of the results obtained for the univariate RE models can be
generalized to the multivariate case. We also derive a number of new
results not noted in the literature. We show the equivalence of the errors-
in-variables and the substitution methods when there are no lagged
anticipated variables in the model, and therefore establish the asymptotic
efficiency of the 3SLS method when applied to the structural and the
predictions equations treated as a joint system of equations. In the case
when the RE model contains lagged anticipated (or unanticipated) variables
the econometric analysis of the RE models is much more complicated and
requires special care. Some of these difficulties are also emphasized in

the paper.
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