Working Paper No. 502

Non-Atomic Economies and the Boundaries of
Perfect Competition *

Joseph M. Ostroy ! William R. Zame *
August, 1988

Abstract

This paper explores the boundary between perfect and imperfect
competition in non-atomic economies. The heart of the paper is the
construction of a model of an imperfectly competitive economy with
a non-atomic continuum of traders and a continuum of differentiated
commodities, for which Walrasian equilibria exist. The failure of per-
fect competition in this instance can be identified in two ways: the core
is strictly larger than the set of Walrasian allocations, and individu-
als can affect prices. The crucial condition which leads to imperfect
competition is that markets are physically and economically thin. By
contrast, it is shown that, when markets are physically or economi-
cally thick (or both), then the core coincides with the set of Walrasian
allocations and individuals cannot affect prices.
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1 Introduction

The claim that models with a finite number of traders once had as a setting
for perfect competition has given way to the various competitivity conclu-
sions which have been established for models with a large number (or a con-
tinuum) of traders. (Debreu and Scarf [1963], Aumann [1964], Hildenbrand
[1974], and others.) Such models are now widely regarded as the natural
setting for the display and analysis of perfect competition. But it has also
become well-known that, by itself, large numbers or even non-atomicity —
the hypothesis that each trader is of infinitesimal scale — is not enough
to guarantee that individuals have no monopoly power. Perhaps the most
familiar qualification is the remark that for perfect competition to prevail,
the number of commodities must be “small” in relation to the number of
traders. There is much merit in this heuristic remark, but it cannot be
the whole story: any number of commodities will be consistent with perfect
competition if all commodities are exact substitutes. To be accurate, any
statement about perfect competition and the number of commodities must
be supplemented with precise statements about the extent of commodity
substitutability.

In this paper we explore the relationship between non-atomicity and
perfect competition by constructing a model for which, just as is the case
for models with a finite number of traders, Walrasian equilibria exist but
may fail to be perfectly competitive.

Why should we do this? After all, non-atomic models were intro-
duced to provide a logically satisfactory setting for perfect competition; does
it not defeat this purpose to identify non-atomic settings which are not per-
fectly competitive? Not at all. On the map of all possible economies, we
can identify those which are perfectly competitive and those which are im-
perfectly competitive as constituting particular territories. Some portions
of these territories and of the boundaries between them are well-understood:
those with a finite number of commodities or a finite number of traders (or
both). Economies with a non-atomic continuum of traders and a finite num-
ber of commodities lie in perfectly competitive territory. Economies with a
finite number of traders lie in imperfectly competitive territory. As we in-
crease the number of traders, holding the number of commodities fixed (and
finite), we approach perfectly competitive territory. In this paper we are
attempting to chart the less well-known portion of imperfectly competitive
territory, that portion with a non-atomic continuum traders and an infinite
number of commodities, and to explore the boundary between the perfectly



competitive and imperfectly competitive territories. To do so, it is a virtual
necessity to begin from a point outside of perfectly competitive territory.

Our interest in the boundary on the non-atomic side is not only to
gain perspective on perfect competition, but also to gain perspective on im-
perfect competition. Just as finite individual models constitute the natural
domain of oligopolistic competition, so do non-atomic imperfectly compet-
itive models constitute the natural domain of Chamberlinian monopolistic
competition. Occupying positions on opposite sides of the perfectly compet-
itive territory, they have in common the property that Walrasian equilibria
exist but that the traditional rationale for the assumption of price-taking —
that individuals cannot influence prices — fails to be true.

We stress that our demonstration of monopolistic competition is not
tied to decreasing costs or other nonconvexities, and in this respect we depart
from Chamberlin and his contemporary interpreters such as Hart [1985a,b)].
These nonconvexities are certainly important, but they are not necessary for
imperfect competition. (It is also well-known that nonconvexities at the level
of individual traders or firms are not sufficient for imperfect competition,
either.) In our non-atomic model, the dividing line between perfect and
imperfect competition is the variety of initial holdings and the degree of
substitutability between commodities, and this is the focus of our work. We
find that perfect competition will prevail if markets are sufficiently thick
in the physical sense that there are many traders for each commodity or
in the economic sense that there is very strong substitutability between
commodities; imperfect competition can prevail if markets are thin in both
the physical and economic senses. (See Gretsky and Ostroy [1985].)

Our formulation of a model in which Walrasian equilibrium is not
perfectly competitive owes much to the work of Bewley [1973], Mas-Colell
[1975], Jones [1983, 1984], Ostroy [1984a], Gretsky and Ostroy [1985], Alipran-
tis, Brown and Burkinshaw [1985], Zame [1986], Rustichini and Yannelis
[1987], and Cheng [1987]. These authors have charted the limits of per-
fectly competitive territory by demonstrating that perfect competition is
compatible with an infinite number of commodities. Collectively, these re-
sults provide essential information about the limits beyond which we must
go to obtain a model which lies in imperfectly competitive territory.

The model we use is a variant of one constructed by Mas-Colell and
Jones as a model of an infinite degree of product differentiation. The space
of pure commodities is a compact metric space, and commodity bundles are
represented as measures on this space of pure commodities. Our point of
departure is that we allow for the possibility that there is less substitution



between commodity bundles than that assumed by Mas-Colell and Jones,
while retaining the possibility that initial holdings can be widely varied. On
an intuitive level, at least, it seems obvious that, the smaller the degree of
substitutability between commodity bundles and the greater the variation of
initial holdings, the greater the possibilities for individual traders to retain
monopoly power. As an extreme example, we could imagine an economy
which consists of a “continuum of Edgeworth boxes” in which each of a
continuum of commodities is owned and desired by exactly two traders.
Such an example seems of little interest, since it does not capture at all the
idea that in a large economy, interactions are complex and widespread. To
capture this idea demands a model with widespread substitution between
commodities. However, failure of perfect competition demands a model in
which these substitution possibilities are not too widespread. The principle
difficulty of our task is to accommodate these two conflicting demands. The
resolution of this conflict seems to be a useful tool in the clarification of
monopolistic competition.

What is the test of perfect competition? Several tests have been
suggested:

1. Does the core coincide with the set of Walrasian equilibria (Edgeworth
[1881], Aumann [1964])?

2. Is a given Walrasian equilibrium a Cournot-Nash equilibrium (Novshek
and Sonnenschein [1978])?

3. Is a given Walrasian equilibrium a no-surplus allocation (Ostroy {1980,
1984a], Makowski [1980])

These different tests enjoy a considerable overlap, so that if a model passes
one of these tests it is likely to pass the others, at least “generically”. In
this paper, we adopt the first of these tests and variants of the second and
third that we call the “withholding test.” The spirit of the withholding test
is to ask whether an individual can gain by withholding some of his initial
endowment. The answer to this question will certainly be “no” (and the
Walrasian equilibrium will certainly be perfectly competitive) if individuals
cannot influence prices by withholding some of their endowments (more
precisely, if small groups can have only a small effect on prices by withholding
some of their endowments).

Because our commodity space is so big, it allows for a variety and
complementarity among commodities that is incompatible with the homo-
geneity and substitutability required for perfect competition, and indeed our



model does not pass the above tests. Our model thus describes part of the
territory of non-atomic but imperfectly competitive economies. To explore
the boundary between the imperfectly competitive and perfectly competi-
tive territories, we may ask for additional restrictions in our model to move
it into the perfectly competitive territory. We consider two such restrictions.
The first restricts the preferences (by requiring greater substitutability); this
creates economically thick markets. The second restricts the variety of ini-
tial endowments (by requiring that the initial allocation be order bounded);
this creates physically thick markets. In each case, we find that both tests
of perfect competition are met: the core coincides with the set of Walrasian
allocations, and Walrasian equilibria generically meet the withholding test,
so that individuals cannot influence prices.

2 The Model

The space of traders (T, ) is the unit interval, equipped with Lebesgue mea-
sure; we usually write s, for individual traders. The set of pure commodities
is a compact metric space X; commodity bundles are positive (Borel) mea-
sures on X. We write M(X) for the space of measures on X and M+ (X) for
the cone of positive measures; we use Greek letters a, 3,7, . .. for commodity
bundles and Roman letters z,y, z for points of X. To avoid confusion, we
write 6 (the Dirac measure at &) when we refer to the pure commodity z.
For a € M(X) we write a®,a~ for the positive and negative parts of @ and
|a| = @t 4+ a~ for the absolute value of a. The norm of a is ||| = |a|(X).

Recall that M(X) is the dual of the space C(X) of all continuous
real-valued functions on X. The weak star topology (w* topology) on M(X)
is the weakest topology for which the mapping (¢,a) — ¢ - a is continuous
for every ¢ € C(X).

We fix a reference bundle ppin M+ (X)) with the property that supp(u)
= X. This reference bundle provides a scale against which other commodity
bundles may be measured.!

An allocation is a weak star (Gelfand) integrable function
f:T — M*(X). (This means that there is a measure a € M*(X) such
that, for each ¢ € C(X), the real-valued function t — ¢ - f(t) is Lebesgue
integrable and [ - f(t)dA(t) = ¥ - a.) We denote the space of allocations by

!We make no assumptions about g, other than that supp(s) = X. Thus u could be an
atomic measure. However, for purposes of intuition it is probably best to think of x4 as a
non-atomic measure, such as Lebesgue measure on the interval [0,1].



A; the distance between two elements of A is d(f,g) = [ ||f(t) — g(t)||dA(2).
(Recall that, for @ a positive measure, ||a|| = [ 1da, so that [||f(2)||dA(¢)
is finite for each allocation f and d(f,g) < [|f(®)|dA(®) + [ |lg(®)]ldA(t).)
Equipped with this distance function, .A is a complete metric space.

We denote the initial allocation (or endowment) by e:T — M*(X),
and write w = [ e(t)dA(t) for society’s mean endowment. We require that:

(E) There exist positive numbers ¢j,¢2 such that eyu(B) <
w(B) < cou(B), for every Borel set B C X, (i.e., w and
u are mutually boundedly absolutely continuous).

Since g has full support, (E) implies in particular that w also has full sup-
port; in this sense, all commodities are represented. Since w is absolutely
continuous with respect to u, the Radon-Nikodym theorem implies that
there is an integrable function § such that w = Sy; ie. W(E) = [ Sdu for
each Borel set F, and [ ¢dw = [ ¢Sdu for each integrable function ¢. (E.1)
means that ¢; < § < ¢;. We will frequently refer to S as (mean) supply.

Prices are bounded Borel functions p: X — R. We denote the space
of all prices by B(X) and the cone of positive prices by B*(X). Within
B(X) we distinguish the subspace of continuous functions C(X) and of
positive continuous functions C*(X). Given a price p and a commodity
bundle a, the value assigned to a by pis p-a = [ p(z)da(z).  The following
lemma records the fact that the value a price p assigns to society’s mean
allocation is (as we wish it to be) the average of the values it assigns to each
trader’s individual allocation.

Lemma 1 If p is a price and f is an allocation, then

»- / FR)AA(E) = / p- F()AA(2).

Moreover, if v = [ f(t)d\(t) and A C X is a Borel set such that v(A) =0
then f(t)(A) =0 for almost allt € T.

We shall assume that preferences <, of individual traders satisfy the
following standard assumptions (for each t € T'):

(P.1) =X, is complete, reflexive, transitive, and convex;

(P.2) the irreflexive part <; is strictly monotone (i.e., if o, 3 are
positive measures and 3 # 0 then o <; a + ().



Of these assumptions, the only one which requires comment is convexity of
individual preferences. As is well-known, one of the remarkable properties of
the finite dimensional non-atomic model is that convexity of individual pref-
erences is superfluous, because of the “convexifying effect of large numbers”
(manifested in the Lyapunov convexity theorem or Fatou’s lemma). How-
ever, in infinite dimensional commodity spaces both the Lyapunov convexity
theorem and Fatou’s lemma fail to hold; for this reason, we find it necessary
to assume convexity of individual preferences. (Approximate versions of the
Lyapunov convexity theorem and Fatou’s lemma are valid in infinite dimen-
sional spaces, and we shall make use of them in order to establish — for
physically or economically thick markets — that the core coincides with the
set of Walrasian allocations. In those contexts, we shall find that convexity
of individual preferences is indeed superfluous. However, approximate ver-
sions of the Lyapunov convexity theorem or of Fatou’s lemma are not strong
enough to guarantee the ezistence of Walrasian equilibrium.)

Continuity properties of individual preferences are a key factor in
controlling substitution properties between commodities. We shall assume
that (for each t € T'):

(P.3) =;is continuous in the norm topology of M(X)

(P.4) <; is upper semi-continuous in the weak star topology of

M(X).

Since the norm topology of M(X) is stronger than the weak star topology,
our continuity requirements are less stringent than the requirement of weak
star continuity of preferences (compare Mas-Colell [1975] and Jones [1983,
1984]). As we shall see, the difference is real and significant. Indeed, the
possibility that preferences may fail to be weak star continuous provides the
opening to construct non-atomic models which are imperfectly competitive.

We assume that the family of preferences is measurable in the fol-
lowing sense:

(P.5) if f,g are allocations, then {¢t € T : f(t) =X ¢(t)} is a
(Lebesgue) measurable set.

This assumption may be compared with the usual measurability assumption
for non-atomic economies in the finite dimensional setting (see Aumann
[1964, 1966]), which would require that for every o, € M*(X), the set
{t € T : a X B} is measurable. Our assumption is stronger in that we
allow for the comparison of arbitrary allocations and not simply for the



comparison of constant allocations. In the finite dimensional setting, a fairly
straightforward argument shows the two assumptions to be equivalent. In
our setting (and in the presence of our other assumptions, especially the
ones below), it may also be shown that the two assumptions are equivalent.
However, the argument is not at all straightforward; we shall simply adopt
the formulation which is convenient (and leave the unpleasant technicalities
to the interested reader).

The final, and crucial, assumptions about preferences concern the
(marginal) rates of substitution between commodities. As the work of a
number of authors (especially Mas-Colell [1986]) has made clear, the need
for such assumptions represents the clearest distinction between the finite
and infinite dimensional settings. Moreover, in our setting, the form of these
assumptions is somewhat delicate: they must be strong enough to allow for
the demonstration of Walrasian equilbrium, while remaining weak enough
to permit imperfect competition.

We make two assumptions about rates of substitution; the first sim-
ply says that all rates of substitution are bounded. This is a rather strong
assumption; we use it because it is easy to understand and substantially
simplifies several arguments, without interfering with our main aims: the
demonstration of imperfect competition and the exploration of the condi-
tions that lead from imperfect competition to perfect competition.?

(B) There is a constant M such that: if a,8,v are positive
measures, if ¥ —~ a4+ > 0 and if M||e| < ||8]], then
v<¢v—a+BforeachteT.

Our second assumption deals with comparisons between (some) commod-
ity bundles and (parts of) the reference bundle y; since these comparisons
involve order properties, we refer to our assumption as the order related
substitutability assumption (ORS). Consider, as an initial holding, the com-
modity bundle 4. In informal terms, our assumption is that every trader

2All of the results of this paper could be established with somewhat weaker assump-
tions than (B) and (ORS), at the cost of significant complication in the proofs. Indeed,
for allocations having the property that the support of the mean societal endowment is
equal to the space X of all commodities (so that all commodities are represented), the
existence of equilibria and the validity of the core equivalence test could be established
with a very substantially weaker version of (B). However, to study perfect competition
and monopolistic competition, we wish to allow for the possibility that small groups of
traders have a monopoly on small sets of commodities. When such groups withhold some
of their endowment, these commodities may disappear from the market. To carry out our
comparative statics program thus requires us to find reservation prices for these absent
commodities, and for this we need some assumption like (B).



will desire to trade a part of 4 in return for a part of the reference bundle
u provided that: (1) the terms of trade are favorable, (2) the commodities
being surrendered and the commodities being acquired are physically close,
and (3) the commodities being surrendered are not scarce in comparison
with the commodities being acquired.

To make these ideas more precise, write a for the commodity bundle
being surrendered and § for the commodity bundle being acquired; o will
be of the form a(y|A) for some Borel set A and some Borel function a,
0 < a <1, and B will be of the form b(u|B) for some Borel set B and
some Borel function 6,0 < b. (This means that a(E) = [,qpady and
B(E) = [gnp bdy for each Borel set E. We insist that a < 1 because we
want ¥ — a to be a positive measure.) Since ||a|| and |||| represent total
quantities, a more precise expression of (1) is simply that ||3]] > ||a]|. Since
the bundle a involves only commodities in A and the bundle 3 involves only
commodities in B, a more precise expression of (2) is simply that A and B
are close (as subsets of X); i.e., the diameter of AU B is small (equivalently,
the Hausdorff distance between A and B is small).

To obtain a more precise expression of (3), write ¥ = gu + 75 (so
that gu is absolutely continuous with respect to u and v, is is singular with
respect to u,) @ = a(y|A), and 8 = b(u|B). (Since a is to be thought of as
a part of v, it must be the case that @ < 1). Trading a for 3 results in the
measure ¥ = Y —a + 8 = g + 7. An expression of requirement (3) is that,
for almost every z € A and y € B, §(z) = g(z) — a(z) is nearly as large as
3(y) = g(y) + b(y). The order related substitutability assumption says that,
whenever these conditions are met, every trader will prefer the bundle ¥ to
the bundle 4. All that remains is to be certain the right quantifiers are in
the right places.

(ORS) Given r > 1 there exist § > 0, and d > 0 such that:
if vy = gu + v, is a commodity bundle, a and b are Borel
functions with 0 < a € 1,0 < b, and A, B are Borel subsets
of X with
(i) diameter (AU B) < 4,

(ii) [|o(ul Bl = rlla(yIA),
(iii) [g9(y) + b(y)}/[9(z) — a(z)] < 1 + d for almost every
t€A,yeB,

then v <; v — a{7|A) + b(u|B) for almost every t € T3

3Continuity of preferences, together with the fact that every measurable function is an



The notion of order related substitutability should be compared with
the notion of uniform substitutability (US) used by Jones [1983, 1984] (which
is closely related to a notion used by Mas-Colell {1975]). Informally, (US)
says that consumers prefer any feasible trade in which the terms are favorable
and the commodities being surrendered and the commodities being acquired
are physically close. In notation parallel to ours, (US) can be precisely
formulated as follows:

(US) Given = > 1 there exists § > 0 such that:
if v, a, 3 are commodity bundles with a < v and

(i) diameter(supp a U supp 3) < 4,
(i) 181l = rilel;
then v <; v — a + B for almost every t € T.

It should be clear that (US), while similar to (ORS), is much stronger.
For instance, while (ORS) refers to a particular reference bundle , the valid-
ity of (US) clearly implies the validity of (ORS) for every reference bundle
p. (This will be important in the context of economically thick markets;
see Theorem 3 and surrounding discussion). Moreover, (US) asserts that
many more trades are desirable, since it makes no requirements as to the
relative consumption levels of commodities, and allows for the surrender of
any bundle — not just bundles of the form a(a|4) — and the acquisition
of any other bundle — not just bundles of the form 5(x|A). Although these
differences may seem small, they are in fact quite important. As we shall
see, either of these assumptions imply the existence of equilibria, but they
lead to quite different conclusions about perfect competition. (See especially
Theorems 2 and 3, and Examples 1 and 4).

To clarify the meaning of (ORS) and its relationship with (US),
we offer the following example. (Several of the examples in Section 4 are
homogenous versions of this one).

Example: Take X = [0,1],u4 = Lebesgue measure. Let u:[0,00) — [0,00)
be a concave, differentiable function such that u/(z) is bounded away from
0 and oo. For each real number p > 0, define the utility function U, by:

Us(r) = [ (el - py2du(a) + 0,1,

infinite sum of simple functions, implies that the validity of (ORS) follows from its validity
for constant functions a, b.

10



and define Uy by

Uo() = [ u(g(@))du(z) +1(0,1],

(where we have written ¥ = gu + 7). It is not hard to see that, for each
p > 0, the utility function U, is weak star continuous and satisfies (US), and
hence (ORS). On the other hand, the utility function Uy is weak star upper-
semicontinuous but not weak star continuous, and it satisfies (ORS) but
not (US). (Since U,(y) — Uo(7y) for each 7, the utility functions U, might
be interpreted as “averaged” versions of Up. See Jones [1983] for related
discussion.)

An economy is a pair £ = {(<:),e}, consisting of a family of prefer-
ences and an initial allocation, satisfying the assumptions (E), (P.1)-(P.5),
(B), and (ORS) above. A Walrasian equilibrium for £ is a pair (p, f) where
p € B(X) is a non-zero price and f:T — M*(X) is an allocation such that:

(1) for almost every t € T,p- f(t) = p-e(t);
(2) for almost every t € T, if € M*(X) and p- o < p-e(2),
then a <Xy f(2);

(3) [ f()dA(t) = [e()dA(t) (f is feasible).

An allocation f is in the core of £ if it is feasible and there does not exist an
allocation g and a set T' C T of positive measure such that [r, g(t)dA(t) =
Jr e(t)dA(t) and f(t) < g(t) for almost every t € T".

By definition, prices are bounded Borel functions, and are defined
everywhere. However, there remains a certain unavoidable indeterminacy
of equilibrium prices on sets of measure zero. (The phrase “measure zero”
should always be interpreted with respect to the initial endowment w or to
the reference measure u; since w and p are mutually absolutely continuous,
they have the same sets of measure zero). This indeterminacy stems from
the fact that, although the support of w, the initial endowment, is — by
assumption (E.1) — equal to the entire commodity space X, it will generally
be the case that w({z}) = 0 for many points z € X. (Indeed, w({z}) can
be nonzero for at most a countable number of points € X). Because the
story is a bit subtle, and of some importance, we discuss it in some detail.

There are three issues to discuss: (1) How are equilibrium prices
affected by a price change on a set (of commodities) of measure zero? (2)
How are equilibrium allocations affected by a price change on a set of measure
zero? (3) How can we recognize equilibrium prices independent of their
values on a set of measure zero?

11



Let us first record a useful observation: If p and ¢ are prices which
agree almost everywhere (i.e.. except on a set of measure zero), then p-w =
q - w. It follows from Lemma 1 that, for any feasible allocation f (and in
particular, for f equal to the initial allocation €). p- f(t) = ¢- f(?) for almost
all traders t.

(1) To see how equilibrium prices are affected by a price change on
a set of measure zero, let (p, f) be a Walrasian equilibrium and let ¢ be
a price for which ¢ = p almost everywhere; we ask whether (q, f) must
also be a Walrasian equilibriumi. This is of course a question of wealth, of
expenditures, and of the costs of desirable commodity bundles. As noted
above, the set of traders whose wealth differs at p and at q constitutes a
set of measure zero. Similarly, the set of traders whose expenditure differs
at p and at ¢ also constitutes a set of measure zero. Since the notion of
equilibrium is insensitive to any null set of traders, these effects are of no
importance. However. if ¢(2) = ¢ -6, < p-é, = p(z) for some z € X
then the pure commodity 6, is certainly cheaper at ¢ than at p. Since this
commodity might be desirable, it might be the case that every trader (or at
least every trader in some set of positive measure) would wish to consume
additional quantities of é, and could afford to do so; in this circumstance, ¢
will not be an equilibriwun price. However, if ¢ = p almost everywhere, and
g > p everywhere, then no commodities are cheaper at ¢ than at p; since
wealth and expenditures are affected ouly for a null set of traders, in this
circumstance, ¢ will be an equilibrium price.

(2) To see how equilibriumn allocations are affected by a price change
on a set of measure zero, let us suppose that (p, f) and (¢, g) are Walrasian
equilibria corresponding to the same initial allocation e, and that p = ¢ al-
most everywhere; we ask for the relationship between the Walrasian alloca-
tions f and g. Since optimal consumption clioices are not necessarily unique,
there is no reason to suppose that f = ¢ alimost everywhere. However, our
observation above yields that - f{t) = p- [(t) < p-e{t) = q-e(t) for almost
all traders ¢, and similarly that p-g(t) = q-g(t) = q-g(t) < q-e(t) = p-e(t)
for almost all traders {; hence (p.g) and (¢, f) are also Walrasian equilibria.
That is, p and ¢ admit the same equilibrium allocations.

(3) Finally, we come to the question of recognizing equilibrium prices,
independently of their values on a set of measure zero. Let p,¢ be prices
which agree almost everywhere; as we have already noted and used several
times, p - e(t) = ¢ - e(t) for almost all traders. Moreover, if o is a measure
which is absolutely continuous with respect to p. then p-a = ¢-a. In combi-
nation, this means that, for almost all traders t. the budget set at the price

12



p and the budget set at the price ¢ contain the same absolutely continuous
measures. The key to the following lemma. which enables us to recognize
an equilibrium price, independently of its values on a set of measure zero,
is that the absolutely continuous measures in the budget set determine its
optimal elements, even if the optimal clements are not themselves absolutely
continuous.

Lemma 2 Let f be a feasible allocation and let p be a bounded Borel func-
tion. The following statements are equivalent:

(i) there is a bounded Borel function ¢ such that ¢ = p almost
everywhere and (f,q) is a Walrasian equilibrium;

(ii) for almost all traders t, if « € M™*(X) is absolutely contin-
uous with respect to w and f(t) <; a thenp-e(t) < p-a.

In light of the above discussion, it seems natural to identify prices
(bounded Borel functions) which agree almost everywhere; the set of equiv-
alence classes is Loo(w) = Lao(t). (These spaces of equivalence classes coin-
cide because w and p are mutually boundedly absolutely continuous.) With
the usual abuse of notation. we frequently ignore the distinction between a
bounded Borel function and the equivalence class it represents.

For p € Loo(p) = Loo(w) its norm ||p)lec is the essential supre-
mum of [p(z)}; i.e., ||p||x is the supremum of all real numbers r such that
{z € X : |p(z)| > r} has positive measure. In addition to the norm topol-
ogy, we shall make use of the Mackey topology on L..(u), arising from the
pairing with L;(u);on norm bounded sets, the Mackey topology coincides
with the topology of convergence in measure (see Bewley [1973]).

Although we allow for prices which are arbitrary bounded Borel
functions (or equivalence classes in L..(yt)). we shall in fact prove that
equilibrium prices necessarily enjoy certain continuity properties. Roughly
speaking, we shall show that equilibrium prices are as continuous as the
Radon-Nikodym derivative ol society’s mean endowment w with respect to
the reference bundle yi. The following discussion makes this notion precise.

Let ¢: X — R be a bounded Borel function, let Y C X be a Borel
subset of X and let z € X be a point of .\'; assume that, for every open set
U C X containing z, ¢(I'NY) > 0 (i.e., x belongs to the support supp(p|Y’)
of u|Y). Write ¢|Y for the restriction of v to Y. We say that the essential
limit of ¢|Y at z is a € R, and write ess lim,(¢|}) = a, if there is a subset

0 C Y with u(Yp) = 0 such that ¢|(Y — Y) has the limit a at z (in the
usual sense). Note that »» need not have an essential limit at any point.

13



On the other hand, Lusin’s theorem asserts that for every € > 0, there is a
compact subset &' C .X such that u(Y — ') < € and @|K is continuous, and
in particular, has an essential limit at every point of supp(u|K).

We say that the bounded Borel function ¢ is essentially as contin-
uous as ¢ if ¥|Y has an cssential limit at z whenever |} has an essential
limit at z. (Note that this relation between ¥ and ¢ depends only on their
equivalence classes in Lo.(p)) If  is continuous, this means that ¢ has an
essential limit at every point. and in particular, differs from a continuous
function only on a set of measure zero (see Lemma 5, Section 5). (In keeping
with our intent to identify prices whicl agree almost everywhere, we usually
say simply that ¢ is continuous.) We write C,(X') for the space of functions
which are essentially as continuous as ¢o; we regard C',(X) as a subspace of
B(X) or of Lo,(u) as conveunient.

3 Statements of results

Our main result is:

Theorem 1
(a) Walrasian equilibria exist.
(b) All equilibrium prices belong to Cs(X) (where w = S is the mean
societal endowment and S is mean supply).

(c) The set of equilibrium prices of norm 1 is a norm compact subset of
Leo(p)- *

Theorem 1 says that equilibrium prices are “at least as continuous”
as the mean supply S. In particular, if the mean supply of commodities
depends continuously on commodity names. then the prices of commodities
will also depend continuously on commodity names. Because of the con-
nections with imperfect competition, it is important to keep in mind that if
mean supply fails to depeund continuously on commodity names, then price
may also fail to depend continuously on commodity names.

To see why this is so. and to sce the connection with imperfect
competition, consider the canonical case of differentiated commodities in
which T = X = [0,1], and each trader is endowed with exactly one unit
of his named good; i.e., ¢(t) = &, the Dirac measure at t. In this case,

*This is a normalization. Alternatively, we could normalize so that p-p =lorp-w =1,
but these would prove less convenient for our purposes.
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the mean endowment w = [e(t)dA(t) = A is Lebesgue measure on X. If
we take the reference measure u = A also, then Theorem 1 yields a price
p € C(X). Now suppose that a small group of traders, say those in the
interval [0, ¢], withhold half their endowment from the market; call the re-
sulting allocation e’. The Radon-Nikodym derivative §’ (with respect to
g = M) of the mean endowment w' has a jump discontinuity at e. We can
conclude from Theorem 1 that the equilibrium price p’ is continuous on the
interval [0, €] and on the interval (¢, 1} but it is possible that p’ has a jump
discontinuity at €. Morcover, the size of this jump might not approach 0 as
¢ tends to 0. In other words, traders in the interval [0, €] may face downward
sloping demand curves no matter how small the group; i.e., they may not
be perfect competitors.

To conclude that a given Walrasian equilibrium (p, f) is perfectly
competitive, we should be able to say that if {T,,} is a sequence of small
groups (whose size converges to 0), and {e,} is a corresponding sequence of
allocations (tending to ¢) at which the group 7', withholds some of its endow-
ment, then there should exist corresponding Walrasian equilibria (pn, fn)
such that the equilibrium prices p, converge uniformly to p. This is, of
course, a way of saying that no small group can affect prices, and it is a
definition of perfect competition which has a lot in common with the no-
surplus definition (although the no-surplus definition would have the group
withhold all of its endowment); see Ostroy {1983].

To formalize this test, fix preferences and regard the economy as
parametrized by initial allocations. We say that the Walrasian equilibrium
(p, f) (corresponding to the initial allocation €) passes the withholding test
provided that:

Given a sequence T, of sets of traders such that A(T,,) > 0 and
MT,) — 0, and given a sequence e, of initial allocations such
that e,(t) = e(t) for t € T, and ¢,(t) < e(t) for t € T, there
exist Walrasian equilibria (p,.f,) corresponding to the initial
allocations e, such that {p,} converges to p uniformly on X.

Note that the withholding test refers to convergence of Walrasian
prices and not Walrasian allocations. This is as it should be: although Wal-
rasian allocations are not uniquely determined by prices, the corresponding
utilities are; thus, although the allocations f, need not converge to f the
corresponding utilities will converge.

It would be too much to ask that every Walrasian equilibrium pass
the withholding test: this need not be the case even for non-atomic economies
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with two commodities. In applying this test we should, rather, take the
generic point of view; i.e., we should ask that the withholding test be satisfied
for a generic set of Walrasian equilibria. Actually, it makes sense to ask for a
bit more. Let us say that the initial allocation e passes the withholding test
if every Walrasian equilibrinm corresponding to e passes the withholding
test. For perfect competition, we shall insist that a generic set of initial
allocations pass the withholding test. (By “generic” we shall mean residual,
or second category; i.e., the interesection of a countable number of dense
open sets. Recall that the Baire category theorem says that generic subsets
of complete metric spaces are dense.)

For our other test of perfect competition, we shall use the familiar
Edgeworth test that the core coincides with the set of Walrasian allocations.
More precisely, we say that the initial allocation e passes the core equivalence
test if the core (relative to the initial allocation ) coincides with the set of
Walrasian allocations.

Theorem 2 There cxist economies which fail the core equivalence test and
the withholding test of perfect competition. More precisely, there exist a
famuly of preferences and an open set of initial allocations which all fail the
core equivalence and the withholding tcsts of perfect competition.

Theorem 2 provides us with points in the non-atomic, imperfectly
competitive territory. To explore the boundary between the perfectly com-
petitive and the imperfectly competitive territories, we ask: What additional
restrictions on economies will move us {rom the imperfectly competitive ter-
ritory into the perfectly competitive territory? In the remainder of this
Section, we show that perfect competition will result if markets are physi-
cally or economically thick.

We deal first with economic thickness, which we wish to interpret
as strong substitutability between commodities. To be precise: we say that
markets are economically thick if preferences are weak star continuous and
satisfy the Uniform Substitutability assumption (US) discussed in Section
2. If markets are economically thick, we dispense with the assumption (E).

Theorem 3 If markets are economically thick then:

(a) Walrasian equilibria caist;

(b) every equilibrium price is continuous on the support of the mean soci-
etal endowment.
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Moreover, every initial allocation passes the core equivalence test, and a
generic set of initial allocations pass the withholding test.

In fact, our proof yields the validity of the core equivalence test with-
out the assumption that individual preferences are convex. We are able to
obtain this stronger result because, as we noted earlier, core equivalence
depends only on an approximate version of the Lyapunov convexity theo-
rem. However, the validity of the withholding test depends on the existence
of Walrasian equilibria, and this appears to require the assumption that
individual preferences are convex.

There are several possible expressions of the idea that markets are
physically thick. For our purposes, it is appropriate to define an allocation
e to be a thick markets allocation if there is a constant I such that e(t) <
Ky for every t € T. (Since the reference measure p and society’s mean
endowment w are mutually boundedly absolutely continuous, it would be
equivalent to require that there be a constant A’ such that e(t) < K'w for
every t € T.)

If f1, fo are thick markets allocations, then their mean societal en-
dowments wy,wy are boundedly absolutely continuous with respect to y;
write ¢y, for the corresponding Radon-Nikodym derivatives, which be-
long to Loo(p). We define the distance between fi and fp as:

dfisf2) = [ 100 = FMAND) + [l = allec

Equipped with this metric, the space 7 of thick markets allocations is a
complete metric space.

An alternative, more in the spirit of Ostroy [1984] and Gretsky
and Ostroy [1985], would be to identily physical thickness of markets with
Bochner integrability of the initial allocation e.> This would yield a more
general notion of physical thickness of markets. (It is not hard to show that
thick markets allocations — in the above sense — are Bochner integrable.)
Bochner integrability seems like the right notion in the contexts of Ostroy
[1984] and Gretsky aud Ostroy {1985]. However, as may be seen from the
example below, Bochner integrability is consistent with the possibility that
small groups of consumers have a corner on the market for small sets of
commodities. This is a situation we wish to exclude. (See also Example 3
in Section 4.)

*The allocation e is Bochner inlegrable if it is norm measurable and [ |le(t)[[dA(t) < .
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Example: For each n, let A, be the restriction of Lebesgue measure A on
[0,1] to the interval I,, = [(2" — 2)/2",(2" — 1)/2")]. Define the allocation
e: T — M*(X) by:

o [ 2% An, forte Iy
elt) = {61, fort = 1.

The allocation e is Bochner integrable and [ e(t)dA(t) = A. Moreoever, for
each ¢ # 1, there is a number I such that e(t) < KA. HHowever, there is no
uniform bound on €(t) in comparison with A, and € is not a thick markets
allocation. Note that small groups of traders (traders in the interval I,)
have a corner on the market for small sets of commodities (commodities in
the interval I,).

Our final result savs that physical thickness also leads to perfect
competition.

Theorem 4 All thick markets allocations pass the core equivalence test, and
a generic set of thick markets allocations pass the withholding test.

As in Theorem 3. our proof yields the validity of the core equiva-
lence test without the assuimnption that individual preferences are convex and
with the weaker assumption that the initial allocation is Bochner integrable
(rather than order bounded). However, the validity of the withholding test
requires the full strength of tlie assumptions we have made.

4 Examples

Examples are given here illustrating the results stated in the previous sec-
tion. In the discussion to follow some claims will be sketched but most will
simply be asserted. In the last category is: preferences and endowments
satisfy assumptions (E), (P.1-3), (B), and (ORS) of the model.

In all cases below the space of commodities X coincides with the
space of agents T = [0,1]. Lebesgue mecasure is denoted by A on T and by
p on X; the latter is the reference measure on M1 (X). Also, in all cases
the aggregate initial endowment (before applying the withholding test) will
be [edA = u. Of course, the way this aggregate endowment is distributed
will determine whether or not markets are physically thick. Equilibrium
prices belong to B(X); in fact, for the economy whose total allocation is g,
equilibrium prices will always be the characteristic function of X, denoted
by 1.
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In all but the last example individual preferences are identical and
representable by a concave, positively homogeneous function
u: MT(X) — R (which will vary among the examples). This will, of course,
lead to substantial simplifications and short-cuts, e.g., in computing Wal-
rasian equilibriumn prices we may pretend that the entire economy is a single
individual. Also, in all but the last example, the unique Walrasian equilib-
rium allocation will be a f such that f(t) = pu for each .

The purpose of these examples is to show how substitution possibili-
ties among individuals of the kind that permit/preclude perfect competition
are jointly determined by (1) substitution possibilities in preferences among
commodities and (2) substitution possibilities among the suppliers of com-
modities. To illustrate these phenomena we find it useful below to highlight
the properties of the directional derivative of the utility function (see Hart
[1979] and especially Jones [1984] for a similar point of view). The direc-
tional derivative of u at the point « in the direction 3 is

(e + k) — u
w(a;3) = lim ula +h8) - ula)
h—04 h

The sense in which u'(«;3) is or is not continuous in a and 3 will be em-
phasized below.

In the simplified setting of the first two examples there is a test
which, if passed, will suffice to satisfy the core equivalence and withholding
tests. We shall outline the construction and the reasons why it yields a
two-for-one result here.

Letting {T,} be a sequence of sets with A(T,) — O used in the
withholding test, suppose that T, withholds all of its endowment, i.e., Tp
withdraws. Let p, be equilibrium prices after T,, withdraws. If we can con-
clude that ||p» — 1]| — 0 after T, withholds all of its endowment, then after
withholding some, we would reach the same conclusion that asymptotically
T, will not be able to influence prices.

Withdrawal is closer to the core: for a coalition to block in an ex-
change economy it must do better after the complementary coalition has
withdrawn. From homogeneity of u. the game-theoretic characteristic func-
tion associated with the economy (u,e) is v(S) = u(fse) where v(.5) is the
“value” of coalition 5, a Borel set in T'; i.e., the homogeneity of u allows us
to pretend that the game is one of transferable utility. (Briefly, the reason
is that all Pareto-optimal allocations for the subeconomy (u,es) consist of
allocations f(t) = w(t) fge where w:5 — Ry and [gwdh = 1.

To demonstrate that a Walrasian allocation is the only one in the
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core it suffices to show that lim||p, — 1|} = 0, where p, is a Walrasian price
vector after T,, withdraws. Then the Walrasian allocation f satisfies the

condition
w(fpvg, f) = v(T\Ta) 0
AT) B

This is an application of the no-surplus test of the competitiveness of Wal-
rasian Equilibrium. In transferable utility models, the above condition is
known to imply that the core consists of a single allocation.

The summary conclusion is that to pass the core equivalence and
withholding tests, it suffices in our simplified setting to establish that
llpn — 1|] — 0, where p,, is a Walrasian price after T, withdraws.

EXAMPLE 1: Perfect Competition with Economically Thick Mar-
kets

lim

Initial endowments are given by e(t) = é;, i.e., everyone is the unique
supplier of their own-name good.
Preferences are given by the function

. 5 N 2
w(r) = un) = { [l + @) (@)} +mipll,

where 7,(z) = p~!5[2 — p,#] and [x — p, 2] is the interval modulo 1 of length
p. This kind of function as well as its various properties described below are
found in Jones [1984].

What makes this an economically thick markets example — cer-
tainly it is thin markets in terms of endowments — is the substitution pos-
sibilities among commodities. First, u is weak star lower-semi-continuous.
To illustrate, consider a sequence of measures with finite support v, =
1Y 6, 2k = k/n, k= 1,...,n. (Note: ||y.]| = 1.) This sequence has
the property that for any &, v,([z —p,2]) — p([z —p,2]) = p,and v, — g in
the weak star sense. Thus, u(v,) — {f(||;z|| + ;L,,(;c))l/2(lu(z)}2 + m||u|| =
u(p) = 24+ m. Even though p represents consumption of all commodities
in [0,1], because commodities are good substitutes the utility of such an
allocation can be approximated by consumption of a finite number.

A simple calculation shows that

w(r38:) = {7l +70(2) " du(z)} - { (N + 70(2) 2dp(z)
X\[z,z40]

Fot [l + 1) duta).
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where [z, z + p] is an interval in [0, 1] modulo 1.

The function u’ is uniformly weak star continuous in 4.,z € X. (It
is also weak star continuous in 7 but we shall not need this here.) This
means that for any r > 1 there exists a é > 0 such that if |y — 3’| < §, then
w'(y;7éy) > u/'(7;0,); so Jones uniform substitutability condition holds.
(See also Hart [1979).)

It is readily verified that if p = 1. each individual having wealth
16; = 1 will maximize utility by purchasing the bundle pu. Further, if p
were not equal to 1, all individuals would wish to purchase more of the
lower-priced than the higher-priced goods which would contradict market
clearance since [ e = p. So, (1. f), where f(t) = g, is the unique Walrasian
allocation.

To see that this example satisfies the core equivalence and withhold-
ing tests we appeal to the remarks above asserting that we need only show
the following: if {7} is a sequence of small groups subject to the above
restrictions, p, is a Walrasian price when T, withdraws, and ||p, — 1|| — 0,
then both tests are passed.

The price vector p, is an equilibrium for the single individual with
utility function u and endowment fT\T,, e = u™. Equilibriam prices will
satisfy the condition that prices are proportional to marginal utilities, i.e.,

Pn(a:) = cu,(/‘n; 0z ).

The function u/(y;6;) is jointly weak star continuous in 7 and z.
This implies, in particular, that for any r > 1, there exists a § > 0 such that
if |z — 2’| < 8, then u/(y;7é,) > u/(7;68,). (See Jones [1983].) Thus, p, is
continuous, and by the joint continuity of u’,{p,} is uniformly continuous.
Since u'(p;8;) = 1+ m and sup{|u'(p";6,) — w'(p;6;)|z € X} — 0 as
p™ — u, we may put ¢ = (1 + m)~! to establish that ||p, — 1]|so — 0.

Not only is the withholding test satisfied at e, but by a similar argu-
ment it can be shown that there exists an ¢ > 0 such that if [ ||’ —e||[dA <,
and p’ is a Walrasian equilibrium for (u.¢’) then the withholding test is sat-
isfied at €.

EXAMPLE 2: Perfect Competition With Physically Thick Mar-
kets

The utility function of Example 1 evaluates a bundle v by taking a
continuously rolling average of the amounts in each interval [z — p,z]. The
fact that p > 0 is the source of its weak star continuity (more precisely, its

21



weak star lower-semi-continuity). The following function puts p = 0:

2
win) = un) = { [ (b4 902 2du} + miy)

where g(z) is the p-derivative of the p-continuous part of 5.

To verify that u is not weak star lower-semi-continuous, consider
again the sequence v, = n~! ¥ 4,,, where 7, — p in the weak star sense.
Then u(7,) = (1 + m) but w(g) = (2 + m). Similarly, examination of the
direction derivative of this function,

w'(7;6;) = (1 +m),

reveals that it is weak star continuous in neither v nor z. However, v’(v; )
is jointly continuous in the norm topology for 4 and 3. The norm continuity
of directional derivatives will suffice for this example provided markets are
physically thick.

The physically thick markets condition requires that there exist an
K such that e(t) < Kpu where again ¢ = [ e. To make the results even more
transparent assume le(t) = 1.

Given the symmetry of the utility function, the aggregate endowment
equal to p1, and the identity of individual wealths at p = 1, it readily follows
that (1, f) where f(t) = p is the unique Walrasian equilibrium.

Again we subject the economy to a withdrawal test by 7. Now, be-
cause endowments are not personalized, when T}, is withdrawn supp ™ = X
for n sufficiently large. (Recall p"* = fT\T,, e.) It follows from the hypotheses
on physically thick markets that liminf u(supp [, €) > é. This should be
compared to the physically thin markets Example 1 where

lim,u(supp/ e) = lim u(supp u|Ty) = 0.

For thick markets we have the conclusion that || [1 ellc = |lpt =
£™|ee — 0. Inspection of the function u(7) reveals that if p, is a Walrasian
price when T, withdraws — i.e., p, is a Walrasian price for the single indi-
vidual with utility « having initial allocation u™ then ||p, — 1| — 1. The
convergence of prices implies the passing of the core and withholding tests.

Finally, on the question of genericity, there is an € > 0 such that
if ¢’ is another initial allocation and ¢’ is also a physically thick markets
allocation (e’ : T — L>(j)), then the economy with initial allocation e’ will
also exhibit properties similar to e.
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EXAMPLE 3: An Economy With a Single Monopolist

Suppose tastes are the same as in Example 2 and that
e: T — M*(X) is Bochner integrable. It is well-known that for any ¢ > 0
there exists K. such that A{t: e(t) < KN.u} < ¢, i.e., the market is almost
thick. Recall the example in Section 3 where

e(t) =2"(pll,) te€l,
e(l) = 61,

and pl|I, is the restriction of u to I, = [(2" — 2)/2",(2" — 1)/2"].

The unique Walrasian equilibrium for this example is the same as
the previous ones: equilibrium prices are 1 and each individual spends his
wealth 1e(t) = 1 to purchase f(t) = pu.

The withholding test reveals that individual 1, and only individual
1, has monopoly power. Suppose T,, = [n — 1/n,1]. If T, withholds 1/2
of its endowment, the total endowment is fT\T,, e+ (1/2) fr. e = yn\1, +
1/2p1, = p". Exploiting the homogeneity of u, equilibrium prices for the
single individual with endowent u™ are proportional to the unique gradient
(Gateaux derivative)

an(z) = 4 Gnlllienll + WY i zeT\T,
e anl|lnll + 1/2)Y% if z €T,

where a, = [ (||un]] + gn(;v))lﬂd,u.(.v‘) and g, = gnpt.

Letting pn = (1 4+ m) ™ ¢y, so that p, is the equilibrium price for p,
such that [ p,du = 1, it is clear that lim ||p, — 1|| # 0. However, for any
other [T,], say T, = [n — 2/2n,1/2], there is an K" such that for ¢ € Ty,
e(t) < Ky, and the analysis and conclusions follow those of Example 2.

The core equivalence test of perfect competition does not catch the
monopoly power of individual 1:; if we were to suppose another allocation
f' were in the core, there would he a set S C T of positive A-measure such
that on S, f'(t) # f(t) and the presence or absence of individual t=1 in this
set would be irrelevant. This example passes the core equivalence test.

EXAMPLE 4: A World of Monopolists

Here we combine the endowments of the economically thick markets
example with the tastes of the physically thick markets example, obtaining
a situation that is neither physicallv nor economically thick, a recipe for
monopolistic competition. A variant of this example appears in Ostroy
[1973, 1984]. Pascoa [1986] has several extensions which include economies
with production. Romer [1986] uses a similar example. A version with large
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but finite numbers of individuals and commodities was used by Dixit and
Stiglitz [1977] to exhibit monopolistic competition.

Let e(t) = 6, and u; = u be as in Examples 2 and 3. Again le(t) = 1
and therefore, by an argument familiar from the previous examples (1, f)
where f(t) = p, is the unique Walrasian equilibrium.

In this example we find that exactly the same argument we used
to show that individual 1 had monopoly in Example 3 can be duplicated to
show that every individual has monopoly power. Thus, if T, =
[n —2/2n,1/2}, then p,(2) = 1,2 € T, and

Pn(l') = [an(”“n” + 1/2)1/2 + ’n]/(l +m)

is the Walrasian price when T,, withholds one-half of its allocation. Evi-
dently, [|pn — 1] - 0.

To demonstrate core inequivalence, note that the symmetry of the
example plus the homogeneity of u implies that the characteristic function
v can be written as v(.5) = u(f5¢) and, in fact, by abuse of notation, since
v(S) = v(S’") whenever A(S) = A(S’) we can write v(A(S)). It is readily
verified that for each non-null §,

VA(S)) = uf / e} = ululS) < u(MS)n),

where u(A(S)u) is the utility of the allocation to all the members of S in a
Walrasian allocation. Under these conditions, it can be shown that the core
coincides with the Walrasian allocation if and only if

w(A(S)) — u(plS) =0

lim -
a-As)-o0 1 -AS)]
And, it is precisely because prices do not converge that this condition does
not hold and the set of allocations in the core includes more than the Wal-
rasian allocation f(t) = u, for each t.

EXAMPLE 5: A Perfectly Competitive Continuum of Edgeworth
Boxes

In the introduction we described a continuum of Edgeworth boxes
as a situation in which each individual is endowed with and likes only two
commodities and each commodity is liked and endowed by only two individ-
uals, with the result that trading relations reduce to a continuum of bilateral
monopolies. The hypothesis that an individual likes only two (pure) com-
modities contradicts the order-related substitution property. We present an
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example in which equilibrium trades are bilateral — as in the continuum of
Edgeworth boxes — but because of commodity substitution there is perfect
competition. This is a variant of an example in Zame [1986].

Let h(t) = t+1/2 (modulo 1) and let endowments be given by e(t) =
bh(t); each individual’s endowment consists of one unit of the commodity that
is “one-half unit to the right of his name.”

Preferences of individual ¢ are given by

u(y) = /[9(ﬂf)]k‘(‘”’du(-'v) + 7s(t) + mlj7|l-

v4(t) is the p-singular part of vy evaluated at ¢ and g(z) is the derivative of
the u-continuous part of v. The function ky(z) = 1 — (¢t — z)2. (A similar
utility function is given in Jones [1984].)

The marginal utility of the good having the same name as the indi-
vidual is uj(v;8;) = (1 + m), while the marginal utility of any other good is
uy(7;65) = m,s # t. For a p-continuous measure described by its derivative
g, notice that for fixed ||g]|, uj(7;g) is increasing to (1+m)||g|| as g becomes
more concentrated around ¢.

We assert that the unique Walrasian equilibrium (p, f) is given by
p = 1 and f(t) = é. In terms of net trades, notice that f(t) — e(t) =
(6ty =bn(p)) = = (=0t bn(y)) = =[f(h(2)) = e(h(t))], ie., t and h(t) form an
Edgeworth pair in which they can execute all their trades.

A summary description of this example suggests it should have prop-
erties similar to the previous one in which monopoly power is ubiquitous.
Markets are thin and preferences are not similar to the weak star continuous
preferences which permitted markets to be economically thick. Nevertheless,
this example is perfectly competitive.

Heuristically, it is not difficult to see why. Even though in equilib-
rium individual ¢ is the only buyer of comnodity x = ¢, he has no monopsony
power because individual h(t), the only supplier of commodity ¢, could sell
his one unit in small amounts to others who would be willing to pay vir-
tually as much per unit. Also. individual sellers have no monopoly power.
If a small group T, were to withhold one-half their endowment the new
Walrasian equilibrium would require a significant shift in the equilibrium
allocation in which buyer ¢ did not concentrate his purchases in his most
preferred commodity but in a small cluster (with g-non-null measure) near
t. This would lead to equilibrium prices that were nearly unity. The com-
plete withdrawal of a small group would have similar consequences and this
would lead by the kind of argument given above to core equivalence.



More formally, let us look at the properties of the directional deriva-
tive u}(y; B). At most points u’ is weak star continuous in neither vy nor S.
However, if we look at the equilibrium allocation where f(t) = 6;, we find
that u}(8s; 6;) is weak star continuous in both variables at that point. Thus,
at equilibrium this example shares the same important continuity property
that is universally true in Example 1.

Comparison of Examples 4 and 5 reveals an asymmetry in our formu-
lation of a model whose Walrasian need not be perfectly competitive. The
monopoly power of each seller in Example 4 was achieved because each buyer
regarded commodities more as complements than substitutes and spread out
consumption over commodities; and the unique supplier of each commodity
could exploit this to raise price without losing all his patronage. It seems
that it is only in this case where a single individual sells to a non-null frac-
tion of all the participants that monopoly power is possible in the model we
have formulated.

5 Proofs

We begin with the proof of Lemma 1 of Section 2.

Proof of Lemma 1: Fix a Gelfand integrable function g : T — M*(X)
and write B, for the set of bounded Borel functions ¢ with the property that
q - g(t) is measurable and [ ¢ - g(t)dA(t) = q [ g(t)dA(t); we want to show
that B, contains all bounded Borel functions.

Recall that B(.X) is the smallest space of functions which contains all
continuous functions and is closed under the formation of pointwise limits of
bounded sequences. The definition of Gelfand integrability means that every
continuous function belongs to By, so we need to show that if ¢ € B(X) is
the pointwise limit of a bounded sequence {q,} of functions in By, then ¢
also belongs to B,. To sce this, note first that, for each ¢, an application of
the Lebesgue bounded convergence theorem yields:

090 = [atertgtiz) = [fim gafo)ldg(t)(z)

= lim / gul2)dg(1)(z)
= lim|gn - g(2)].

Since the functions ¢, belong to B, the functions {g, - g(t)] are mea-
surable; this means in particular that ¢ - g(t) is the limit of a sequence of
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measurable functions, and is therefore measurable. Combining the above
equalities with two further applications of the Lebesgue bounded conver-
gence theorem yields:

Jastwaxe = [rimien -gt0lax)
= lim| / g - g(1)AN(D)]
= limlga - [ g(t)A(D)
= fimga]- [ o(t)dr®)
= ¢ [gvax.

Hence ¢ € B,. We conclude that B, contains all continuous functions, and
is closed under the formation of pointwise limits of bounded sequences; this
means that By consists of all bounded Borel functions, as desired.

To obtain the second statement, note that v¥(A) = y4 - v for every
measure v € M(X) (where \ 4 is the characteristic function of A). From
the above we conclude that. for every Borel set A C X,

Y(A) = xa-7 = / - g(tdN(t) = / g(8)(A)dA(2).

Since each of the measures g(t) is positive, the last integral is 0 if and only
if g(t)(A) = 0 for almost all t € T', as desired. }

The proofs of Lemma 2 and the Theorems require a number of con-
structions and some preliminary lemmas. The first order of business is to
construct a sequence {II,} of partitions of .X and a corresponding sequence
{®,} of “averaging operators” mapping 3 (X) onto finite dimensional sub-
spaces.

Fix the reference measure j, an initial allocation e, and the soci-
etal endowment «w. Let S be the supply function (i.e., the Radon-Nikodym
derivative of w with respect to p); by assumption (E.1), there are constants
ci,c2 such that 0 < ¢; € § < ¢y < 2. For E a subset of X, we write
var(S, F) for the variation of S on E and essvar(S. E) for the essential var:-
ation; i.e.,

var(S,F) = 5.22‘5(“'5255(‘”)
essvar(S,E) = esssup S(x)— ess ill}f S(z)
zell zek
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Using an inductive procedure, we can construct a sequence {II,,} of
partitions of X with the following properties:

(a) II, is a partition of .X into a finite number of measurable
sets of positive measure;

(b) H,4 is a refinement of II, (i.e., every set in II,,4; is con-
tained in some set in I, );

(c) every set in II,, has diameter less than 277

(d) for each set E € II,,, essvar(S, F) < 27",

For each n, we write A, for the finite dimensional linear subspace of M(X)
spanned by the measures u(E)~!(ulE), for E € M,. It is easily checked
that these (normalized) restriction measures form an order basis for M,.
In particular, the dimension of A, is the cardinality ¢(n) of II,, M, is a
sublattice of M(X), and M, is isomorphic (as a vector lattice) to R°(™)
(by an isomorphism which takes the measures p(E)~!(u|E) in M, to the
coordinate vectors of R¢(™)), In addition, i € M, and M, C M,4, for each
n.
Define the niappings &, : M(X) — M(X) by:

O.(a)= Y o(E)Nu(E) ' (ulE)),
Eell,

We sometimes call each of these mappings an averaging operator, and the
sequence {®,} an averaging sequence. The following result records the basic
properties of the maps ®,,.

LEMMA 3: Fach of the averaging operators ®,, has the properties:
(a) ®, is a positive linear mapping of M(X) onto My;
(b) ®,.(a) =« for cach a € M,,;
(c) ||Pn(a)|] < ||| for each a, and ||®, ()| = ||| if « > 0
(d) for each E € 11, and each o« € M+ (X),a(E) = ®,(a)(E).

The sequence {®,} of averaging operators has the properties:

(e) for each a € M(X), ®n(a) — « in the weak star topology;

(f) for each 3 € M(X) which is absolutely continuous with
respect to p, ®,(3) — 3 in the norm topology.
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Proof: The verfications of (a)-{d) are straightforward and are left to the
reader. To obtain (e), fix a measure o € M(X), a continuous functions
q € C(X) and a real number ¢ > 0. By considering the positive and nega-
tive parts of a separately, we may, without loss of generality, assume that o
is positive. Continuity of ¢ means that we can find a § > 0 such that |g(z) -
q(z')| < € whenever d(z,2') < §. We assert that, if 27" < §, then | [ ¢da —
J qd®,(a)| < 2ea(X). To see this, choose and fix, for each set E in the par-
tition II,, a point g € . Then [ qda = 3 [ qda, where the sum extends
over all sets F € II,,. Since the diameter of each such F is at most 27" < §,
we see that | [ gda—¢(2g)a(E)| < ea(E). Hence | [ qgda—-3 ¢(zg)a(E)| <
ea(X). Similarly, | [ qd®,.(a) = X q(zg)Pn(a)(E)| < €@n(a)(E). Since
a(E) = ®,(a)(E) for each £ € M, and a(X) = ®,(a)(X), combining
these two estimates yields that | [ gda — [ qd®,(a)| < 2ea(X), as asserted.
Since ¢ and ¢ are arbitrary, this yields (e).

To obtain (f), it is convenient to first treat a special case. Let a be a
positive measure which is absolutely continuous with respect to u, and which
has the property that the Radon-Nikodym derivative 3 of o with respect
to u is a positive continuous function. Let ¢ > 0 be a positive real number,
and choose a § > 0 with the property that |¢(x) — ¥(2’)] < € whenever
d(z,z') < 8. We assert that, if 27" < §, then |ja— ®,(a)|| < efa(X)+ pu(X)].
To see this, fix a subset A C X, and for each set E in the partition II,,
choose and fix a point g € AN E. We obtain (sums running over all sets

a(4)= Y a(ANE)

YR
2 -/AnE vy

Expanding ®,(a)(4) in a similar way yields:

S (a)d) = Z(r(E)[p.(E)'l;t(AﬂE)]
ldo)wW(EY Y W(ANE

([ 1a) EY (AN B
-1 s ’d .

SEY (AN E)] [ v

1l

H

Our choice of points F and the fact that 27" < é implies that

l/mv Pdu — P(zg)u(AN E) < ea(AN E)

29



and that | [ ¢du — ¥(zg)u(E)| < ea(E). Putting all this together yields
that |a(A4) — @n(a)(A) < efa(X) + p(X)]. Since A is arbitrary, this means
that ||a — ®.(a)|| < efa(X) + (X)), as asserted. Since € > 0 is arbitrary,
this yields (f) in the special case that a is positive and its Radon-Nikodym
derivative ¥ is continuous.

To obtain the general case, fix a measure a which is absolutely con-
tinuous with respect to u, with Radon-Nikodym derivative %; there is no
loss of generality in assuming that « (and hence ) is positive. Fix € > 0.
Absolute coutinuity of a implies that we can find a real number p > 0
such that a(A) < € whenever pu(A) < p. By Lusin’s theorem, we can find a
compact subset X’ C X such that g(X — X’) < € and %|X’ is continuous;
write m for the maximum of v¥» on X’. Choose an open set U containing
X' such that u(U — X') < €¢/m, and choose a continuous function Yon X
which agrees with 1 on X', is bounded by m, and vanishes outside U. Set
& = 1y; it is easily seen that |ja — &|| < e. The argument above shows that
|®n(&) — @|| < € for n sufficiently large; combining this with (c), the esti-
mate |ja — &|| < ¢, and the triangle inequality yields that ||®n(a) — af < e
for n sufficiently large. This completes the proof.

By way of introduction to the next Lemma, consider a trader ¢ and
commodity bundles a, 3 such that a <; 3. The averaging operators ®, have
properties that ®,(v) — 7 (weak star) for every v € M(x), so weak star
upper semi-continuity of preferences tells us that, for all sufficiently large =,
®,(a) <; 3. However, weak star upper semi-continuity tells us nothing at
all about trader t's preferences over the bundles & and ®,(/3). The following
lemma, which is the first critical application of (ORS), fills this gap.

Lemma 4: (Averaging Property): Let a,3 € M*(X)andlett € T. If
a <; 3, then there is an ng such that a <; ®,(/3) for each n > n,.

Proof: Continuity of preferences allows us to find a real number r > 1

such that a <; r~13 <, 3; write ¥ = r~!3 = g + 7s. Let é be the

number given in (ORS) and choose ng so that 2-m) < §. Fix n > ng and

fix a set £ € II,. Since a, is a singular measure, we can find a subset

E' C E such that v,(E’) = 7,(E) and pu(E’') = 0. Set cg = ry(E)/u(E),

Ap={z € (E-E"):g(z)>cg}and Bg = {2 € (E—-L'): g(z) L cg}.
We claim that a <; r®,(v). To see this, write

v =Y _{(7|E") + (9l Ap) + (gul BE)}
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(summation over E € II,,) so that:

®.(ry) =T ce(ulE)
=Y {(a|E) = [(V|E") + (rgp — ce)(plAE) + (cg — rgu)(¢|BE)}-

Our construction guarantees that (ORS) can be applied to each of the terms
in curly brackets, so that v =<; ®,(ry). Recalling that v = r~13 and
r®,(7) = ®.(8), and that @ <; r~!3, and applying transitivity of pref-
erences yields the desired conclusion. §

The following lemma justifies a remark made in the discussion of
essentially continuous functions, at the end of Section 2.

Lemma 5: Let X be a compact metric space and let i1 be a positive measure
on X with suppu = X. If ¢ is a bounded Borel function on X which has
an essential limit at each point, then there is a continuous function ¥ on X
which agrees with ¢ almost everywhere.

PROOF: For each © € X define
Y(z) = esslim @(y).

To see that 1 is continuous, fix a point z € X and a sequence {z,} con-
verging to z, and suppose that ¥(z,) A~ ¥(z). Passing to a subsequence,
we may find a § > 0 such that |¢(z,) — v(z)|] > 6. For each ¢ > 0 and
each n we may find a set A, of positive measure such that d(y,z,) < €
and |p(y) — ¥(zn)] < 1/26 for each y € A,. However, this provides sets of
positive measure arbitrarily close to £ on which ¢ differs from ¥(z) by more
that 1/26; this contradicts the fact that ¥(z) = esslim¥(y). We conclude
that 1 is continuous.

If ¢ and ¢ differ on a set of positive measure, we can find a § > 0 and
a set B C X of positive measure such that |¢(y) — ¥(y)| > é for each y € B.
We can then find a sequence {B,} of subsets of B, each of positive measure,
having the property that diam(B,) — 0. Compactness of X implies that
there is an z € X with the property that every open neighborhood of z
contains infinitely many B,’s. This is incompatible with the facts that
¥(z) = esslim p(y) and that ¢ continuous at z so we conclude that ¢ = ¢
almost everywhere. §

We now have all the ingredients necessary to prove Lemma 2.

PROOF OF LEMMA 2: To see that (i) implies (ii), we need only note
that, if p = p* almost everywhere, then p-a = p* - a for every measure «
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which is absolutely continuous with respect to u, and p - e(t) = p* - e(t) for
almost every t (Lemma 1).

To see that (ii) implies (i), we show first that, at the price p, almost
every trader’s consumption is in his budget set. Since f is feasible, Lemma
1 yields:

[ smiae = p- [ swaxe

P / e(t)dA(t)
/ [p - e(O)]dA(2).

Hence, if there is a set of traders of positive measure for which p - f(t) >
p - e(t), then there must also be a set of traders of positive measure for
which p- f(t) < p-e(t). For each trader in the latter set, we may find a
p > 1 such that p- {pf(¢)} < p-e(t); monotonicity of preferences, together
with the averaging property above and the properties of the averaging op-
erators ®,, imply that there is an n such that p- {p®,[f(¢)]} < p-e(t) and
f(t) <¢ p®,[f(t)]. However, this violates (ii); we conclude that the consump-
tion of almost every trader is in his budget set, as desired.

The next task is to show that p is essentially as continuous as §. If
this were not so, we could find a Borel set Y C X and a point z € X which
belongs to supp(x|Y), such that S|Y has an essential limit at z but p|Y does
not. In fact there is no loss of generality in assuming that S|Y has a limit
at z, say lim,(S|Y) = s; (E.1) guarantees that s # 0. To say that p|Y" does
not have an essential limit at z means that there is a number 7 > 1 with the
property that: for every € > 0, there are sets A, B C Y such that:

(a) u(A)>0,u(B) >0,
(b) diameter (AU BU {z}) < ¢,

IA

It

(c) inf(p|A) > rsup(p|B).

For this r, (ORS) yields corresponding numbers § > 0 and ¢ > 0.

Write f(t) = gt + mi, where 1, is singular with respect to p. We
claim that for almost every t. m,(A) = 0 and (1 + d)gi(2) < g:(y) for al-
most all z € A,y € B. To see this, write T} = {t € T : 3(A) # 0} and
T, = {t € T : there are sets of positive measure A’ C A, B' ¢ B such that
(1 + d)ge(z) > gily) for x € A',y € B'}. A straightforward argument
shows that 7} and 7, are measurable sets. If ¢ € Ty, set v = f(t) —
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(me]4) + r[m(A)/pw(B))(1|B); (ORS) implies that f(t) <¢ v, and the fact
that inf(p|A) > rsup(p{B) implies that p-y < p- f(t). Replacing v by ®.(7),
for n sufficiently large, yields that f(¢) <; ®,(v) and p- ®,(7) < p- f(¢).
As we have already shown, p- f(t) < p- e(t) for almost all traders ¢, so we
conclude that, for almost all t € Ty, f(t) <; ®.(7) and p- P,(7) < p-e(t).
Since ®,(v) is absolutely continuous with respect to u, (ii) implies that
the set T has measure zero. To see that T, has measure zero, we pro-
ceed in the same way, except that we take the comparison bundle 4 to be
v = f(t) = c(ge| A + refgepe( A"/ p( B')])(1e]| B'), for some ¢ > 0 sufficiently
small that (1+d)(1=c)g:(z) > (1+7rc)g:(y) (which allows us to apply (ORS)
and conclude that f(t) <; 7). This establishes our claim.

Now fix subsets A’ C A,B’ C B. Since f is a feasible allocation,
J F()dA(t) = w = Su, so that Lemma 1 implies:

o) = [ s = [{[[ a@auo)] +nan} .

Since m(A’) = 0 for almost all ¢, we obtain:

i

/(1~+ d)S(z)dp(z) // (14 d)ge(x)du(z)dA(t)

A TJA

B [ [ awduierane)
TJB

AV B [ Stwydut).

IA

IN

Since A’ and B’ are arbitrary, this means that (1 + d)S(z) < S(y)
for almost every ¢ € A,y € B. However, since we may choose the sets A, B
to be arbitrarily close to z, this contradicts the fact that S|Y has a non-zero
essential limit at z. We conclude that p is essentially as continuous as 5, as
desired.

In order to obtain the equilibrium price p*, we use Lusin’s theorem
to find a disjoint sequence {Y},} of compact subsets of X such that:

(a) for each n, the restriction S|, is continuous;
(b) for each n, u(Y,) # 0 and supp(p{Yy,) = Ya;
(¢) p(X —UY,)=0.

(The remainder of this construction depends on u and on the sequence {Y,},
but is otherwise independent of the supply function S and the endowment
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w.) For each k, set Z;, = Y;U...UY}, so that {Z;} is an increasing sequence
of compact sets and UZ; = UY, = Y. For each k, the restriction p|Y} is as
continuous as S|Y%, and hence (by Lemma 5) may be altered on a set of
measure 0 so as to be continuous. Carry out this construction for each k,
and call the resulting function p* (so that p* is defined at each point of Y);
at each point z € (X — Y), define px (z) = ||pllsc. It is clear that p* = p
almost everywhere; to verify that p* is an equilibrium price we need to verify
that almost all traders optimize and that the consumption bundle of almost
every trader lies in his budget set.

Let T* be the set of traders for which f(¢) is not optimal at the price
p*; i.e., there is a measure a € M*(X) (which may depend on t) such that
p*a < p*-e(t) and f(t) <; @ We will show that for each ¢t € T™, there is an
absolutely continuous measure v such that p* -y < p* - e(t) and f(t) <: 7.
Continuity and monotonicity of preferences imply that there is a measure
B € M*(X) such that p* -3 < p*-e(t) and f(t) <; 3. By the averaging
property, we know that there is an index n such that f(t) <¢ ®,(3) for all
sufficiently large n. On the other hand, we assert that limsup[p* - ®n(3)] <
p* - B. To see this, we fix an index k£ and decompose 3 into the sum of
three measures: 3 = B + v + v* where 3, = 8|Z, 7 = BI(Y — Z;) and
v* = BI(X = Y). Since p* is continuous on Z; and |®n(3k) — Br (weak
star), we conclude that [p* - ®,(3)] — p~ - Bk for each k. Since p*(z) =
IP*lloo = |2l at each point z € (X —Y') and {|®,(3)|| = ||3]| (because 3 is
a positive measure), it is surely the case that [p*-®,(5*)] < p*-+* for each n.
Finally, p*®,(vk) and p™y; are very small if k is very large (since the norm
of the measure vy is very small for large k). Putting all these facts together
yields that lim sup{p*®,(8)] < p* - 3, as asserted. However, since ®,(3) is
absolutely continuous with respect to p, this implies that, for sufficiently
large n, p®.(8) < p*®.(B8) < p* -e(t) = p-e(t) and f(t) <¢ ®,.(F). Since
®,(53) is an absolutely continuous measure, our hypothesis implies that T*
has measure zero.

Finally, note that, since p and p* agree almost everywhere and f
is a feasible allocation, Lemma 1 guarantees that p* - e(t) = p - e(t) and
p* - f(t) = p- f(t) for alimost every t. We have already shown that, at the
price p, almost every trader’s consumption is in his budget set, so the same is
true at the price p*. The argument above shows that, at the price p* almost
all traders are optimizing, so we conclude that (p*, f) is an equilibrium, as
desired. I

In the proof of Theorem 1, we shall construct an equilibrium for the
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given economy as the limit of equilibria of approximating finite dimensional
economies; we shall need three lemmas about these limits. The first of these
is a relative of Ascoli’s theorem. In its statement, {II,,} is the sequence of
partitions constructed above.

LEMMA 6: Let {¢1} be a bounded sequence of functions from X to R¥.
Assume that for every € > 0, there are indices k*,n* such that var(¢y, E) < €
whenever k > k* and E € 1. Then there is a subsequence of {¢r} which
converges uniformly on X.

PROOF: For each n and each E € II, choose a point zg € E. Since
{®r} is a bounded sequence, we may, passing to a subsequence if necessary,
assume that for each n and each E € II,, the sequence {@i(zg)} of real
numbers is convergent; call the limit ¢(2g). We want to see that this implies
uniform convergence of {yx}. To this end, fix ¢ > 0 and choose k*,n* as
in the hypotheses of the lemma. Since II,» is finite, we can choose an
index k™ > k* such that |pp(zg) — @(2g)| < € for each E € II,,» and each
k > k**. Since var(g, £) < € for each & > k* and each E € II,;», combining
the triangle inequality with the fact that II,« is a partition of X allows us
to conclude that |pr(z) — ww(2)| < 3€ each k&' > k* and each z € X.
In other words, the sequence {¢} is uniformly Cauchy, and hence uniformly
convergent, as desired. I '

The remaining technical lemmas are of a functional analytic nature
and deal with limits of sequences of (weakly) integrable functions. Recall
that, for E a locally convex topological vector space with dual space E’, the
weak topology o(E, E') on E is the weakest topology for which the mappings
t — ¢-2:E — R are continuous (for each ¢ € E’). If (T, ) is a measure
space, a weakly measurable function f : T — FE is weakly integrable if for
each T’ C T there is a vector zv € E such that -z = [+ f(t)dA(2) for
each ¢ € E'. We say that a sequence {f,} of weakly integrable functions
converges weakly to the weakly integrable function f if, for each ¢ € E’, the
sequence {y - fn} converges to ¢ - f in the weak topology of Li(A).

The following lemma is an infinite dimensional version of a result
of Artstein [1979]. Similar infinite dimensional results may be found Khan
and Majumdar [1986] and Yannelis {1987]; for a related finite dimensional
result, see also Simon and Zame [1987).

LEMMA T7: Let E be a locally convex topological vector space, with dual
space E' which is separable in the weak star topology, let (T, \) be a measure
space, and let {f,} be a sequence of wcakly integrable functions from T to

35



E, converging weakly to the weakly integrable function f. For eacht € T,
let K; be a weakly compact subset of E. Assume that, for each n, fo(t) € K,
for almost every t € T. Then for almost everyt € T, f(t) belongs to the
weakly closed convex hull of { fn(t)}.

PROOF: Since E' is separable in the weak star topology o(E’, E) , it is also
separable in the Mackey topology 7(E’. E) (this is the topology of uniform
convergence on weakly compact subsets of £ ); let £ be a countable (Mackey)
dense subset of E'. Write C(t) for the weak closure of {f,(t)} and C*(t) for
the weakly closed convex hull of C'(t); C(t) is weakly compact (since it is a
weakly closed subset of ;), but C*(t) may not be. The separation theorem
tells us that a vector in F fails to lie in C*(t) if and only if it can be separated
from C(t) by a weakly continuous linear functional — i.e., by an element of
E’. Thus f(t) € C*(t) if and only if there is a functional & € E such that
E-f(1) > 2> 1> & -z for each 2 € C(t). Since the Mackey topology on E’
is the topology of uniform convergence on weakly compact subsets of £ weak
compactness of C(t) implies that we can choose £; to belong to the set {£;}.
Since C(t) is the weak closure of {f,(t)}, we conclude that f(t) g C*(¢) if
and only if there is an index i such that £- f(t) > 2 > 1 > & - fa(t) for
each n. This displays T’ = {t: f(t) & C(t)} as the countable intersection of
measurable sets, so it is measurable. Moreover, if A(t') > 0 then we can find
a vector & and a subset 7" C T’ such that & - f(t) > 2> 1> & - fa(t) for
every n and every t € T”. Put another way, this means that the functions
& « fn are bounded above by 1 on T” while the function £ - f is bounded
below by 2 on the same set. This contradicts the assumption that {&; - f.}
converges weakly to £ - f, and this contradiction establishes the lemma. 1

REMARK: Since the weak limiting set WLS{f,(¢)} is the intersection,
over all k, of the weak closure of {f,(t)}.=x, it follows immediately that,
for almost every t € T, f(t) belongs to the weakly closed convex hull of

WLS{fn(2)}.

We shall use Lemma 7 for the case £ = M(.X) with the weak star
topology. In this case, E' = C(X ), the weak star topology on M(X) is just
o(E, E") and Gelfand integration coincides with weak integration as defined
above. In other circumstances, it would be natural to take F to be a Banach
space and E’ to be its dual. (In the latter case, weak star separability of E’
is equivalent to norm separability of E).

The final technical lemma guarantees that certain weak limits exist.

LEMMA 8: If {f.} is a bounded sequence of Gelfand integrable functions
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from T into M+ (X), then there is a subsequence which converges weakly (to
a Gelfand integrable function).

PROOF: Say that || fu(t)|| < R for each n,t. For each n, define the (count-
ably additive) vector measure F,, on T, taking values in M(X), by setting
Fo(E) = [g fa(t)dA(2). Since (T, M) is a separable measure space, we can
find a countable family {E*} of Borel subsets of T with the property that,
for every Borel set E and every € > 0, there is an E7 such that A(E—E7) < 0
and M(E? — E) < 0. For each j, the sequence {F,(E?)} of elements of M (X)
is bounded (because || F,(E7)|| < RAME7)), and hence (by Alaoglu’s theo-
rem) has a weak star convergent subsequence. Diagonalizing as necessary,
we may assume that, for each j, the sequence {F,(E’)} converges in the
weak star topology; call the limit F(E/).

In fact, the convergence of each of the sequences {F,(E?)} entails
the convergence of {F,,(E)} for every Borel subset E C T. To see this, fix
a Borel set E and an € > 0. and choose a sequence {D*} C {E'} such that
AME = D*) — 0 and A(D*¥ — E) — 0. For each k, the sequence {F,(D*)}
converges to F(D¥). Moreover, for each n,

| Fa(D*) = Fi(D¥)|| < RIND* — D'y + X(D¥ - D¥)],
for every k and k', so that
|F(D*) — F(D*)|| < RIA(D* = D¥) + A(D* — D*)]

for every k and k. In other words, the sequence {F(D*)} is Cauchy (in
norm) and hence converges (in norm) to an element F(E) € M(X). Ele-
mentary computations now yield that F,(E) — F(E) (weak star) for every
Borel set E C T, that F is a countably additive vector measure, and that
|[F(E)|| £ RME) for every Borel set E C T. In particular, F is absolutely
continuous with respect to A (i.e., F(E) = 0 whenever A(E) = 0).

Since every countably additive vector measure which is absolutely
continuous with respect to A has a weak star Radon-Nikodym derivative
(Diestel and Uhl [1977]), it follows that there is a Gelfand integrable function
f:T — M(X) such that F(E) = [g f(t)dA(t) (Gelfand integral) for every
Borel set E. We claim that {f,} converges weakly to f.

To see this, fix a continuous function ¢ € C(X) and observe that
lg - fu(t)] € R|l¢llc for every t, so that the sequence {q - f,} lies in an
order bounded subset of L(g). Since order bounded subsets of Li(u) are
weakly compace, some subsequence of {¢- f,,} converges weakly to a function
¥ € Li(p); we need to show that ¢ is necessarily equal to ¢ - f. If this is
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not so, then we can find a set A C T, having positive measure, such that
JawdA(t) # [4 ¢ fdA(t). On the other hand, the definition of the Gelfand
integral, togethre with the definition of ¢ and thefacts we have already
established, yield:

i

[ xavar)

T

= 1i111AX,.\(Q‘flt)dA(t)

= lim [g- / (v fa)dA(t)]
T

= lim[q- / fadA(2)]
A

= lim [q- F,(A4)]

q- F(4)

¢ [ fax

= [(a-paro.

This is a contradiction, so we conclude that {¢- f,} converges weakly to q- f;
since ¢ € C(X) is arbitrary, this completes the proof. §

/,4 wdA(t)

With the preliminaries out of the way, we now turn to the proofs of
main results.

PROOF OF THEOREM 1: We construct an equilibrium for the
given economy as the limit of equilibria of approximating finite dimensional
economies.

The first step is to use the averaging operator &, to construct these
finite dimensional approximations. For each n, we consider the economy
with commodity space M, with space of traders equal to (T, A), with pref-
erences the restrictions to M, of the given prelerences on M*(X), and
with intital endowment e, = ®, o€ (i.e., e,(t) = ®,[e(t)] for each t). Set
wyp = @, - w (it follows from Lemma 1 that w, = [ e,(t)dA(t)) and write S,
for the Radon-Nikodym derivative of w, with respect to u. This economy
has an equilibrium (f,,p.) (Aumann [1966]). The price p, belongs to the
dual space of M,, which we may identify with the space of functions on
X which are constant on each of the sets in the partition II,; in particular
pn € BT(X). (The price p, is necessarily strictly positive, since preferences
are strictly monotone.) Note that g € M, for each n, by construction; we
normalize so that ||p, |l = 1.



Since (B) tells us that rates of substitution are bounded, the equilib-
rium nature of p, implies that , if a,3 € M;T with ||a|| = ||8]], then pr-a <
Pn - B. Since ||pn]loo = 1, this implies in particular that M~1 < p, < 1.

For each n and each E™ € II,,, var(S, F) < 27". Since S is obtained
by averaging S over sets in Il;, and I is a refinement of II,, for & > n, it
follows that var(Sy, E) < 27" for k > n. We may now use (ORS) as in the
proof of Lemma 2 to obtain estimates for the variations of the prices py; we
conclude that:

(*) For each € > 0 , there is are indices n*,k™ such that var(pg, E) < €
whenever k > k*,n > n* and F € 11,,.

In view of Lemma 6, passing to a subsequence if necessary, we may
assume that {pi} converges uniformly to a limit price p on X. Uniform
convergence implies that ||pn|lc = 1 and that M~ < p, < 1. For a €
M*(X),®,(a) — o in the weak star topology, so p, @ — p-a and p, -
$.(a) = p-a.

Having constructed a limit price, we now construct a limit allocation.
To this end, fix an index k. For each t € T,

Pn - falt) S pn-ea(t) < [len(D)] < [le(t)]].

Since M~1||u]|=! < p, we conclude that || f,(¢)]] < M]|u|l"|le(?)|| For each
integer R, set Tp = {t € T : [le(?)]] < R}. Applying Lemma 8 to the
sequence {f,|TRr} yields a weakly convergent subsequence. Diagonalizing as
necessary, we may assume that, for each R the sequence {fn|Tr} converges
weakly on Tr. Piecing together the limits of these sequences provides a limit
allocation f:T — M7*(X). Since [ f(t)d\(t) = lim [ fo(t)dA(t) < wn and
wy — w, it follows that f is in fact Gelfand integrable, that f is a feasible
allocation, and that {f,} converges weakly to the limit allocation f.

To show that (f,p) is a Walrasian equilibrium, we verify the hy-
potheses of Lemma 2. Consider the set T consisting of all traders ¢ for
which there is a measure a € M*(X) which is absolutely continuous with
respect to p and has the properties that f(¢) <; « and p-a < p-e(t) (It is
not hard to show that T is a measarable set.) If A\(T™) > 0, then continuity
of preferences together with the fact that ®,(a) — o« in norm whenever
a is absolutely continuous, implies that we may find an index i, a subset
T** C T* of positive measure, and a positive measure 3 € M; such that
f(t) <¢ B and p-3 < p-e(t) for each t € T™* Lemma 7 tells us that (for al-
most all ¢) f(t) belongs to the weak star closed convex hull of {f,(t)}; since
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preferences are weak star upper semi-continuous and convex, this implies
that for almost all ¢, f,(t) for n sufficiently large. In particular this means
that there is an index m and a subset 7*** of T**, having positive measure,
such that f,(t) <¢ G for all t € T** and all » > m. On the other hand,
we have already noted that p, - en(t) = pn - ®,[e(t)] — p - e(t) for almost
all t, and ®,(8) = B for n > i (since 3 € M; and @, is the identity on M;
for n > ¢), so we conclude that, for sufficiently large n, there is a subset
T**** of T***, having positive measure, with the property that f,(t) <. 3
and p, - 8 < pn - ex(t), for each t € T***. This contradicts the equilibrium
nature of (f,,p,) Thus, the supposition that A(7™) > 0 leads to a contra-
diction. We may therefore apply Lemma 2 to find a bounded Borel function
p*, agreeing with p almost everywhere, such that (f,p*) is an equilibrium,;
the argument of Lemma 2 shows that in fact p = p* so that (f,p) is an
equilibrium, as desired.

That all equilibrium prices belong to C's(.X) follows exactly as in the
proof of Lemma 2.

It remains only to show that the set P(e) of normalized equilibrium
prices is compact in the norm topology. To this end, let {(f.,p.)} be a
seqence of equilibria with prices satisfying the normalization p, - ¢ = 1.
Arguing exactly as before, we conclude that ||p,|| < M||ul|~! < oo for each
n, and that for each ¢ > 0, there are indices n*,&k* such that var(pg, £) <
¢ whenever £ > k*,n > n* and E € II,,. Lemma 6 implies that some
subsequence of {p,} converges uniformly to some price p. As before (and
passing to a subsequence if necessary), we see that the allocations {f,}
converge weakly to an allocation f, and that (f,p) satisfies the hypotheses
of Lemma 2. Hence there is a bounded Borel function p* which agrees
with p almost everywhere such that (f,p™) is an equilibrium. Since p, — p
uniformly and p, p* represent the same class in Loo(1t), it follows that p, — p
in the Loo(px) norm. Hence P(e) is a norm compact subset of Lo(x). This
completes the proof of Theorem 1. I

Theorems 3 and 4 rest on a result about points of continuity of an
upper hemi-continuous correspondence. The usual version of this result,
which requires that the range space be compact (see Hildenbrand [1974]
for example), would be adequate for Theorem 3, but Theorem 4 requires
the stronger version below, which requires only that the correspondence has
compact values.

LEMMA 9: If X and Y are complete metric spaces, and P : X ——Y is
an upper hemi-continuous correspondence with compact values, then the set
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of points of continuity of P is a residual subset of X.

PROOF: For each compact subset A of Y and each integer k, let A* denote
the open set of points of Y whose distance to A is smaller than 2%, Since P
has compact values, upper hemi-continuity of P at the point z € X means
that for each k there is an open set U containing z such that P(z') C P(z)*
whenever 2’ € U. In the presence of upper hemi-continuity, continuity of
P at the point £ € X would mean that for each k£ there is an open set V
containing  such that P(z’) C P(2")* whenever z/,2" € V.8

For each k , let W} be the set of points £ € X for which there is
an open set V which contains x and has the property that P(z') C P(2")*
whenever 2/, 2" € V. It is evident that each of the sets W} is open. Moreover,
the set of points of continuity of P is simply the intersection of all the sets
Wy, so to prove the lemma it remains only to show that each W), is a dense
subset of X.

To this end fix a k&, and suppose to the contrary that Wy is not
dense. There is thus an open set W C X with the property that, for each
open set V C W, there are points z/,2” € V such that P(z') ¢ P(z")*.
We pick a point z; € W and use upper hemi-continuity of P to find an
open subset V] of 1V, containing z; and having diameter at most 1, such
that P(z’) C P(z1)* for every x' € V;. Since V; C W we can find points
T2,y2 € Vi such that P(ys) ¢ P(;r-;,)"'. We may again use upper hemi-
continuity of P to find an open subset V5 of V] containing z, and having
diameter less than 1/2, such that P(z') C P(x;)* for every 2’ € Vo. We
can again find points z3,y3 € V; such that P(y3) & P(z3)*. Proceeding by
induction, we choose a decreasing sequence {V, } of open sets, and sequences
{z+},{yn} such that: V,, has diameter at most 27", the points z, and y,
belong to Vi, P(z') C P(zn)** for every 2’ € V,, and P(yn) ¢ P(zn)"
Since the sets V,, have diameter at most 2", the sequences {z,},{yn} are
Cauchy; completeness of X means that they converge, necessarily to the
same limit, call it z. Upper hemi-continuity of P means that P(y,) C P(z)%
for n sufficiently large. On the other hand, our construction guarantees that
P(z) C P(2,)"* for every n. Combining these, we obtain that P(y,) C
P(z,)* for k sufficiently large. This contradicts our supposition that Wy is
not dense, and this contradiction completes the proof. i

PROOF OF THEOREM 3: The first task is to show that, given an initial
allocation e with mean societal endowment w = f e(t)dA(t), an equilibrium

SCompactness of the values of P is used only lere, to insure the validity of these
characterizations of continuity and upper hemi-continuity.

41



exists. If suppw = X, this follows easily from Theorem 1, but if supp # X,
matters are not quite so simple. In essence, the difficulty is to find the
“correct” reservation prices for commodities in X — suppw.”

Choose a positive measure & for which supp& = X and, for each
positive integer n, set €*(t) = e(¢) + (27" )&. Note that e™ is an allocation
for which the mean societal endowment w™ = w + (27")& has support equal
to X. Define the reference bundle u® = w" and observe (as was already
noted earlier) that, for this (or any other) choice of reference bundle, (US)
implies (ORS), and that the assumption (E.1) is also satisfied. It thus follows
from Theorem 1 that, for the initial allocation €™, an equilibrium exists.
Moreover, since the supply function S™ is identically 1 , every equilibrium
price is (essentially) continuous. Indeed, the argument of Lemma 2 shows
that the modulus of continuity of all equilibrium prices (of norm 1) may be
chosen independently of e and . Moreover, (B) implies that all equilibrium
prices of norm 1 are bounded below by A~!. In particular, the sets P(e™)
of all normalized equilibrium prices for the initial allocation e™ all lie in
a bounded, equicontinuous family in C(X). Ascoli’s theorem tells us that
bounded, equicontinuous subsets of C{.X) are relatively compact, so if we
define P(e) to be the limiting set of {P(e™)}, it follows that P(e) is a non-
empty compact subset of C'(X), and every price in P(e) has norm 1.

We assert that every price in P(e) is an equilibrium price for the ini-
tial allocation e. To see this, let {(f™,p")} be a sequence of equilibria (with
(fn,pn) corresponding to the initial allocation e"), and such that ||p,|| =1
for each n. Arguing as in the proof of Theorem 1, and passing to a subse-
quence if necessary, we may show that the allocations f™ converge weakly to
an allocation f, the prices p™ converge uniformly to a price p with ||p|| = 1,
and that (f,p) is an equilibrium corresponding to the initial allocation e.
Since every price in P(e) arises as the limit of such prices p", we conclude
that every price in P(¢) is an equilibrium price for the initial allocation e.
In particular, equilibria exist.

To see that all equilibrium prices are continuous on the support of
the mean societal endowment, fix an initial allocation € with mean societal
endowment w, and let (f.p) be an equilibrium. Note that, if we restrict
attention to commodities in suppw, the pair (f,p) remains an equilibrium.
If we define the reference bundle ¢ = w, then the supply function § is
identically 1 (on suppw), so we may simply apply Theorem 1 to conclude
that p|suppw is continuous, as asserted. (We do not draw any conclusions

"The argument we give for the existence of equilibria is based on our Theorem 1; an
alternate argument could be given along the lines of Jones [1983].
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about the behavior of an arbitrary equilibrium price on X —supp w. However,
the equilibrium prices in P(e) enjoy a special status, since, by construction,
they are continuous on all of X.)

We turn now to the core equivalence test.® Fix an initial alloca-
tion e with mean societal endowment w (we make no assumptions about
suppw), define the reference bundle x4 = w, and let f be an allocation which
belongs to the core. We construct an equilibrium price by finding a linear
functional supporting an appropriate cone. Let us identify (via the Radon-
Nikodym theorem), Ly(u) as the subspace of M(X) consisting of those mea-
sures which are absolutely continuous with respect to u. Let G be the space
of pairs (T’,g) such that 7" is a subset of T having positive measure and
g:T — Lf(p) is a measurable function having the property that f(t) <,
g(t) for almost every t € A. Let P be the preferred net trade set:

P = {/T' g(t)dA(t) — /T' e(t)dA(t) : (T',g) € G} ;

and let C' be the weak star closed cone generated by P. We are going to
show that C is convex and is a proper subcone of M (X). This will imply the
existence of a supporting linear functional, and this functional will provide
the desired equilibrium price.

In the usual finite dimensional context, the corresponding results
are established by appeal to the fact that the integral of a correspondence
is compact and convex. This fact depends in turn on the Lyapunov con-
vexity theorem, which says that the range of a non-atomic vector measure
is compact and convex. As we have already noted, the Lyapunov convexity
theorem is not true in infinite dimensional spaces; in particular, the range
of a non-atomic vector measure with values in M(X) need not be compact
or convex. However, it is true that the weak star closure of the range of
such a measure is (weak star) compact and convex. It follows, exactly as in
the finite dimensional context, that the weak star closure of the integral of
a correspondence is compact and convex. With this change, convexity of C
follows in the same way as in the finite dimensional context. (For details,
we refer to Gretsky and Ostroy {1985].)

It remains to show that C is a proper cone; i.e., that C # M(X). In
fact, we show that the weak star closure of P does not include any strictly
negative multiples of the bundle ¢ = w. To see this, suppose to the contrary

8The argument we give for core equivalence is in the spirit of Gretsky and Ostroy
[1985]; an alternate argument could be given along the lines of Mas-Colell [1975].
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that —cu belongs to the closure of P, for some ¢ > 0. This means that there
is a sequence of pairs (Ty,gn) in G such that

/ F()dA(E) — / e(t)dA(t) — —cu  (weak star).
In ™

Write 7" = [rn ¢"(2)dA(t) and w™ = [ e(t)dA(t); passing to a subsequence
if necessary, we may assume that 4* — 74* and w" — w* for some positive
measures 7* and w*. Note that, since w™ < w for every n, it is also the case
that w* < w.

Choose a real number r > 1 such that 7(1 —¢) < 1, and let § > 0
be the corresponding number from the uniform substitutability assumption
(US). Choose a finite covering of X by open sets U;, each of diameter less
than §, and let {¢;} be a partition of unity subordinate to the covering {U;}
(i.e., {®;} is a family of continuous functions from X into [0,1], suppp C U;
for each 7, and §_ ¢; = 1.) For each n and each t € T', write:

R (t) =D {rlei- 9" ())/[pi - w"}piw"},

with summation over i. (We will see shortly that the denominators are non-
zero for sufficiently large n.) Uniform substitutability, the choice of 4, and
the fact that {¢;} is a partition of unity guarantee that g"(t) <; h"*(¢), for
each t € T and each n.

Since each ¢; is continuous, the mappings @ — ¢; - a: M(X) = R
are weak star continuous. Hence ¢; + W™ — ¢; - w*; since v — 7" and
4* — w* = —cp, we conclude in particular that w* > cu so that p;w* > 0
for each ¢; hence o;w* > 0 for each i; hence ¢; -w™ > 0 for each ¢ and each
sufficiently large n. In particular, the denominators in the above expression
for h™(t) are non-zero, as promised.

For each n, integrability of the allocation g™ implies integrability of
the mapping A™:T — MT(X). We assert that, for sufficiently large n, the
allocation A" is feasible for the group T7; i.e.,

/ h"(’t)d,\(t)S/ e(t)dA(t) = W™
Tn ™

To see this, we carry out the integration on the left side above, to obtain:

(%) /;n h™(t)dA(t) = E{T[‘r’i ™ /li - W Hgiw™ ).

Since {;} is a partition of unity, 3~ ¢; = 1. Thus, the right hand side of (*)
will certainly be less than w™ if r{gi-7"]/[¢i - w™] < 1 for each i. To see
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that this is so for sufficiently large n, note that

rlei - v}/ [wi - W] = rlpi Y7/ - w*] as n— 0.

Since v* — w* = —cp and 0 < w* < p, we obtain:

rlei Y pi-w™] < rlpi W™ ~ei - pl/[pi - W]
< rlpirwt = epi - W /[pi - wT]
< r(l-c)
< 1

by our choice of 7. It follows that r[p; - ¥"]/[@i - w"] < 1 for n sufficiently
large, so that A" is feasible for the group T™, as asserted.

By construction, g™(t) <Xy h™(t) for every t € T™; transitivity of
preferences implies that f(t) <; h™(t) for every t € T". In other words,
h™ is feasible for the group 7™ and preferred to f, which contradicts the
assumption that f is in the core. We conclude that —cu ¢ C for each ¢ > 0,
as claimed.

Since C is a weak star closed, convex cone in M(X) and —u ¢ C, the
separation theorem tells us that we can separate C' from —pu. Thus, there
is a non-zero, weak star continuous linear functional p on M(X) (i.e., an
element of C'(X)) such that p-& > 0 for each £ € C and p(—pu) < 0, whence
p- > 0. To see that p is an equilibrium price for the allocation f, it will
suffice (by Lemma 2) to show that, for almost every t € T there does not
exist a measure a € L (u) such that f(¢) <; @ and p-a < p-e(t). If this were
not so, then separability of L;(y¢) and continuity of preferences would enable
. us to find a set T” of positive measure and a measure 3 € M+(X) such that
f(ty<¢Band p-B < p-e(t) foreacht € T'. If welet g* : T' — M*(X) be
the function which is identically equal to 3, then the pair (7”,g*) belongs
to G, so that A(T")3 € C; since C is a cone, 8 € C also. Hence p-8 > 0,
which contradicts the fact that p- 3 < p-e(t) for each t € T’'. We conclude
that for almost every t € T, there does not exist a measure o € L} (p) such
that f(t) <; ¢ and p-a < p-e(t), and Lemma 2 implies that (f,p) is an
equilibrium, as desired. (Since p is continuous, the proof of Lemma 2 shows
that it is unnecessary to alter p on a set of measure zero.) Thus, every initial
allocation passes the core equivalence test.

To see that a generic set of initial allocations pass the uniform with-
holding test, consider the correspondence P : A —— C(X). We have
already seen that P has compact values, and a similar argument shows that
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it is upper hemi-continuous. Lemma 9 imnplies that the set of points of con-
tinuity of P is a residual set. This is not quite enough: If e is an initial
allocation with suppw # X, then P(e) is not the full set of (normalized)
equilibrium prices (because there may be many choices for reservation prices
of commodities in X — suppw, and continuity of P at e will not imply that
e passes the withholding test. However, if suppw = X, then P(e) is the full
set of (normalized) equilibrium prices, and continuity of P at e will imply
that e passes the withholding test. In other words, if e is a point of continu-
ity of P and suppw = X then e passes the withholding test. To show that
the set of all such initial allocations is a residual set, it suffices (because the
intersection of two residual sets is a residual set) to show that the subset Ag
of A consisting of initial allocations e with suppw = X is a residual subset
of A.

To this end, choose a countable dense subset X of X; for each point
z € Xo and each positive integer r, let B(z,r) be the open ball in X of
center r and radius r. Since Xp is a dense subset of X, every open subset
of X contains a set in this family. Hence, if w € M+ (X), then supp(w) = X
if and only if w(B(z,r)) > 0 for every B(z,r). Thus, Ap is the intersection
of the sets A;, = {e : w(B(z,r)) > 0}, and these sets are open and dense
in Ag. Since the family {B(z,r)} is countable, we conclude that Ag is the
intersection of a countable family of dense open sets, and is thus residual.
This completes the proof of Theorem 3. B

REMARK: As we have noted earlier, the validity of the core equivalence
test does not depend on the assumption that individual preferences are con-
vex (because the proof of core equivalence requires only an approrimate
version of the Lyapunov convexity theorem). However, the validity of the
withholding test depends on the existence of equilibria, which does in turn
depend on the assumption that individual preferences are convex (because
the proof of the existence of equilibria without the assumption of convexity
of individual preferences would require an cract version of the Lyapunov
convexity theorem).

PROOF OF THEOREM 4: Fix a thick markets allocation e and a core
allocation f. As in the proof of Theorem 3. we construct an equilibrium
price as a supporting functional for the cone generated by an appropriate
net trade set. In this case, we want to take G to be the set of all pairs (I, g),
where T” C T is a subset of positive measure and g: 7' — L7 (y) is Bochner
integrable function (i.e., a measurable function such that [ ||g(¢){|dA(t) < oc)
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such that f(t) <; g(t) for every t' € T'. Set

P= { /T g(1)dA(t) - /T e(t)dA(t) : (T',9) € g}

and let C be the norm closed cone generated by P. Note that C is contained
in Ly(p) since Ly(u) is a norm closed subspace of M(X) Since e is a thick
markets allocation, it is in particular Bochner integrable, so as in Theorem 3,
we may appeal to the usual arguments, together with the fact that the norm
closure of the range of a vector measure defined by a Bochner integrable
function is convex, to conclude that C' is convex. (See Gretsky and Ostroy
[1985] or Khan [1986].)

We claim that C is a proper subcone of Ly(p). To see this, suppose
that —u € C. This means that for some ¢ > 0, there is a sequence {(T™,g")}
of pairs in G such that

/ g"(t)dA(t)—/ e(t)dA(t) — —cp (norm)
Tﬂ Tﬂ

Since every Bochner integrable function can be approximated by a simple
function (i.e., a function with finite range), there is no loss of generality in
assuming that each ¢™ is a simple function. Rewriting the above yields:

| o waxw - [ eane) = —eu+ v
" T

where 9™ € Li(p) and ||¢"p|| — 0. Since g" is a simple function, we can
use the Riesz decomposition theorem for vector lattices (Schaeffer [1974]) to
find another simple function A™ such that 0 < A™(t) < g™(t) for each ¢ and

/Tn g (t)dA(t) - /Tn e(t)dA(t) < —cpu.

Set k™(t) = h™(t) + M||g™(t) — h™(t)||1.
Assumption (B) implies that ¢”(t) <; £™(¢) for every ¢t. However,

k"(t)d/\(t)—/ e(t)dA(t) = h"(t)d,\(t‘)-—/ e(t)dA(t)
Tn n T'n-

Tfl
+M( [ g0 = Bl bn
—cp+ M||9"pllp.

T

IN

Since ||¢"u|| — 0 and ¢ > 0, we conclude that k” is feasible for the group
T™ and preferred to g and hence to f, contradicting the assumption that
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f belongs to the core. This contradiction establishes our claim that C is a
proper subcone of Li(u).

We can now find a norm continuous linear functional p on Lq(x)
(i.e., an element of L (p)) which supports the cone C. As in the proof of
Theorem 3, we can then apply Lemma 2 to obtain an equilibrium price for
the core allocation f, as desired.

To obtain the withholding test, we will wish again to apply Lemma 9,
for a different space of allocations. We consider the space 7 of thick markets
allocations; for each e € 7 , we let P(¢) be the set of normalized equilib-
rium prices, so that (by Theorem 1), P(e) is a non-empty norm compact
subset of Loo(g). We claim that the correspondence P : T —— Lo (p) is
upper hemi-continuous. To see this, let {e;} be a sequence of thick markets
allocations which converge to e (in the metric of 7), and let wi,w be the
corresponding societal endowments, with supply functions S,%,S. For each
k, let (fr,pr) be a Walrasian equilibrium for the initial allocation ex, with
llpe]l = 1. We want to show that some subsequence of {( fn,pr)} converges
to an equilibrium for the initial allocation e.

The definition of convergence in 7 implies that S;, — S in the Lo (x)
norm. Since S is bounded above and bounded away from zero, we may find
constants ¢;,¢3 > 0 such that 0 < ¢; € 5 < ¢z < o0. Let {II,,} be a sequence
of partitions constructed as before so that:

(a) II, is a partition of X into a finite number of measurable
sets of positive measure;

(b) 1,41 is a refinement of II,, (i.e., every set in Il,4, is con-
tained in some set in II,,);

(c) every set in II, has diameter less than 27";
(d) for each set E € II,, essvar(5, E) < 27",

Since Sy — S uniformly, it follows that, for each n there is a £* such that
essvar(Sg, £) < 27" for each & > &* and each E € II,. Arguing as in
Theorem 1, we conclude that for each ¢ > 0, there are indices n*, k" such
that essvar(Sy, £) < 27" whenever k > k*,n > n* and F € II,,. By Lemma
6, some subsequence of {p;} converges in the L..(u) norm to a price p with
[l = 1, and some subsequence of { fi} converges weakly to an allocation
f. As in the proof of Theorem 1, we conclude that (f,p) is an equilibrium.
In particular, P is an upper hemi-continuous corresponcence. By Lemma 9,
the set of points of continuity of P is a residual set; it is easily seen that every
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initial allocation that is a point of continuity of P passes the withholding
test. This completes the proof. il

REMARK: Again, we note that the core equivalence test is valid without
the assumption that individual preferences are convex, and with the weaker
assumption that the initial allocation is Bochner integrable (rather than or-
der bounded). However, the withholding test again requires the full force of
our assumptions (convexity of individual preferences is needed to guarantee
the existence of equilibria, and order boundedness of the inital allocation is
needed to rule out the situation in the Example of Section 3, where small
groups of traders have a corner on the market for a few goods).
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