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1. INTRODUCTION

Since Aumann {1964] introduced a nonatomic general equilibrium model and exhibited
its connections to perfect competition, the hypotheses of nonatomicity and perfect compe-
tition have been joined. However, when there is an infinite number of commodities, the
two hypotheses are distinct. The distinction is based on a division of nonatomic models
into thick markets economies, which are (typically) perfectly competitive, and thin markets
economies which are typically not perfectly competitive. The purpose of this paper to make
the point that it is thickness of markets rather than nonatomicity which leads to perfect
competition.

Attention is confined here to exchange economies, so that individuals differ only in their
tastes and endownments. In such model, there are two kinds of market thickness (Gretsky
and Ostroy [1985]): physical thickness—a large number of potential buyers and sellers
of each physically identical commodity; and, economic thickness—physical differences are
superceded by conditions of economic substitutability among commodities. For markets
to be thin, they must be neither physically nor economically thick, i.e., there must not
be a large number of buyers and sellers of physically identical commodities and different
commodities must not be good substitutes for one another.

We do not attempt to model thick and thin markets in complete generality. We insist
on having a model in which it is possible to show that Walrasian equilibria exist, and this
imposes a certain discipline. The central question on which we focus is: given a nonatomic
model in which the existence of Walrasian equilibrium can be demonstrated, how far can we
be from perfect competition? Our answer is: far enough to admit thin markets economies,
and therefore far enough to exhibit the need for one or the other thick markets hypothesis
to reestablish the connection between nonatomicity and perfect competition.

We call attention to a restriction on allowable preferences associated with this discipline
which we call preference for local diversity. It leads to an asymmetry in the origins of
imperfect competition because it permits a kind of one-sided thinness compatible with the
possible monopoly power of sellers, but it precludes the sort of preferences that would lead
to monopsony power of buyers. Therefore, our model understates the full range of thin
market phenomena. Presumably, there is an alternative to this assumption which would
permit the possibility of unexploited monopsony as well as monopoly power within a model
for which Walrasian equilibrium could be demonstrated, but we have not found it. (See
Section 6 for comparisons with models of monopolistic competition.)

How is perfect competition distinguished from the existence of Walrasian equilibrium?
Several tests have been suggested:
Does the core coincide with the set of Walrasian equilibria (Edgeworth [1881], Shubik [1959],
Debreu and Scarf [1963], Aumann [1964])?
Is a Walrasian equilibrium a non-cooperative equilibrium (Gabszewicz and Vial [1972],
Roberts and Postlewaite [1976), Novshek and Sonnenschein [1978], Dubey, Mas-Colell, Shu-
bik [1980])?
Is a Walrasian equilibrium a no-surplus allocation (Ostroy [1980], Makowski [1980])?



These different tests enjoy a considerable overlap, so that if a model passes one of them
it is likely to pass the others, at least “generica.lly”.1 In this paper, we adopt the first of
these tests and a variant of the second and third that we call the withholding test. The
spirit of the withholding test is to ask whether an individual actually faces perfectly elastic
demand and supply opportunities. We take the answer to this question to be “yes” (and
the Walrasian equilibrium to be perfectly competitive) if individuals cannot influence prices
by withholding some of their endowments (more precisely, if small groups can have only a
small effect on prices by withholding some of their endowments).

The withholding test is related to the (lower hemi-)continuity of the Walrasian corre-
spondence. It is easy to see why. When a small group withholds part of its endowment,
this act likes a small perturbation of the data of the economy. The withholding test re-
quires that, following such a perturbation, equilibrium prices not change too much, i.e.,
the equilibrium price correspondence should be continuous. By contrast, it is well-known
(for economies with a finite number of commodities) that core equivalence need not imply
continuity of the Walrasian correspondence. We show here that the same thick markets
conditions leading to core equivalence are also responsible for the generic continuity of the
Walrasian correspondence. (See Section 3, Remark 2, for additional comments on these
tests.)

Our formulation of a model in which Walrasian equilibrium is or is not perfectly compet-
itive owes much to the work of Bewley [1973], Mas-Colell [1975], Jones [1983, 1984], Ostroy
(1984a], Gretsky and Ostroy [1985), Aliprantis, Brown and Burkinshaw [1985], Zame [1986],
Rustichini and Yannelis [1987], Cheng [1987], Khan-Yannelis [1990] and Podczeck {1990].
By linking Walrasian equilibrium to one or the other of the above tests of perfect com-
petition, these authors have helped to delineate the thick/thin markets distinction drawn
here.

The model we use is a variant of one constructed by Mas-Colell and Jones as a model of
an infinite degree of product differentiation. The space of pure commeodities is a compact
metric space, and commodity bundles are represented as measures on this space of pure
commodities. Our point of departure is to allow for less substitution between commodity
bundles than that assumed by Mas-Colell and Jones, while retaining the possibility that
initial holdings can be widely varied.

In Section 2, we describe the model and discuss its more important assumptions. In
Section 3, the main results are stated. In Section 4, we give several examples to illustrate
the results of Section 3. In Section 5, some brief remarks about monopolistic competition
are made. Finally, proofs are contained in Section 6.

ISince the first version of this paper was written, we have found a class of economies, called nonatomic
assignment models, in which the core test can be easier to pass than the other two. See Gretsky, Ostroy and
Zame [1991).



2. THE MODEL

The space of traders (T, \) is the unit interval, equipped with Lebesgue measure; we
usually write s,t for individual traders. The set of pure commodities is a compact metric
space X; commodity bundles are positive (Borel) measures on X. We write M(X) for
the space of measures on X and M*(X) for the cone of positive measures; we use Greek
letters a, 3,7 for commodity bundles and Roman letters z,y, z for points of X. To avoid
confusion, we write 8, (the Dirac measure at ) when we refer to the pure commodity z.
For a € M(X) we write a*,a™ for the positive and negative parts of @ and |a| = at +a”
for the absolute value of a. The norm of a is ||| = |a|(X).

Recall that M (X) is the dual of the space C(X) of all continuous real-valued functions
on X. The weak star topology (w* topology) on M(X) is the weakest topology for which the
mapping (¢, @) — ¢ - @ = [ p(z)da(z) is continuous for every ¢ € C(X).

We fix a reference bundle p in M*+(X). This reference bundle provides a scale against

which other commodity bundles may be measured. We make the following assumptions
about u:

e 4 is nonatomic
e supp u = X.

Therefore, the set of pure commodities is infinite. We have in mind the canonical case where
X =1[0,1] and p is Lebesgue measure.

An allocation is a weak star (Gelfand) integrable function f: T — M*(X). (This means
that for each ¢ € C(X), there is a measure a € M*(X) such that the real-valued function
t — ¢ - f(t) is Lebesgue integrable and [¢ - f(t)dA(t) = ¢ - @.) We denote the space of
allocations by A; the distance between two elements of A is d(f,g) = [I|f(t) — g()||dA(¢).
(Recall that, for a a positive measure, ||la|| = a(X) = [1lda, so that JNF@)IdA(2) is
finite for each allocation f and d(f,g) < [ lIf(®)lldA(t) + [lg(t)||dA(t).) Equipped with this
distance function, A is a complete metric space.

We denote the initial allocation (or endowment) by e:T — M7*(X), and write w =
[ e(t)dA(t) for society’s mean endowment. We require that:

(E) There exist positive numbers ci, ¢z such that c1u(B) < w(B) < copu(B), for every Borel
set B C X, (i.e., w and u are mutually boundedly absolutely continuous).

Since p has full support, (E) implies in particular that w also has full support; in this
sense, all commodities are represented. Since w is absolutely continuous with respect to
4, the Radon-Nikodym theorem implies that there is an integrable function S such that
w(E) = [ Sdp for each Borel set E, and [ pdw = [ pSdu for each integrable function .
(E) means that ¢; < § < ¢c2. We will frequently refer to S as (mean) supply and write
w = Su. More generally, if v is a positive measure and F is a positive function, then we
write Fy for the measure Fy(B) = [ Fdy. Note that ||Fv|| = [1dFy = fFdy=F-1.

Prices are bounded Borel functions p: X — R. We denote the space of all prices by
B(X) and the cone of positive prices by B*(X). Within B(X) we distinguish the subspace
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of continuous functions C(X) and of positive continuous functions C*(X). Given a price p
and a commodity bundle a, the value assigned to a by p is p - a = [ p(z)da(z).

We shall assume that preferences <, of individual traders satisfy the following standard
assumptions (for each t € T'):

(P.1) X, is complete, reflexive, transitive, and convex;

(P.2) the irreflexive part <, is strictly monotone (i.e., if @, 3 are positive measures and
B # 0 then a <; a + ).

Remark 1: (Convezity in the individualistic vs. distributional formulation.) Of these as-
sumptions, the only one which requires comment is convexity of preferences. One of the
remarkable properties of the finite dimensional non-atomic model is that convexity of in-
dividual preferences is superfluous, because of the “convexifying effect of large numbers”
(manifested in the Lyapunov convexity theorem or Fatou’s lemma). However, in infinite di-
mensional commodity spaces both the Lyapunov convexity theorem and Fatou’s lemma can
fail to hold (see Rustichini [1989]); for this reason, we find it necessary to assume convex-
ity of individual preferences. Nevertheless, approximate versions of the Lyapunov convexity
theorem and Fatou’s lemma are sometimes valid in infinite dimensional spaces, and we shall
make use of them in order to establish — for physically or economically thick markets —
that the core coincides with the set of Walrasian allocations. For those purposes, we shall
find that convexity of individual preferences is indeed superfluous. However, approximate
versions of the Lyapunov convexity theorem or of Fatou’s lemma are not strong enough to
guarantee the ezistence of Walrasian equilibrium.

The comments above apply to what we call the “individualistic” formulation of a
nonatomic model as in Aumann [1964] that we follow here. Were we to adopt the “dis-
tributional” formulation (as in Hart, Hildenbrand and Kohlberg [1974], Mas-Colell [1975],
and Jones [1983]), it would be possible to establish the existence of Walrasian equilibrium
without the convexity hypothesis. However, the distributional formulation brings with it
many complications. Indeed, even to formulate the core equivalence and withholding tests
of perfect competition would require additional constructions (see the distinctions among
the “core”, the “core of the convex space of agents”, and the “distributional core” in Gret-

sky and Ostroy [1985] and Gretsky, Ostroy and Zame {1991]). We have preferred to adopt
the individualistic formulation (even though it requires convexity) because it avoids these
complications and makes our points more transparently.

Continuity properties of individual preferences are a key factor in controlling substitution
properties between commodities. We shall assume that (for each ¢t € T):

(P.3) < is continuous in the norm topology of M(X)

(P.4) <, is upper semi-continuous in the weak star topology of M(X).

Since the norm topology of M (X) is stronger than the weak star topology, our continuity
requirements are less stringent than the requirement of weak star continuity of preferences
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(compare Mas-Colell [1975], Jones [1983, 1984], and Podczeck [1990]). As we shall see,
the difference is real and significant. Indeed, the possibility that preferences may fail to
be weak star continuous provides the opening to construct non-atomic models which are
economically thin.

We assume that the family of preferences is measurable in the following sense:
(P.5) if f, g are allocations, then {t € T': f(t) <; g(t)} is a (Lebesgue) measurable set.

This assumption may be compared with the usual measurability assumption for non-
atomic economies in the finite dimensional setting (see Aumann {1964, 1966]), which would
require that for every a,8 € M*(X), the set {t € T : o <; B} is measurable. Our
assumption is stronger in that we allow for the comparison of arbitrary allocations and
not simply for the comparison of constant allocations. In the finite dimensional setting, a
fairly straightforward argument shows the two assumptions to be equivalent. In our setting
(and in the presence of our other assumptions, especially the ones below), it may also
be shown that the two assumptions are equivalent. However, the argument is not at all
straightforward; we shall simply adopt the formulation which is convenient (and leave the
unpleasant technicalities to the interested reader).

The final, and crucial, assumptions about preferences concern (marginal) rates of sub-
stitution between commodities. As the work of a number of authors (especially Mas-Colell
[1986]) has made clear, the need for such assumptions represents a clear distinction between
the finite and infinite dimensional settings. Moreover, in our setting, the form of these as-
sumptions is somewhat delicate: they must be strong enough to allow for the demonstration
of Walrasian equilbrium, while remaining weak enough to permit markets which are not
necessarily economically thick.

We make two assumptions about rates of substitution; the first simply says that all rates
of substitution are bounded. This is a rather strong assumption; we use it because it is
easy to understand and substantially simplifies several arguments, without interfering with
our main aims: the formulation and elaboration of the of the differences between thick and
thin markets nonatomic models economies.

(B) There is a constant M such that: if @, 3, v are positive measures, if y —a+ /8 2> 0 and
Mllell < |IBll, then ¥ <¢ v — a+ [ for each t € T.

For our second rate of substitution assumption, we introduce some notation. For the
commodity bundle v and a Borel set Y of X, write v|Y for the restriction of y to Y, so
that (y|Y)(B) = v(BNY) for each Borel set B C X. Note that v = 7|Y + (X \Y).
We shall consider alternatives to v on sets Y of small diameter, specifically a measure Fpu
restricted to Y. Define Ex (F|Y) = [u(Y)]™! [ Fdp, the conditional expectation of F on
Y; and Var (F|Y) = [u(Y)]™! fy (F — Ex(F|Y))? dpu, the conditional variance of F on Y.

Suppose that for a given 7, 7|Y is replaced by Fu|Y. The following assumption, called
preference for local diversity (PLD), stipulates sufficient conditions for the replacement to
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(PLD) For each r > 1 there is a 6 > 0 and a d > 0 such that, if

(i) diameter (Y) < 4,
(ii) Var (F|Y)/Ex(F|Y) < d,
(i) [(Fe =Y 2 rll[(Fp - DIY],

then
NY +9[(X\Y) <¢ FulY +9[(X\Y).

The first condition says that the assumption only applies to nearby commodities (i.e.,
is ‘local’). The second condition says that the replacement Fu is nearly evenly spread out
on Y (i.e., a desire for ‘diversity’). The third condition says that the total mass of the
commodities received exceeds the total mass of commodities given up by at least r.

Note that we require (PLD) uniformly across traders and commodities: there is a single
reference measure u and a single metric (the diameter of subsets of X) such that all individ-
uals prefer small diameter changes in commodity bundles that are nearly evenly u-spread
out (provided that the spread out bundle has greater total mass).

The benchmark to which we compare (PLD) is the hypothesis of uniform substitutability
(US) used by Jones [1983, 1984] (and closely related to a notion used by Mas-Colell [1975]).
Informally, (US) says that, for nearby commodities, consumers prefer any feasible trade in
which the terms are favorable.

(US) Given r > 1 there exists § > 0 such that, if diameter (Y') < § and 3 is any commodity
bundle with 3(Y) > v(Y'), then

NY +7|(X\Y) < rBlY +|(X\Y).

To see that (US) implies (PLD), note that if 8 is if the form Fu, then (US) may be
written as (PLD) without any reference to the constant d and the variability of F. To see
that (PLD) does not imply (US), suppose X = [0,1], 4 = Lebesgue measure, ¥ = {0, 8],
and ¥ = mass point at 0: then (PLD) guarantees only that v <; r(1/6)(u|[0,6]), while
(US) guarantees both that v <; r(1/6)(u|[0, 8]) and (1/6)(u|[0,8]) <: rv. Evidently, (US)
is a stronger assumption since it stipulates the desirability of many more trades. As we
shall see, although (PLD) suffices for the existence of Walrasian equilibrium, the stronger
requirement (US) leads to quite different conclusions about perfect competition and will be
the basis of our definition of economically thick markets. (See especially Theorems 2 and 3
and Examples 1 and 4.)

We offer the following example of (PLD) and its relationship with (US). (Several of the
examples in Section 4 are homogenous versions of this one).

Example: Take X = [0,1], » = Lebesgue measure. Let u:[0,00) — [0,00) be a concave,
increasing, differentiable function such that 4'(0) < oo and u/(z) — 0 as z — oo. For each
real number p > 0, define the utility function U, by:

Up(y) = / uw(p~ "z - p, z]) du(z) + 10, 1],
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3.

and define Uy by
Uo(y) = / u(g(z))dp(z) + 1[0, 1],

(where we have written ¥ = gu + v, with gu absolutely continuous and 7, singular with
respect to u). It is not hard to see that, for each p > 0, the utility function U, is weak star
continuous and satisfies (US), and hence (PLD). On the other hand, the utility function Up
is weak star upper-semicontinuous but not weak star continuous, and it satisfies (PLD) but
not (US). (Since U,(y) — Up(7) for each v, the utility functions U, might be interpreted as
“averaged” versions of Uj. See Jones [1983] for related discussion.)

To obtain some additional insight into (PLD) and its relationship to (US), it is useful
to consider the interpretation of these assumptions in the contexts of consumption under
uncertainty and consumption through time. In the former context, let us view points of
X as indexing consumption of a single commodity over different states of the world and
interpret u as the objective probability distribution over states; we restrict our attention
to consumption patterns absolutely continuous with respect to . Then (PLD) is implied
if agents prefer (local) portfolio diversification and so corresponds to (local) risk aversion.
By contrast, (US) corresponds to (local) risk neutrality.

To illustrate, suppose an agent’s state-independent expected utility function is of the
form U(g) = [u(g(z))du(z), where v = gu. To be consistent with assumption (B) we
assume that the derivative of u is bounded away from 0 and oo. Also assume u(0) = 0.
A standard argument shows that the concavity of u (i.e., risk aversion) implies (PLD).
However, if U(-) is of the above separable form and (US) holds, then u must be linear (risk
neutrality). We defer the demonstration to Section 6.

If we view X = [0, 1] as indexing consumption of a single commodity at different points
of time, then a mass point is a “gulp” while an absolutely continuous measure is a “sip”. In
this context, (US) requires that (over small time intervals) gulps and sips be nearly perfect
substitutes, while (PLD) requires only that sips substitute for gulps, but not necessarily
vice versa. (See Kreps and Huang [1989] and Hindy and Huang {1989} for a closely related
discussion.)

Results
An economy is a pair £ = {(<), e}, consisting of a family of preferences and an initial
allocation, satisfying the assumptions (E), (P.1)-(P.5), (B), and (PLD) above.

An allocation f is in the core of £ if it is feasible and there does not exist an allocation
g and a coalition T C T of positive measure such that [ g(t)dA(t) = [ e(t)dA(t) and
f(t) <¢ g(t) for almost every t € T".

A Walrasian equilibrium for £ is a pair (p, f) where p € B(X) is a non-zero price and
f:T — M*(X) is an allocation such that:

(1) for almost every t € T, p- f(t) =p - e(t);
(2) for almost every t € T, if « € M*(X) and p- @ < p - e(t), then a %, f(2);
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(3) [ f(2)dA(t) = [e(t) dA(t) (f is feasible).

By definitiomn, prices are bounded Borel functions, and are defined everywhere. However,
there remains a certain unavoidable indeterminacy of equilibrium prices on sets of measure
zero. (The phrase “measure zero” should always be interpreted with respect to to the
reference measure u or the initial endowment w; since w and p are mutually absolutely
continuous, they have the same sets of measure zero). This indeterminacy stems from the
fact that, although the support of w, the initial endowment, is—by assumption (E)—equal
to the entire commodity space X, nonatomicity of 4 (and hence w) entails that w({z}) =0
for all points z € X. Because the story is a bit subtle, we defer it to the discussion preceding
Lemma 2, in Section 6. The summary conclusion is that we may, without loss, identify prices
(bounded Borel functions) which agree almost everywhere; the set of equivalence classes is
Loo(p) = Loo(w). With the usual abuse of notation, we frequently ignore the distinction
between a bounded Borel function and the equivalence class it represents. The norm of a
price p is ||p|| = ess sup p.

Although we allow for prices which are arbitrary bounded Borel functions (or equiv-
alence classes in Lo ()), we shall in fact prove that equilibrium prices necessarily enjoy
certain continuity properties. Roughly speaking, we shall show that equilibrium prices are
as continuous as the Radon-Nikodym derivative of society’s mean endowment w with respect
to the reference bundle y, i.e., mean supply. The following discussion makes this notion
precise.

Let ¢: X — R be a bounded Borel function, let Y C X be a Borel subset of X and let
z € X be a point of X. Write p|Y for the restriction of ¢ to Y. We say that the essential
limit of p|Y at z is a € R, and write ess lim.(¢|Y) = a, if there is a subset Yo C Y with
1(Yo) = 0 such that p|(Y — Yp) has the limit a at z (in the usual sense). Note that ¢ need
not have an essential limit at any point. On the other hand, Lusin’s theorem asserts that
for every € > 0, there is a compact subset K C X such that u(Y — K) < € and ¢|K is
continuous, and in particular, has an essential limit at every point of supp (4|K).

We say that the bounded Borel function ¥ is essentially as continuous as ¢ if ¥|Y has
an essential limit at £ whenever ¢|Y has an essential limit at . (Note that this relation
between 9 and ¢ depends only on their equivalence classes in Leo(t).) If ¢ is continuous,
this means that 1 has an essential limit at every point, and in particular, differs from a
continuous function only on a set of measure zero (see Lemma 5, Section 6). (In keeping
with our intent to identify prices which agree almost everywhere, we usually say simply
that 1 is continuous.) We write C,(X) for the space of functions which are essentially as
continuous as ¢ (in contrast to C(X), the space of continuous functions on X); we regard
C,(X) as a subspace of B(X) or of L () as convenient.

Our starting point is:
Theorem 1 (Existence of Walrasian Equilibrium)
(a) Walrasian equilibria ezist.

(b) All equilibrium prices belong to Cs(X) (where w = Sp is the mean societal endowment



and S is mean supply).

(c) The set of equilibrium prices of norm 1 is a norm compact subset of Lo (u).2

Theorem 1 says that equilibrium prices are “at least as continuous” as the mean supply
S. In particular, if the mean supply of commodities depends continuously on commodity
names, then the prices of commodities will also depend continuously on commodity names.
Because of its connection with imperfect competition, it is important to keep in mind that
if mean supply fails to depend continuously on commodity names, then price may also fail
to depend continuously on commodity names.

To see the connection with imperfect competition, consider the canonical case of differ-
entiated commodities in which T = X = [0,1], and each trader is endowed with exactly
one unit of his named good; i.e., e(t) = &, the Dirac measure at t. In this case, the mean
endowment w = [ e(t)dA(t) = X is Lebesgue measure on X. If we take the reference measure
4 = X also, then Theorem 1 yields a price p € C(X). Now suppose that a small group of
traders, say those in the interval [0, €], withhold half their endowment from the market; call
the resulting allocation ¢/. The Radon-Nikodym derivative S’ (with respect to u = 1) of
the mean endowment ' now has a jump discontinuity at e. We can conclude from Theorem
1 that the equilibrium price p’ is continuous on the interval [0, €) and on the interval (e, 1]
but it is possible that p’ has a jump discontinuity at e. Moreover, the size of this jump
might not approach 0 as ¢ tends to 0. In other words, traders in the interval [0, ] may face
downward sloping demand curves no matter how small the group; and, hence, individuals
may not be perfect competitors.

To conclude that a given Walrasian equilibrium (p, f) is perfectly competitive, we should
be able to say that if {T},} is a sequence of small groups (whose size converges to 0), and {e, }
is a corresponding sequence of allocations (tending to e) at which the group T, withholds
some of its endowment, then there should exist corresponding Walrasian equilibria (pn, fn)
such that the equilibrium prices p, converge uniformly to p. This is, of course, a way of
saying that no small group can affect prices, and it is a definition of perfect competition
which has a lot in common with the no-surplus definition (although the no-surplus definition
would have the group withhold all of its endowment); see Ostroy [1984].

To formalize this test, fix preferences and regard the economy as parametrized by initial
allocations.

Definition: The Walrasian equilibrium (p, f) (corresponding to the initial allocation e)
passes the withholding test provided that: Given a sequence T, of sets of traders such
that A(T,) > 0 and A(T,) — 0, and given a sequence e, of initial allocations such that
en(t) = e(t) for t € T, and en(t) < e(t) for t € T, there exist Walrasian equilibria (Pn, fn)
corresponding to the initial allocations e, such that {p,} converges to p uniformly on X.

Note that the withholding test refers to convergence of Walrasian prices and not Wal-
rasian allocations. This is as it should be: although Walrasian allocations are not uniquely

2Taking price to have norm = 1 is a normalization. Alternatively, we could normalize so that p-p=1lor
p-w =1, but these would prove less convenient for our purposes.



determined by prices, the corresponding utilities are; thus, although the allocations f, need
not converge to f the corresponding utilities will converge.

It would be too much to ask that every Walrasian equilibrium pass the withholding test;
this need not be the case even for non-atomic economies with two commodities (See Ostroy
[1980]). In applying this test we should, rather, take the generic point of view; i.e., we should
ask that the withholding test be satisfied for a generic set of Walrasian equilibria. Actually,
it makes sense to ask for a bit more. Let us say that the initial allocation e passes the
withholding test if every Walrasian equilibrium corresponding to e passes the withholding
test. For perfect competition, we shall insist that a generic set of initial allocations pass
the withholding test. (By “generic” we shall mean residual, or second category; i.e., the
interesection of a countable number of dense open sets. Recall that the Baire category
theorem says that generic subsets of complete metric spaces are dense.)

For our other test of perfect competition, we shall use the familiar Edgeworth test
that the core coincides with the set of Walrasian allocations. More precisely, we say that
the initial allocation e passes the core equivalence test if the core (relative to the initial
allocation) coincides with the set of Walrasian allocations.

The following result gives a more precise statement of the possible disjunction between
nonatomicity and perfect competition mentioned in the Introduction. It is demonstrated
by Example 4 in Section 4.

Theorem 2 (Existence of Imperfectly Competitive Economies) There ezist economies
which fail the core equivalence test and the withholding test of perfect competition. More
precisely, there exist a family of preferences and an open set of initial allocations in which
all Walrasian equilibria fail the core equivalence and the withholding tests of perfect compe-
tition.

To explore the boundary between the perfectly competitive and the imperfectly competi-
tive territories, we ask: What additional restrictions on economies guarantee that Walrasian
equilibria are perfectly competitive? In the remainder of this Section, we show that perfect
competition will result if markets are physically or economically thick.

We deal first with economic thickness, which we wish to interpret as strong substitutabil-
ity between commodities. We say that

Definition: Markets are economically thick if preferences are weak star continuous and
satisfy the Uniform Substitutability assumption (US).

Theorem 3 (Perfectly Competitive Equilibrium in Economically Thick Markets)
If markets are economically thick, then:

(a) all equilibrium prices belong to a norm compact subset of C(X)
Moreover,

(b) every initial allocation passes the core equivalence test,and
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(c) a generic set of initial allocations pass the withholding test.

Existence of 'Wa.lrasia.n equilibrium for economically thick markets has been demon-
strated by Mas-Colell [1975] and Jones [1983] for exchange economies and by Podczeck
[1990] for economies with production; core equivalence is also established by Mas-Colell.

A key difference between Theorems 1 and 3 is the conclusion about the continuity of
equilibrium prices. When markets are economically thick, equilibrium prices are continuous
whether or not S (recall that w = Su) is continuous. (In fact, prices lie in an equicontinuous
set.) The substitution possibilities among commodities have the effect of “smoothing out”
discontinuities in equilibrium prices which might arise from discontinuities in mean supply.
Recalling our previous example in which e(t) = §;, again suppose that the group of agents
in [0, ] withhold half their endowment from the market. As noted above, the result is that
mean supply has a jump discontinuity at €; however, if markets are economically thick,
equilibrium prices will remain continuous.

Examples illustrating that core equivalence does not imply that the withholding test is
passed in economically thick markets—i.e., that (b) and (c) of Theorem 3 are distinct—may
be found in Gretsky, Ostroy and Zame [1991].

There are several possible expressions of the idea that markets are physically thick. For
our purposes, the following version is appropriate:

Definition: Markets are physically thick if the initial allocation e satisfies: there is a
constant K such that
e(t) < Ku for almost every t € T

(Since the reference measure u and society’s mean endowment w are mutually boundedly
absolutely continuous, it would be equivalent to require that there be a constant K " such
that e(t) < K'w for every t € T.)

Notice that whereas economic thickness is defined by restrictions on preferences, physical
thickness is defined by restrictions on endowments. Physical thickness implies that there
are many (potential) sellers of each commodity. The monotonicity and (PLD) assumptions
on preferences guarantee that there also are many potential buyers.

An alternative, more in the spirit of Ostroy [1984] and Gretsky and Ostroy [1985],
would be to identify physical thickness of markets with Bochner integrability of the initial
allocation e.3 This would yield a more general notion of physical thickness of markets.?
However, as may be seen from the example below, Bochner integrability is consistent with
the possibility that small groups of consumers have a corner on the market for small sets of
commodities. This is a situation we wish to exclude. (See also Example 3 in Section 4.)

Example: For each n, let A, be the restriction of Lebesgue measure X on [0,1] to the

3The allocation e is Bochner integrable if it is norm measurable and f lle(OIdA(t) < oo.
*It is not hard to show that if e is weak® measurable and e(t) < Kp for all ¢, then e is in fact norm
measurable. Hence, thick markets allocations are Bochner integrable.
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interval I, = [(2" — 2)/2", (2" — 1)/2")]. Define the allocation e : T — M *(X) by:

2" A,, forte€ I;

e(t) = {61, fort = 1.

The allocation e is Bochner integrable and [e(t)dA(t) = A. Moreoever, for each t # 1,
there is a number K, such that e(t) < K;A. However, there is no uniform bound on e(t)
in comparison with ), and e is not a thick markets allocation. Note that small groups of
traders (traders in the interval I,,) have a corner on the market for small sets of commodities
(commodities in the interval I,,).

Our final result says that physical thickness also leads to perfect competition. To es-
tablish the sense in which the two tests of perfect competition are similar in their generic
conclusions with respect to physically thick markets, the following metric is defined.

If e;,e2 are thick markets allocations, then their mean societal endowments wj, w2
are boundedly absolutely continuous with respect to p; write S;, Sz for the correspond-
ing Radon-Nikodym derivatives, which belong to Lo (). We define the distance between
e1 and eg as:

d(e1,e2) = / le1(2) — e2(8)|dA(E) + 151 = Sallco-

Equipped with this metric, the space T of thick markets allocations is a complete metric
space.

Theorem 4 (Perfectly Competitive Equilibrium with Physically Thick Markets)
If markets are physically thick, then:

(a) All equilibrium prices belong to Cs(X)
Moreover,

(b) every initial allocation passes the core equivalence test, and

(c) a generic set of initial allocations pass the withholding test.

Theorem 4 arrives at the same conclusions about perfect competition as Theorem 3,
but for different reasons. When markets are not economically thick, equilibrium prices are
only as smooth as mean supply (Theorem 1). Hence, a change in the initial allocation by
a small group which effects a large (in norm) change in mean supply—a large change in
the supply of some commodities—can result in a large (in norm) change in equilibrium
prices—a large change in the prices of some commodities. Physical thickness of markets
means that small groups of agents can effect only small changes in the mean supply of all
commodities by withholding part of their endowment, leading, in general, to only a small
change in equilibrium prices. Individuals have no market power because there are numerous
suppliers of identical commodities. Economic thickness of markets means that the kind of
large change in mean supply of some commodities which can be caused by a small group
withholding will be smoothed to ensure little effect on equilibrium prices. In the absence of
either kind of market thickness, a nonatomic model may fail to be perfectly competitive.
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Remark 2: (The two tests of perfect competition.) Core equivalence and withholding appear
to be rather different tests of competitivity and, indeed, their methods of proof are distinct.
A summary of their differences is:

e There are separate traditions behind each: core equivalence has been the most inten-
sively studied formal standard of competitivty; nevertheless, the withholding test is
more closely aligned with the ordinary meaning of perfect competition as “the inability
of individuals to influence prices”.

e In game-theoretic terminology, the core represents a cooperative while the withholding
test more nearly represents a non-cooperative approa.ch.5

e The core starts from a more primitive position of bargaining in which prices may
emerge whereas the withholding test takes prices and Walrasian equilibria as given and
asks, in effect, whether individuals really face conditions of perfectly elastic demand
and supply.

Our position is that the two tests are complementary, with each having something to
offer over and above the other. Consider our results that the two tests produce generically
similar conclusions, although the withholding test is the more stringent. In the language of
mechanism design, the withholding test is related to the non-manipulability of the Walrasian
mechanism (see, for example, Roberts and Postlewaite [1976]). But, unlike the definitions
from that literature, the withholding test does not distinguish between (utility-)favorable
and unfavorable price manipulations, i.e., any manipulation of equilibrium prices represents
a violation. It is useful to comment on the implications of this property (of perfectly elastic
demand and supply).

When Walrasian equilibrium permits favorable manipulation, that is a clear indica-
tion of imperfect competition and it is expected that this would be accompanied by core
inequivalence. See Example 4, below. While inequivalence may be accompanied by favor-
able manipulation, core equivalence is not necessarily accompanied by non-manipulability
or unfavorable manipulation (see Ostroy [1980, Example 2] and Gretsky, Ostroy and Zame
[1991)).

Any manipulation, favorable or unfavorable, contradicts the ordinary definition of per-
fect competition, although within the framework of a fixed Walrasian mechanism, unfavor-
able manipulation could be ignored. However, in a bargaining framework, while individuals
might not directly benefit themselves, their ability to change prices would help/harm others
and this opens up a potential profit opportunity; individuals could threaten to withhold to
obtain compensation for not doing so. It is well-known that the core does not take ac-
count of threat possibilities. Thus, the core equivalence test of perfect competition might
be passed because it does not allow individuals to threaten. Theorems 3 and 4 show that
since the two tests (generically) agree, when there is core equivalence, core bargaining is
(generically) immune from such threat possibilities.

See Mas-Colell [1983] for an a non-cooperative perspective on core equivalence.
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4. EXAMPLES

Examples are given here illustrating several of the conclusions stated in the previous
section. In the discussion to follow some claims will be sketched, but most will simply be
asserted. In the latter category are: preferences and endowments satisfy assumptions (E),
(P.1-5), (B), and (PLD) of the model.

In all cases below, the space of commodities X coincides with the space of agents T =
[0,1]. Lebesgue measure is denoted by A on T and by u in X; the latter is the reference
measure on M (X). Also, in all cases the aggregate initial endowment (before applying
the withholding test) will be [edA = u. Of course, the way this aggregate endowment is
distributed will determine whether or not markets are physically thick. Equilibrium prices
belong to B(X); in fact, for the economy whose total allocation is y, equilibrium prices will
always be the characteristic function of X, denoted by 1.

In all but the last example individual preferences are identical and representable by
a concave, positively homogeneous function u: M*(X) — R (which varies among the ex-
amples). This will, of course, lead to substantial simplifications and short-cuts, e.g., even
though endowments differ among individuals, in computing Walrasian prices we may pre-
tend that the entire economy is a single individual. Also, in all but the last example, the
unique Walrasian equilibrium allocation will be a f such that f(t) = u for each t.

The purpose of these examples is to show how substitution possibilities among indi-
viduals of the kind that permit/preclude perfect competition are jointly determined by (1)
substitution possibilities among commodities by consumers and (2) substitution possibili-
ties among the suppliers of those commodities. To illustrate these phenomena we find it
useful below to highlight the properties of the directional derivative of the utility function
(see Hart {1979] and especially Jones [1984] for a similar point of view). The directional
derivative of u at the point « in the direction 3 is

(e f) = lim ulat i) - sle)

The sense in which u'(a;8) is or is not continuous in a and (3 will be emphasized below.

In the simplified setting of the first two examples there is a test which, if passed, will suf-
fice to satisfy the core equivalence and withholding tests. We shall outline the construction
and the reasons why it yields a two-for-one result here.

Letting {T} be a sequence of sets with A(T,;) — 0 used in the withholding test, suppose
that T, withholds all of its endowment, i.e., T, withdraws. Let p, be equilibrium prices
after T, withdraws. If we can conclude that ||p, — 1|] — 0 after T}, withholds all of its
endowment, we would reach the same conclusion if T, withholds only some.

Withdrawal is closer to the core: for a coalition to block in an exchange economy it must
do better after the complementary coalition has withdrawn. Because u is homogeneous, the
game-theoretic characteristic function associated with the economy (u, e) is v(S) = u(fse)
where v(S) is the “value” of coalition S, a Borel set in T i.e., the homogeneity of u allows
us to pretend that the game is one of transferable utility. (Briefly, the reason is that all
Pareto-optimal allocations for the subeconomy (u, es) consist of allocations f(t) = w(t) fse
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where w : S — R4 and [qwdA = 1.

To demonstrate that a Walrasian allocation is the only one in the core it suffices to show
that lim ||p, — 1|| = 0, where p, is a Walrasian price vector after T,, withdraws. Then the
Walrasian allocation f satisfies the condition

u(fT\T_ f)=o(T \ Th)
A(Tw)

lim

This is an application of the no-surplus test of the competitiveness of Walrasian Equilibrium.
In transferable utility models, the above condition is known to imply that the core consists
of a single allocation.

The summary conclusion is that to pass the core equivalence and withholding tests, it
suffices in our simplified setting to establish that |[p, — 1|| — 0, where p, is a Walrasian
price after T,, withdraws.

EXAMPLE 1: Perfect Competition with Economically Thick Markets

Initial endowments are given by e(t) = &, i.e., everyone is the unique supplier of their
own-name good.

Preferences are given by the function

2
w) =un = ([ I+ %@12) +mil

where 7,(z) = p~!9[z — p, z] and [z — p, z] is the interval modulo 1 of length p. This kind
of function as well as its various properties described below are found in Jones [1984].

What makes this an economically thick markets example — certainly it is thin markets
in terms of endowments — is the substitution possibilities among commodities. First, u
is weak star lower-semi-continuous. To illustrate, consider a sequence of measures with
finite support v, = n"! ¥ 6z,, Tk = k/n, k =1,...,n. (Note: |7}l = 1.) This sequence
has the property that for any z,v.([z — p,z]) — u([z — p,z]) = p, and 7n — p in the
weak star sense. Thus, u(y,) — {f (el + u,,(z))l/2dp(z)}2+m||p|| = u(u) =2+m. Even
though u represents consumption of all commodities in [0, 1], because commodities are good
substitutes the utility of such an allocation can be approximated by consumption of a finite
number.

A calculation shows that
Wit = met ([ U+ 2@ dut@) - ([ i+ 7m0

+p! ][Il*rll + ()] /2 d#(z)) :

z-p,2

where [z, 2z + p] is an interval in [0, 1] modulo 1.

The function ' is uniformly weak star continuous in §,,z € X. This means that for
any r > 1 there exists a § > 0 such that if |y — /| < §, then u/(y;r8,) > u/(7; 8y); so Jones
uniform substitutability condition holds. (See also Hart [1979].)
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It is readily verified that if p = 1, each individual having wealth 1-6; = 1 will maximize
utility by purchasing the bundle u. Further, if p were not equal to 1, all individuals
would wish to purchase more of the lower-priced than the higher-priced goods which would
contradict market clearing since [ e = p. So, (1, f), where f(t) = u, is the unique Walrasian
allocation.

To see that this example satisfies the core equivalence and withholding tests we appeal
to the remarks above asserting that we need only show the following: if {T,,} is a sequence of
small groups subject to the above restrictions, p, is a Walrasian price when T, withdraws,
and ||pn — 1|| — 0, then both tests are passed.

The price vector p, is an equilibrium for the single individual with utility function u
and endowment fT\T.. e = u™. Equilibrium prices will satisfy the condition that prices are
proportional to marginal utilities, i.e.,

pa(z) = cu'(p"; 62).

The function u'(y;6;) is jointly weak star continuous in v and z. This implies, in
particular, that for any r > 1, there exists a § > 0 such that if |z — 2’| < §, then u/(vy;76;) >
u/(y; 62/). (See Jones [1983].) Thus, p, is continuous, and by the joint continuity of v, {pn}
is uniformly continuous. Since u'(y;6,) = 1 +m and sup{|u’'(u"; 6.) —u'(u;6:)|jz € X} — 0
as u® — pu, we may put ¢ = (1 +m)~! to establish that ||pn — 1]|ec — O.

Not only is the withholding test satisfied at e, but by a similar argument it can be shown
that there exists an € > 0 such that if [ ||e’ — e]|dA < ¢, then the withholding test is satisfied
at €.

EXAMPLE 2: Perfect Competition With Physically Thick Markets

The utility function of Example 1 evaluates a bundle v by taking a continuously rolling
average of the amounts in each interval [z — p, z]. The fact that p > 0 is the source of its
weak star continuity (more precisely, its weak star lower-semi-continuity). The following
function puts p = 0:

2
wely) = uly) = { [+ 9(1:))1/24#} + milyl

where g(z) is the u-derivative of the u-continuous part of +.

To verify that u is not weak star lower-semi-continuous, consider again the sequence
Yo = n~1Y 6;,, where 7, — u in the weak star sense. Then u(y,) = (1 +m) but u(p) =
(2 + m). Similarly, examination of the directional derivative of this function,

uW'(7;6;) =(1+m),

reveals that it is not weak star continuous either in v or in z. However, u/(y; ) is jointly
continuous in the norm topology for 7 and 3. The norm continuity of directional derivatives
will suffice for this example provided markets are physically thick.

The physically thick markets condition requires that there exist an K such that e(t) <
Ky where again p = [ e. To make the results even more transparent assume 1 -e(t) = 1.

16



Given the symmetry of the utility function, the aggregate endowment equal to u, and
the identity of individual wealths at p = 1, it readily follows that (1, f) where f(t) = u is
the unique Walrasian equilibrium.

Again we subject the economy to a withdrawal test by T,. Now, because endow-
ments are not personalized, when T, is withdrawn suppu™ = X for n sufficiently large.
(Recall y* = fT\T.. e.) It follows from the hypotheses on physically thick markets that
liminf u(supp an e) > 6. This should be compared to the physically thin markets Example
1 where

lim p(supp/ e) = lim u(supp p|T,) = 0.
Ta

For thick markets we have the conclusion that || [ ellc = || — #™|loc — 0. Inspection
of the function u(y) reveals that if p, is a Walrasian price when T;, withdraws — i.e., p, is
a Walrasian price for the single individual with utility u having initial allocation x" then
llpn — 1]] — 1. This convergence of prices implies the passing of the core and withholding
tests.

Finally, on the question of genericity, there is an € > 0 such that if ¢’ is another initial

allocation and €’ is also a physically thick markets allocation with d(e,e’) < €, then the
economy with initial allocation e’ will also exhibit properties similar to e.

EXAMPLE 3: A Single Monopolist

Suppose tastes are the same as in Example 2 and that e : T — M*(X) is Bochner
integrable. It is well-known that for any ¢ > 0 there exists K, such that A{t : e(t) <
K.pu} <, i.e., the market is almost thick. Recall the example in Section 3 where

e(t) = 2Mp|l,) tel,
e(l) = 51,

and p|I, is the restriction of u to I, = [(2" - 2)/2", (2" — 1)/2"].

The unique Walrasian equilibrium for this example is the same as the previous ones:
equilibrium prices are 1 and each individual spends his wealth 1 - e(t) = 1 to purchase
@)= p.

The withholding test reveals that individual 1, and only individual 1, has monopoly
power. Suppose T, = [n—1/n, 1]. If T, withholds 1/2 of its endowment, the total endowment
is [\1, e+(1/2) [1, e = p\1. +1/2j1, = p". Exploiting the homogeneity of u, equilibrium
prices for the single individual with endowment u" are proportional to the unique gradient
(Gateaux derivative)

an(lluall + 1)Y/2  if z€T\Ty

an(z) = { an(lpnll +1/2)Y2 if z€T,

where an = [ (||pnll + 9n(2))"/?*du(z) and pp = gnp.
Letting pp, = (1 + m)~lqn, so that p, is the equilibrium price for , such that [ padu =
1, it is clear that lim ||p, — 1|| #» 0. However, for any other T3], say Ty, = [(n —2)/2n,1/2],
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there is an K such that for t € Ty, e(t) < Ky, and the analysis and conclusions follow those
of Example 2.

The core equivalence test of perfect competition does not catch the monopoly power
of individual 1: if we were to suppose another allocation f’ were in the core, there would
be a set S C T of positive A-measure such that on S, f/(t) # f(t) and the presence or
absence of individual t=1 in this set would be irrelevant. Hence, this example passes the
core equivalence test.

EXAMPLE 4: A World of Monopolists

Here we combine the endowments of the economically thick markets example with the
tastes of the physically thick markets example, obtaining a situation that is neither phys-
ically nor economically thick, a recipe for monopolistic competition. A variant of this
example appears in Ostroy [1973, 1984]. Pascoa [1986b] has several extensions which in-
clude economies with production. Romer [1987] uses a similar example. A version with
large but finite numbers of individuals and commodities was used by Dixit and Stiglitz
(1977] to exhibit monopolistic competition.

Let e(t) = 6, and u, = u be as in Examples 2 and 3. Again 1:e(t) = 1 and therefore,
by an argument familiar from the previous examples (1, f) where f(t) = u, is the unique
Walrasian equilibrium.

In this example we find that exactly the same argument we used to show that individual
1 had monopoly power in Example 3 can be duplicated to show that every individual has
monopoly power. Thus, if T,, = [(n — 2)/2n,1/2], then pa(z) =1,z € T, and

Pa(z) = [aa(lliall + 1/2)Y2 + m]/(1 + m)

is the Walrasian price when T, withholds one-half of its allocation. Evidently, ||p, —1|| # 0.

To demonstrate core inequivalence, note that the symmetry of the example plus the
homogeneity of u implies that the characteristic function v can be written as v(S) = u(| se)
and, in fact, by abuse of notation, since v(S) = v(S’) whenever A(S) = A(S’) we can write
v(A(S)). It is readily verified that for each non-null S,

V(A(S)) = u( [5 €) = u(u|S) < u(A(S)w),

where u(A(S)u) is the utility of the allocation to all the members of S in a Walrasian allo-
cation. Under these conditions, it can be shown that the core coincides with the Walrasian
allocation if and only if

L uASm) - uws) _,

(1-x(s)—0 1= X(S)]

And, it is precisely because prices do not converge that this condition does not hold and
the set of allocations in the core includes more than the Walrasian allocation f(t) = u, for
each t.

Neither the core inequivalence nor the failure to satisfy the withholding test are “knife-
edge” properties. Le., if ¢ is another initial allocation such d(¢’,e) = [ [|e’(t) — e(t)||dA(t) <
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1. it may be verified that the economy defined by e’ would also exhibit core inequivalence
and failure of the withholding test. This establishes the validity of Theorem 2.

EXAMPLE 5: A Perfectly Competitive Continuum of Edgeworth Boxes

A continuum of Edgeworth boxes suggests that trading relations reduce to a continuum
of bilateral monopolies. However, the hypothesis that an individual likes only two (pure)
commodities contradicts (PLD). We present an example in which equilibrium trades are bi-
lateral — as in the continuum of Edgeworth boxes — but because of commodity substitution
there is perfect competition. This is a variant of an example in Zame [1986].

Let h(t) = t +1/2 (modulo 1) and let endowments be given by e(t) = 6y(,); each
individual’s endowment consists of one unit of the commodity that is “one-half unit to the
right of his name.”

Preferences of individual ¢ are given by
u(y) = /[y(z)]""(”du(x) +75(t) + mllyll.

7, (t) is the u-singular part of vy evaluated at ¢ and g(z) is the derivative of the u-continuous
part of 4. The function ki(z) = 1 — (t — z)2. (A similar utility function is given in Jones
[1984].)

The marginal utility of the good having the same name as the individual is uj(y;§;) =
(1 + m), while the marginal utility of any other good is uj(v;8,) = m,s # t. For a u-
continuous measure described by its derivative g, notice that for fixed | gl, u}(v;g) is in-
creasing to (1 + m)||g|| as ¢ becomes more concentrated around t.

We assert that the unique Walrasian equilibrium (p, f) is given by p = 1 and f(t) = é;.
In terms of net trades, notice that f(t) — e(t) = (61, =8pr)) = —(=6¢,8n(r)) = =[f(R(2)) -
e(h(t))]. i.e., t and h(t) form an Edgeworth pair in which they can execute all their trades.

A summary description of this example suggests it should have properties similar to
the previous one in which monopoly power is ubiquitous. Markets are physically thin and
preferences are not similar to the weak star continuous preferences which permitted markets
to be economically thick. Nevertheless, this example is perfectly competitive.

Heuristically, it is not difficult to see why. In equilibrium, individual ¢ is the only buyer
of commodity z = t. but he has no monopsony power because individual h(t), the only
supplier of comnmodity ¢, could sell his one unit in small amounts to others who would be
willing to pay virtually as much per unit. Also, individual sellers have no monopoly power,
because if a small group T, were to withhold one-half their endowment, then even though
the new Walrasian equilibrium would require a significant shift in the equilibrium allocation
in which buyer t did not concentrate his purchases in his most preferred commodity but in a
small cluster (with y-non-null measure) near ¢, this would nevertheless lead to equilibrium
prices that were nearly unity. The complete withdrawal of a small group would have similar
consequences and this would lead by the kind of argument given above to core equivalence.

More formally. let us look at the properties of the directional derivative uy(v;8). At
most points u' is weak star continuous in neither v nor 3. However, if we look at the
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equilibrium allocation where f(t) = é;, we find that u}(6;;6;) is weak star continuous in
both variables at that point. Thus, at equilibrium this example shares the same important
continuity property that is universally true in Example 1.

CONCLUDING REMARKS

Research on nonatomic economies has emphasized its role as the natural setting for
the display and analysis of perfect competition. Such an emphasis ignores the possibil-
ity of monopolistic competition, i.e., environments in which small scale traders possess
monopoly power. Recent examples of monopolistically competitive nonatomic models are
Hart [1985a,b], Pascoa [1986a,b], and Romer {1987].8

The goal of this paper has been to provide a nonatomic framework in which either
perfectly competitive or monopolistically competitive environments might occur. This has
been accomplished using the traditional idea that “perfect competition is a special case”.
By adopting a sufficiently general setting to permit monopolistic competition, we then ask
what additional conditions are necessary for perfect competition. Our answer is that, over
and above nonatomicity, markets must be physically or economically thick.

The canonical case of a physically thick market is Aumann’s model of a nonatomic
economy with a finite number of (physically identical) commodities. For many commodities
(e.g., skilled labor, housing, etc.), the hypothesis of physical thickness does not apply. In
these cases, the question of competivity is: are markets economically thick, i.e., do individual
preferences satisfy the uniform substitutability condition with respect to the available set of
commodities? To address interesting and important instances of monopolistic competition,
the answer must be “no”.

We have adopted the assumption of (PLD) as one possible alternative to, and exten-
sion of, uniform substitutability that is compatible with monopolistic competition. The
origins of an individual’s monopoly power in the supply of a particular commodity are first,
the market must be physically thin and, second, the typical buyer must find the commod-
ity supplied to be a complement rather than a substitute for other commodities. Under
(PLD), this complementarity can only arise if the typical buyer has a distinct preference
for diversity, i.e., for commodity bundles whose support have positive s measure compared
with commodity bundles with null support. Therefore, in a monopolistically competitive
setting, the typical buyer will consume (small quantities of) a positive fraction of the avail-
able supply of commodities. There is, however, no possibility of monopsony power because
(PLD) precludes that a few buyers could have a ‘corner’ on the demand for any commodity.
We note that the same two features of a distinct preference for diversity and the absence of
monopsony power are also present in the models of Romer [1987] and Pascoa [1986b].

(PLD) may be contrasted with the crucial non-neighboring goods (NNG) assumption of
Hart [1985] and extended by Pascoa {1986a]. In terms of the above, (NNG) implies that
individuals exhibit a distinct aversion to diversity; a typical individual is only interested in

8The first two papers are inspired by the ideas of Chamberlin [1933] while the third follows the ideas of
Chamberlin’s teacher Young [1928].
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commodity bundles with g-null (in fact, finite) support. For example, indexing houses by
their location, (NNG) says that nearby houses would not be good substitutes.

It seems that to have a more flexible and valuable model of monopolistic competition,
something like a convex combination of (NNG) and (PLD) is needed, i.e., a description of
preferences in which nearby commodities does have some meaning in terms of substitution
possibilities and yet not necessarily the same meaning for all individuals. Such an hypoth-
esis would also be useful in the theory of production for describing substitution among
differentiated inputs.

. PROOFS

In Section 2, the following was claimed: If preferences satisfy (US) and are represented
by U(g) = [u(g(z))du(z), where u is nonatomic, then u is linear. To demonstrate, suppose
the contrary. Therefore the derivative of u is not constant and we may choose two values
s1 < 82 for which u/(s;) > u/(s3). Fix r such that v/(s;)/u/(s2) > r > 1; and choose disjoint
sets Y7, Yo such that diameter (Y; U Y3) is less than the § corresponding to that r (in the
statement of (US)). Let g; be the characteristic function of Y;, i = 1,2. According to (US),

U(sig1 + s292) = u(s1)u(Y1) + u(s2)u(Y2)
p(Y1)

) + s2])u(Y2)
u(Y1)
u(Yz)

Because the derivative of a concave function is decreasing, and u(0) = 0, we obtain first the
inequality,

< u([rs:

U(lrs: + 52]92)

U(s1g1 + s2g2) > s19/(s1)u(Y1) + U(s292);
and, then since u/(s1)/u/(s2) > r,

p(Y1)
u(Y2)

+82]g2) < rsnu’(sz)[”(Yl)]u(YzHU (s292)
n(Y2)
< 19/ (s1)p(Y1) + U(s292).
Since this is a contradiction, we conclude that u must be linear and that (US) entails
risk-neutrality. (Similar conclusions contrasting (PLD) and (US) may be obtained if u is
state-dependent, provided that the derivative of u depends continuously on the state.)ll

U([rs:

The following lemma records the fact that the value a price p assigns to society’s mean
allocation is (as we wish it to be) the average of the values it assigns to each trader’s
individual allocation.

Lemma 1 Ifp ts a price and f is an allocation, then
p- [fware = [p- 1ODO.

Moreover, ifv = [ f(t)dA(t) and A C X is a Borel set such that v(A) = 0 then f(t)(A) =0
for almost allt € T.
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Proof: Fix a Gelfand integrable function g : T — M™*(X) and write By for the set of
bounded Borel functions g with the property that q-g(¢) is measurable and [ ¢- g(t)dA(t) =
g [ g(t)dA(t); we want to show that By contains all bounded Borel functions.

Recall that B(X) is the smallest space of functions which contains all continuous func-
tions and is closed under the formation of pointwise limits of bounded sequences. The
definition of Gelfand integrability means that every continuous function belongs to By, so
we need to show that if ¢ € B(X) is the pointwise limit of a bounded sequence {gn} of func-
tions in By, then g also belongs to By. To see this, note first that, for each ¢, an application
of the Lebesgue bounded convergence theorem yields:

a9 = [e@dot)@) = [llimg@ldo(t)(a)

lim / gn(2)dg(t)(z)
= lim{gs - g(?)].

Since the functions g, belong to By, the functions [gy, - g(t)] are measurable; this means
in particular that ¢- g(t) is the limit of a sequence of measurable functions, and is therefore
measurable. Combining the above equalities with two further applications of the Lebesgue
bounded convergence theorem yields:

[a-s0nr® = [iimign - olare
= tina{ [ gn - gD
= limlgn - [ g(t)aA(E)]

limgal - [ 9(t)aA(D)]

2 [s0D®.

Hence g € B,. We conclude that By contains all continuous functions, and is closed under
the formation of pointwise limits of bounded sequences; this means that B, consists of all
bounded Borel functions, as desired.

To obtain the second statement, note that v(A) = x4 - v for every measure v € M(X)
(where x4 is the characteristic function of A). From the above we conclude that, for every
Borel set A C X,

1) =xa-7= [xa- 930D = [ 9O @B,

Since each of the measures g(t) is positive, the last integral is 0 if and only if g(t)(4) = 0
for almost all t € T, as desired. §

We turn next to a discussion of the sense in which it is possible to identify prices which
agree almost everywhere. There are three issues: (1) How are equilibrium prices affected
by a price change on a set (of commodities) of measure zero? (2) How are equilibrium
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allocations affected by a price change on a set of measure zero? (3) How can we recognize
equilibrium prices independent of their values on a set of measure zero?

Let us first record a useful observation: If p and ¢ are prices which agree almost every-
where (i.e., except on a set of measure zero), then p-w = ¢ - w. It follows from Lemma 1
that, for any feasible allocation f (and in particular, for f equal to the initial allocation e),
p- f(t) =q- f(t) for almost all traders ¢.

(1) To see how equilibrium prices are affected by a price change on a set of measure zero,
let (p, f) be a Walrasian equilibrium and let q be a price for which ¢ = p almost everywhere;
we ask whether (g, f) must also be a Walrasian equilibrium. This is of course a question of
wealth, of expenditures, and of the costs of desirable commodity bundles. As noted above,
the set of traders whose wealth differs at p and at g constitutes a set of measure zero.
Similarly, the set of traders whose expenditure differs at p and at ¢ also constitutes a set of
measure zero. Since the notion of equilibrium is insensitive to any null set of traders, these
effects are of no importance. However, if ¢(z) = ¢- 8, < p- 6; = p(z) for some z € X then
the pure commodity 8, is certainly cheaper at ¢ than at p. Since this commodity might
be desirable, it might be the case that every trader (or at least every trader in some set
of positive measure) would wish to consume additional quantities of §, and could afford to
do so; in this circumstance, ¢ will not be an equilibrium price. However, if ¢ = p almost
everywhere, and ¢ > p everywhere, then no commodities are cheaper at ¢ than at p; since
wealth and expenditures are affected only for a null set of traders, in this circumstance, ¢
will be an equilibrium price.

(2) To see how equilibrium allocations are affected by a price change on a set of measure
zero, let us suppose that (p, f) and (q,g9) are Walrasian equilibria corresponding to the
same initial allocation e, and that p = g almost everywhere; we ask for the relationship
between the Walrasian allocations f and g. Since optimal consumption choices are not
necessarily unique, there is no reason to suppose that f = g almost everywhere. However,
our observation above yields that ¢- f(t) =p- f(t) < p-e(t) = ¢-e(t) for almost all traders
t, and similarly that p- g(t) = q- g(t) = q- g(t) < ¢ e(t) = p - e(t) for almost all traders
t; hence (p,g) and (g, f) are also Walrasian equilibria. That is, p and ¢ admit the same
equilibrium allocations.

(3) Finally, we come to the question of recognizing equilibrium prices, independently of
their values on a set of measure zero. Let p, ¢ be prices which agree almost everywhere; as we
have already noted and used several times, p-e(t) = g-¢e(t) for almost all traders. Moreover,
if a is a measure which is absolutely continuous with respect to u, thenp-a = ¢-a. In
combination, this means that, for almost all traders ¢, the budget set at the price p and the
budget set at the price g contain the same absolutely continuous measures. The key to the
following lemma, which enables us to recognize an equilibrium price, independently of its
values on a set of measure zero, is that the absolutely continuous measures in the budget set
determine its optimal elements, even if the optimal elements are not themselves absolutely
continuous.

Lemma 2 Let f be a feasible allocation and let p be a bounded Borel function. The following
statements are equivalent:
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(i) there is a bounded Borel function p* such that p* = q almost everywhere and (f,p")
1s a Walrasian equilibrium; ‘

(ii) for almost all traders t, if « € M*(X) is absolutely continuous with respect to w and
f(t) <t a thenp-e(t) <p-a.

In view of this discussion, we shall identify prices which agree almost everywhere. Simi-
larly, we shall frequently not distinguish between a price (which is a bounded Borel function
on X) and its equivalence class (which is an element of Loo(u)).

The proof of Lemma 2 requires a number of constructions and some preliminary lemmas
which will also be useful in the proofs of the Theorems. The first order of business is
to construct a sequence {II,} of partitions of X and a corresponding sequence {®,} of
“averaging operators” mapping M (X) onto finite dimensional subspaces.

Fix the reference measure 4, an initial allocation e, and the societal endowment w. Let
S be the supply function (i.e., the Radon-Nikodym derivative of w with respect to u); by
assumption (E), there are constants ¢), ¢y such that 0 < ¢; < § < ¢ < 00. For F a subset
of X, we write var(S, E) for the variation of S on E and essvar(S, E') for the essential
variation; i.e.,

var(S,E) = supS(z)— inf S(z)
z€E z€E

essvar(S,E) = esssupS(z) — essinf S(z)
z€E z€E

Using an inductive procedure, we can construct a sequence {II,} of partitions of X with
the following properties:

(a) I, is a partition of X into a finite number of measurable sets of positive
measure;

(b) M,4; is a refinement of II, (i.e., every set in II,,4; is contained in some set
in II,,);

(c) every set in II, has diameter less than 27";

(d) for each set E € II,, essvar(S, E) < 27".

For each n, we write M, for the finite dimensional linear subspace of M (X) spanned by the
measures u(E)~1(u|E), for E € II,,. It is easily checked that these (normalized) restriction
measures form an order basis for M,. In particular, the dimension of M,, is the cardinality
c(n) of I, M, is a sublattice of M (X), and M, is isomorphic (as a vector lattice) to R™)
(by an isomorphism which takes the measures u(E)~!(u|E) in M, to the coordinate vectors
of R€™)). In addition, u € M, and M, C My, for each n.

Define the mappings ®, : M(X) — M(X) by:
Bo(a) = Y a(E)u(E)™ (4 E)

Eell,

We sometimes call each of these mappings an averaging operator, and the sequence {®,}
an averaging sequence. The following result records the basic properties of the maps @n.
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Lemma 3: Each of the averaging operators ®, has the properties:
(a) ®, is a positive linear mapping of M(X) onto M,;
(b) ®,(a) =« for each « € M,;
(c) 1®n(a)ll < lla|l for eack a, and ||@n(@)|| = ||lal| if a« 2 0;
(d) for each E € II,, and each a € M*(X),a(E) = ®,(a)(E).

The sequence {®,} of averaging operators has the properties:

(e) for each « € M(X), ®,(a) — a in the weak star topology;

(f) for each B € M(X) which is absolutely continuous with respect to p,P,(8) — B in
the norm topology.

Proof: The verfications of (a)-(d) are straightforward and are left to the reader. To
obtain (e), fix a measure a € M(X), a continuous functions ¢ € C(X) and a real number
€ > 0. By considering the positive and negative parts of o separately, we may, without
loss of generality, assume that o« is positive. Continuity of ¢ means that we can find a
§ > 0 such that |g(z) — ¢(z’)| < € whenever d(z,z') < §. We assert that, if 27" < §, then
| [ gqda— [ qd®Pn(c)| < 2ea(X). To see this, choose and fix, for each set E in the partition II,,,
apoint zg € E. Then [ gda = ¥ [ qda, where the sum extends over all sets E € II,,. Since
the diameter of each such E is at most 27" < §, we see that | [z gda — g(zg)a(E)| < ea(E).
Hence | [ gda — Y q(zg)a(E)| < ea(X). Similarly, | [ qd®n(a) — £ q(z£)@n(a)(E)| <
€®,(a)(F). Since a(F) = &,(a)(F) for each E € M, and a(X) = ®,(a)(X), combining
these two estimates yields that | [ gda — [ qd®Pn(a)| < 2ea(X), as asserted. Since € and ¢
are arbitrary, this yields (e).

To obtain (f), it is convenient to first treat a special case. Let a be a positive measure
which is absolutely continuous with respect to ux, and which has the property that the
Radon-Nikodym derivative ¥ of a with respect to u is a positive continuous function. Let
€ > 0 be a positive real number, and choose a § > 0 with the property that |y(z)—¥(z')| < €
whenever d(z,z') < 6. We assert that, if 2" < §, then ||a — &,(a)|| < e[a(X) + u(X)]. To
see this, fix a subset A C X, and for each set E in the partition II,, choose and fix a point
zg € AN E. We obtain (sums running over all sets F € II,,):

o4) =Y a(4nE) = ¥ [ 1da= ) IRECT
=2 /AnE V.

Expanding ®,(a)(A) in a similar way yields:
Ba(@)(4) = Y a(BE)u(E)'w(ANE)]
= 3/ 1d0)k(B) w4 E)]

= L@ wanE) [ v
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Our choice of points E and the fact that 27" < § implies that
| [ ¥du—-$(@e)u(AN B)| < ca(4N E)
ANU
and that | [z ¥dp — ¢¥(zg)u(F)| < ea(E). Putting all this together yields
|a(A) = Bn(a)(4)] < ela(X) + p(X)].

Since A is arbitrary, this means that ||a—®,(a)|| < e[a(X)+u(X)), as asserted. Since € > 0
is arbitrary, this yields (f) in the special case that « is positive and its Radon-Nikodym
derivative 9 is continuous.

To obtain the general case, fix a measure a which is absolutely continuous with respect
to u, with Radon-Nikodym derivative ¥; there is no loss of generality in assuming that o
(and hence ) is positive. Fix € > 0. Absolute continuity of a implies that we can find a
real number p > 0 such that a(A4) < ¢ whenever u(A) < p. By Lusin’s theorem, we can find
a compact subset X’ C X such that u(X — X’) < € and 4|X’ is continuous; write m for the
maximum of ¥ on X’. Choose an open set U containing X’ such that u(U — X’) < ¢/m,
and choose a continuous function % on X which agrees with ¢ on X', is bounded by m, and
vanishes outside U. Set & = vyu; it is easily seen that |ja — &|| < e. The argument above
shows that ||®,(&) — @|| < ¢ for n sufficiently large; combining this with (c), the estimate
la — &|| < e, and the triangle inequality yields that ||®,(a) — a|| < 3¢ for n sufficiently
large. This completes the proof. i

By way of introduction to the next Lemma, consider a trader ¢t and commodity bundles
a, 3 such that a <; 8. The averaging sequence {®,} has the property that ®,(y) — v
(weak star) for every ¥ € M(z), so weak star upper semi-continuity of preferences tells us
that, for all sufficiently large n, ®,(a) <; 8. However, weak star upper semi-continuity tells
us nothing at all about trader t's preferences over the bundles @ and ®,(3). The following
lemma, which is the first critical application of (PLD), fills this gap.

Lemma 4 (Averaging Property): Let a,f € M*(X) and let t € T. If a <; B, then
there is an ng such that a <; ®,(8) for each n > ng.

Proof: Continuity of preferences allows us to find a real number r > 1 such that a <;
r=18 < B; write y = =18 = gu + 7,. Let § be the number given in (PLD) and choose ng
so that 2-) < 6. Fix n > ng and fix a set E € II,,. Since a, is a singular measure, we
can find a subset E' C E such that v,(E’) = 7,(E) and u(E') = 0. Set cg = ry(E)/u(E),
Ap={z€(E—-E'):g9(z)>cg} and Bg = {z € (E - E'): g(z) < cg}.

We claim that a <; r®,(v). To see this, write

vy=Y {(1|E') + (gnlAE) + (9u|BE)}

(summation over E € II,)) so that:

®n(ry) =X ce(ulE)
=Y {(a|E) = [(Y|E') + (rgu — ce)(u|AE) + (c — rgu)(u|BE)}.
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Our construction guarantees that (PLD) can be applied to each of the terms in curly
brackets, so that v <; ®,(rv). Recalling that v = r~!8 and r®,(y) = ®,(8), and that
a <; r~18, and applying transitivity of preferences yields the desired conclusion.

The following lemma justifies a remark made in the discussion of essentially continuous
functions, at the end of Section 2.

Lemma 5: Let X be a compact metric space and let y be a positive measure on X with
suppu = X. If ¢ is a bounded Borel function on X which has an essential limit at each
point, then there is a continuous function ¥ on X which agrees with ¢ almost everywhere.

Proof: For each z € X define
¥(z) = esslimp(y).

To see that 1 is continuous, fix a point z € X and a sequence {z,} converging to z, and
suppose that ¥(z,) / ¥(z). Passing to a subsequence, we may find a § > 0 such that
|¥(zn) — ¥(z)| > 6. For each € > 0 and each n we may find a set A, of positive measure
such that d(y,z,) < € and |p(y) — ¥(z,)| < 1/26 for each y € A,. However, this provides
sets of positive measure arbitrarily close to z on which ¢ differs from ¥(z) by more that
1/26; this contradicts the fact that ¢¥/(z) = esslim ¥(y). We conclude that 1 is continuous.

If ¢ and ¢ differ on a set of positive measure, we can find a § > 0 and a set B C X of
positive measure such that |p(y) — ¥(y)| > 8 for each y € B. We can then find a sequence
{Bn} of subsets of B, each of positive measure, having the property that diam(B,) — 0.
Compactness of X implies that there is an £ € X with the property that every open
neighborhood of = contains infinitely many B,’'s. This is incompatible with the facts that
Y(z) = esslim p(y) and that ¥ continuous at z so we conclude that ¢ = 9 almost every-
where. 11

We now have all the ingredients necessary to prove Lemma 2.

Proof of Lemma 2: To see that (i) implies (ii), we need only note that, if p = p* almost
everywhere, then p - a = p" - a for every measure a which is absolutely continuous with
respect to u, and p - e(t) = p* - e(t) for almost every t (Lemma 1).

To see that (ii) implies (i), we show first that, at the price p, almost every trader’s
consumption is in his budget set. Since f is feasible, Lemma 1 yields:

[t senare)

p- / F()dA()
< p / e(t)dA(t)
/ [p- e(®)]dA(2).

Hence, if there is a set of traders of positive measure for which p- f(t) > p- e(t), there must
also be a set of tradersT” C T of positive measure for which p- f(t) < p- e(t). Monotonicity
of preferences and the averaging property imply that for each t € 7' we may find a rational
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number p; > 1 and an index n; such that

p-lpef(t)] < p-e(t)
Palpef()] > f(2)

for each t € T', n'> n,. Hence, we can find a single index n*, a single rational number p*
and a set of traders T™ of positive measure such that

p-[P"f(H)] < p-e®)
Salp"f(O)] > f(2)
for each t € T™, n > n*. Since f is a feasible allocation, v* = [p. f(t)dA(t) is absolutely

continuous with respect to u. Hence, ®,(y*) — 7" in norm, so that p- ®,(v*) — p- 7.
Three applications of Lemma 1 yield that

Il

pr = [ pfOD®
.00 = [ @ns@are

p-@a(r) = [ p-@alf®)A®

Write w* = [r. e(t)dA(t), and note that fr. p-[p* f(t)]dA(t) < [ p-e(t) dA(t) = p-w".Together
with the equalities above and convergence of p - ®,(7*) to p- 4", this means we may choose
an i > n” so large that
p o ®a(?)] <p-w

Hence we can find a set of traders T** C T of positive measure such that p - [p*®,(f(1))] <
p-e(t) for every t € T*. Since p*®,(f(t)) > f(t) and p*P,(f(t)) is absolutely contintuous
with respect to u, this violates (ii). We conclude that almost every trader is in his budget
set, as desired.

The next task is to show that p is essentially as continuous as S. If this were not so,
we could find a Borel set Y C X and a point z € X which belongs to supp(z|Y), such that
S|Y has an essential limit at z but p|Y does not. In fact there is no loss of generality in
assuming that S|Y has a limit at z, say lim,(S|Y) = s; (E) guarantees that s # 0. To say
that p|Y does not have an essential limit at z means that there are sets A, B C Y such that:

(a) u(4) >0,u(B) >0,
(b) z € supp (p{A4) Nsupp (x|B)
(c) pa = inf (p|A) > sup (p|B) = pp

Set p = pa/pp and choose r with p > r > 1. For this r, (PLD) yields corresponding
numbers § > 0 and d > 0.

Write f(t) = g:u + 11, where 7 is singular with respect to u. We claim that for almost
every t, 7¢(A) = 0 and (1 + d)g:(z) < gi(y) for almost all z € A,y € B. To see this, write
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Ty ={te€T:m(A)#0} and Tp = {t € T : there are sets of positive measure A’ C A, B’ C
B such that (1 + d)gi(z) > g:(y) for z € A’,y € B'}. A straightforward argument shows
that T} and T are measurable sets; we wish to see that they have measure 0.

If T1 has positive measure, let ¢t € T). Since 7, is singular with respect to u, we can
find a measurable set A; C A such that 7:(4;) = n,(4) > 0 and p,(A) = 0. Note that
f@)(As) = n(A) = n:(A). Let B, C B be a set of positive measure (to be chosen later),
and set F(5)(4U BY)

t t U By
= f(t —_— .
f®|x\(aus,) +7‘[ (AU By Blea,uB)
We may choose B; so that f(t)(B;) and diameter (B; U {z}) are as small as we like. For an
appropriate choice, (PLD) guarantees that ¢ > f(t) and the fact that p > r > 1 guarantees
that p- 9 < p- f(t). We have already shown that

p-f(t)<p-e(t)

for almost all ¢. It T} has positive measure then, arguing just as before, we can find a subset
T{ C T of positive measure and an index n such that ®,(v¢) > f(t) and p-®n(1:) < p-e(t)
for each t € T}. Since this contradicts (ii), we conclude that T} has 0 measure.

IF T3 has positive measure, let t € T5. Using the definition of T and nonatomicity of
p, we can find subsets A} C A and B; C B with u(A4) = u(B) > 0, and ¢.0 such that, if we

write ! f(t)(A )
= 2@ /A; g(z)dp(z) = A

and

then

a—¢ < g(z)<a+e for each z € A

b—e¢ < gi(y)<b+e for eachy € B;
a(l+d) > b+e(l+r+d).

Set ' = (b+ra)/((1+d+r) and ¥’ = b+ r(a — a’) and define the measure
= f(t)x\(aruB)) + ¢l + |

(PLD) together with some straightforward (but messy) algebra shows that v} >, f(t); simple
algebra shows that p-v; < p- f(t). Arguing as in the previous paragraph, we obtain a subset
T, C T; of positive measure and an index n such that ®,(v}) »: f(t) and p-®,(7;) < p-e(?)
for each t € Tj. Since this contradicts (ii), we conclude that T has measure 0.

Now fix subsets A’ C A, B’ C B. Since f is a feasible allocation, [ f(t)dA(t) = w = Su,
so that Lemma 1 implies:

o) = [ s@dute) = [ {[ [ a@duta)] +na)}axo.
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Since n;(A’') = 0 for almost all ¢, we obtain:
[0+ ds@dua = [ [ (1+da@du@are
A’ TJA
k)@ [ [ awdnoao
W )/wB)] [ Swdu(w)

IA

IN

Since A’ and B’ are arbitrary, this means that (1 + d)S(z) < S(y) for almost every
z € A,y € B. However, since we may choose the sets A, B to be arbitrarily close to 2, this
contradicts the fact that S|Y has a non-zero essential limit at z. We conclude that p is
essentially as continuous as S, as desired.

In order to obtain the equilibrium price p*, we use Lusin’s theorem to find a disjoint
sequence {Y,} of compact subsets of X such that:

(a) for each n, the restriction S|Y, is continuous;
(b) for each n, u(Y,) # 0 and supp(u|Ys) = Ya;

(c) u(X -UY,) =0.

(The remainder of this construction depends on x and on the sequence {Y; }, but is otherwise
independent of the supply function S and the endowment w.) For each k, set Z, = Y; U
...UY,, so that {Z;} is an increasing sequence of compact sets and UZ; = UY, =Y.
For each k, the restriction p|Y; is as continuous as S|Y}, and hence (by Lemma 5) may be
altered on a set of measure 0 so as to be continuous. Carry out this construction for each
k, and call the resulting function p* (so that p* is defined at each point of Y'); at each point
2z € (X -Y), define p*(2) = |Iplloo- It is clear that p* = p almost everywhere; to verify that
p* is an equilibrium price we need to verify that almost all traders optimize and that the
consumption bundle of almost every trader lies in his budget set.

Let T be the set of traders for which f(t) is not optimal at the price p*; i.e., there is
a measure @ € M*(X) (which may depend on t) such that p* - @ < p* - e(t) and f(t) <; «
We will show that for each ¢t € T™, there is an absolutely continuous measure < such that
p* v < p*-e(t) and f(t) < 7. Continuity and monotonicity of preferences imply that
there is a measure 8 € M1(X) such that p* - 8 < p* - e(t) and f(t) <; 8. By the averaging
property, we know that there is an index n such that f(t) <; ®,(8) for all sufficiently large
n. On the other hand, we assert that lim sup{p* - ®,(3)] < p*- 3. To see this, we fix an index
k and decompose § into the sum of three measures: 8 = S + v + v* where By = B|Z,
e = BI(Y — Zi) and ¥* = B|(X —Y). Since p* is continuous on Z; and $,(B) — Bi (weak
star), we conclude that [p* - ®,(Bk)] = p" - B for each k. Since p*(2) = ||p*llc = |IPllo at
each point z € (X —Y) and ||®,.(8)|| = ||68]| (because S is a positive measure), it is surely
the case that [p* - ®,(y")] < p* - v" for each n. Finally, p* - ®n(7k) and p* - v, are very
small if k is very large (since the norm of the measure 7 is very small for large k). Putting
all these facts together yields that limsup[p® - ®,(0)] < p* - B, as asserted. However, since
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$,(B) is absolutely continuous with respect to 4, this implies that, for sufficiently large n,
p®n(B) < p*®a(B) < p* - e(t) = p-e(t) and f(t) <¢ Bn(B). Since ®4(f) is an absolutely
continuous measure, our hypothesis implies that 7 has measure zero.

Finally, note that, since p and p* agree almost everywhere and f is a feasible allocation,
Lemma 1 guarantees that p* - e(t) = p - e(t) and p* - f(t) = p - f(t) for almost every t. We
have already shown that, at the price p, almost every trader’s consumption is in his budget
set, so the same is true at the price p*. The argument above shows that, at the price p~
almost all traders are optimizing, so we conclude that (p*, f) is an equilibrium, as desired.l

In the proof of Theorem 1, we shall construct an equilibrium for the given economy as
the limit of equilibria of approximating finite dimensional economies; we shall need three
lemmas about these limits. The first of these is a relative of Ascoli’s theorem. In its
statement, {II,} is the sequence of partitions constructed above.

Lemma 6: Let {¢i} be a bounded sequence of functions from X to R*. Assume that for
every € > 0, there are indices k*,n* such that var(pi, E) < € whenever k > k™ and E € Ilp..
Then there is a subsequence of {pr} which converges uniformly on X.

Proof: For each n and each E € II, choose a point zg € E. Since {¢k} is a bounded
sequence, we may, passing to a subsequence if necessary, assume that for each n and each
E € II,, the sequence {pi(zg)} of real numbers is convergent; call the limit p(zg). We
want to see that this implies uniform convergence of {¢r}. To this end, fix ¢ > 0 and
choose k*,n* as in the hypotheses of the lemma. Since II,. is finite, we can choose an
index k** > k* such that |px(zE) — ¢(zE)| < € for each E € II,+ and each k > k**. Since
var(pr, E) < € for each k > k* and each E € II,., combining the triangle inequality with
the fact that II,. is a partition of X allows us to conclude that |pi(z) — @r(z)] < 3¢ each
k,k' > k** and each z € X. In other words, the sequence {¢} is uniformly Cauchy, and
hence uniformly convergent, as desired. il

The remaining technical lemmas are of a functional analytic nature and deal with limits
of sequences of (weakly) integrable functions. Recall that, for E a locally convex topological
vector space with dual space E’, the weak topology o(E, E') on E is the weakest topology
for which the mappings z — ¢ - z: E — R are continuous (for each ¢ € E'). If (T, ) is
a measure space, a weakly measurable function f : T — E is weakly integrable if for each
T' C T there is a vector zp» € E such that ¢ -z = [p ¢ - f(t)dA(t) for each ¢ € E'.
We say that a sequence {f,} of weakly integrable functions converges weakly to the weakly
integrable function f if, for each ¢ € E’, the sequence {¢- fn} converges to ¢+ f in the weak
topology of Lj(A).

The following lemma is an infinite dimensional version of a result of Artstein [1979)].
Similar infinite dimensional results may be found Khan and Majumdar [1986] and Yannelis
[1987]; for a related finite dimensional result, see also Simon and Zame [1987].

Lemma 7: Let E be a locally convez topological vector space, with dual space E' which is
separable in the weak star topology, let (T, \) be a measure space, and let {fa} be a sequence
of weakly integrable functions from T to E, converging weakly to the weakly integrable func-
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tion f. For each t € T, let K, be a weakly compact subset of E. Assume that, for each n,
fn(t) € K for almost everyt € T. Then for almost everyt € T, f(t) belongs to the weakly
closed convez hull of {fn(t)}.

Proof: Since E' is separable in the weak star topology o(E’, E) , it is also separable in the
Mackey topology 7(E’, E) (this is the topology of uniform convergence on weakly compact
subsets of E ); let £ be a countable (Mackey) dense subset of E'. Write C(t) for the
weak closure of {fn(t)} and C*(t) for the weakly closed convex hull of C(t); C(t) is weakly
compact (since it is a weakly closed subset of K;), but C*(t) may not be. The separation
theorem tells us that a vector in E fails to lie in C*(¢) if and only if it can be separated
from C(t) by a weakly continuous linear functional — i.e., by an element of E’. Thus
f(t) € C*(t) if and only if there is a functional £, € E such that ;- f(t) > 2>1> & -z
for each £ € C(t). Since the Mackey topology on E’ is the topology of uniform convergence
on weakly compact subsets of E weak compactness of C(t) implies that we can choose
&: to belong to the set {£;}. Since C(t) is the weak closure of {fn(t)}, we conclude that
f(t) € C*(t) if and only if there is an index ¢ such that £ f(t) > 2 > 1 > & - fa(t) for
each n. This displays T" = {t : f(t) € C(t)} as the countable intersection of measurable
sets, so it is measurable. Moreover, if A(t) > 0 then we can find a vector {; and a subset
T" C T’ such that & - f(t) > 2> 1> & - fa(t) for every n and every t € T". Put another
way, this means that the functions £ - f, are bounded above by 1 on T while the function
&k - f is bounded below by 2 on the same set. This contradicts the assumption that {£x- fn}
converges weakly to & - f, and this contradiction establishes the lemma. I

Remark: Since the weak limiting set WLS{fn(t)} is the intersection, over all k, of the weak
closure of {fn(t)}n=k, it follows immediately that, for almost every t € T, f(t) belongs to
the weakly closed convex hull of WLS{f.()}.

We shall use Lemma 7 for the case £ = M(X) with the weak star topology. In this
case, E' = C(X), the weak star topology on M(X) is just o(E, E') and Gelfand integration
coincides with weak integration as defined above. In other circumstances, it would be
natural to take E to be a Banach space and E’ to be its dual. (In the latter case, weak star
separability of E’ is equivalent to norm separability of E).

The final technical lemma guarantees that certain weak limits exist.

Lemma 8: If {f,} is a bounded sequence of Gelfand integrable functions from T into
M*(X), then there is a subsequence which converges weakly (to a Gelfand integrable func-
tion).

Proof: Say that [[fa(t)]| < R for each n,t. For each n, define the (countably additive)
vector measure F, on T, taking values in M (X), by setting Fo(E) = [g fa(t)dA(). Since
(T, M) is a separable measure space, we can find a countable family {E*} of Borel subsets of
T with the property that, for every Borel set E and every ¢ > 0, there is an E7 such that
A(E - E?) < 0 and A\(E? — E) < 0. For each j, the sequence {Fn(E?)} of elements of M(X)
is bounded (because || Fn(E?)]| < RA(E’)), and hence (by Alaoglu’s theorem) has a weak
star convergent subsequence. Diagonalizing as necessary, we may assume that, for each j,
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the sequence {F,(E7)} converges in the weak star topology; call the limit F(E?).

In fact, the convergence of each of the sequences {F,(E7)} entails the convergence of
{Fa(E)} for every Borel subset £ C T. To see this, fix a Borel set E and an ¢ > 0, and
choose a sequence {D¥} C {E'} such that A(E — D¥) — 0 and A(D¥ — E) — 0. For each
k, the sequence {F,(D*)} converges to F(DF¥). Moreover, for each n,

| Fa(D¥) = Fa(D¥)|| < RIN(D* = D¥) + M(D¥ - D)),
for every k and k', so that
| F(D*) - F(D¥)|| < RIMD* - D¥) + A(D¥ - D¥)]

for every k and k’. In other words, the sequence { F(D¥)} is Cauchy (in norm) and hence
converges (in norm) to an element F(E) € M(X). Elementary computations now yield
that F,(E) — F(E) (weak star) for every Borel set E C T, that F is a countably additive
vector measure, and that ||F(E)| < RA(E) for every Borel set E C T. In particular, F is
absolutely continuous with respect to A (i.e., F(E) = 0 whenever A(F) = 0).

Since every countably additive vector measure which is absolutely continuous with re-
spect to A has a weak star Radon-Nikodym derivative (Diestel and Uhl [1977]), it follows
that there is a Gelfand integrable function f:T — M(X) such that F(E) = [p f(t)dA(t)
(Gelfand integral) for every Borel set E. We claim that {f.} converges weakly to f.

To see this, fix a continuous function ¢ € C(X) and observe that |¢- fa(t)| < Rl|g||eo for
every t, so that the sequence {q- fn} lies in an order bounded subset of L;(u). Since order
bounded subsets of L; () are weakly compace, some subsequence of {g- f» } converges weakly
to a function ¥ € L;(u); we need to show that 9 is necessarily equal to ¢- f. If this is not so,
then we can find a set A C T, having positive measure, such that [, YdA(t) # [, q- fdA(?).
On the other hand, the definition of the Gelfand integral, together with the definition of ¢
and the facts we have already established, yield:

/ YdA(t) = / X AYdA(t)

A T
- lim /T xa(g- fa)dA(2)
= lim[g- /T (xafa)dA(®)]

= lim[q- /A fndA(2)]
= lim [g- Fn(4)]
= ¢-F(4)

= ¢ [ far
= [@ hare.
A

This is a contradiction, so we conclude that {q- f,} converges weakly to ¢- f; since ¢ € C(X)
is arbitrary, this completes the proof.
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With the preliminaries out of the way, we now turn to the proofs of the main results.

Proof of Theorem 1: We construct an equilibrium for the given economy as the limit
of equilibria of approximating finite dimensional economies.

The first step is to use the averaging operator ®, to construct these finite dimensional
approximations. For each n, we consider the economy with commodity space M, with space
of traders equal to (T, A), with preferences the restrictions to M, of the given preferences
on M*(X), and with intital endowment e, = &, o e (i.e., e, (t) = ®,[e(t)] for each t). Set
wn = ®,(w) (it follows from Lemma 1 that w, = [ e,(t)dA(t)) and write S, for the Radon-
Nikodym derivative of w, with respect to u. This economy has an equilibrium (fn,pn)
(Aumann [1966]). The price p, belongs to the dual space of M,, which we may identify
with the space of functions on X which are constant on each of the sets in the partition II,;
in particular p, € B*(X). (The price p, is necessarily strictly positive, since preferences
are strictly monotone.) Note that u € M, for each n, by construction; we normalize so that
”pn”oo =1

Since (B) tells us that rates of substitution are bounded, the equilibrium nature of p,
implies that , if o, 8 € M,;} with ||a|| = ||8]|, then pp - a < M(pn- ). Since ||pnlloc = 1, this
implies in particular that M~! < p, < 1.

For each n and each E™ € II,,var(S, E) < 27". Since S is obtained by averaging S
over sets in IIz, and II; is a refinement of II,, for k > n, it follows that var(Sg, F) < 27"
for k£ > n. We may now use (PLD) as in the proof of Lemma 2 to obtain estimates for the
variations of the prices pi; we conclude that:

(*) For each € > 0, there is are indices n*, k™ such that var(py, E) < € whenever k >
k*,n2>n" and F € II,,.

In view of Lemma 6, passing to a subsequence if necessary, we may assume that {p;}
converges uniformly to a limit price p on X. Uniform convergence implies that ||pnflcc =1
and that M~! < p, < 1. For @« € M*(X),®,(a) = a in the weak star topology, so
Pn-a—p-aand p, - Pp(a) 2 p-a.

Having constructed a limit price, we now construct a limit allocation. To this end, fix
an index k. Foreach t € T,

Pn- fn(t) .<. Pn: en(t) S ”en(t)” S "e(t)"

Since M~!||u||~! < p, we conclude that ||f,(t)]| < M||ull"!|le(t)|| For each integer R, set
Tp = {t € T : |le(t)ll £ R}. Applying Lemma 8 to the sequence {f,|Tr} yields a weakly
convergent subsequence. Diagonalizing as necessary, we may assume that, for each R the
sequence {fa|Tr} converges weakly on Tg. Piecing together the limits of these sequences
provides a limit allocation f:T — M™*(X). Since [ f(t)dA(t) = lim [ fa(t)dA(t) < wy and
wn — w, it follows that f is in fact Gelfand integrable, that f is a feasible allocation, and
that {f,} converges weakly to the limit allocation f.

To show that (f,p) is a Walrasian equilibrium, we verify the hypotheses of Lemma 2.
Consider the set T consisting of all traders ¢ for which there is a measure a € M*(X)
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which is absolutely continuous with respect to u and has the properties that f(t) <; «
and p-a < p-e(t); It is not hard to show that T™ is a measurable set. If A(T™*) > 0,
then continuity of preferences together with the fact that ®,(a) — « in norm whenever
a is absolutely continuous, implies that we may find an index i, a subset 7" C T™ of
positive measure, and a positive measure # € M; such that f(t) <¢ fandp-3 < p-e(t)
for each t € T™" Lemma 7 tells us that (for almost all t) f(t) belongs to the weak star
closed convex hull of {fn(2)}; since preferences are weak star upper semi-continuous and
convex, this implies that for almost all ¢, f,(t) for n sufficiently large. In particular this
means that there is an index m and a subset T*** of T™*, having positive measure, such
that f,(t) < B for all t € T*** and all n > m. On the other hand, we have already noted
that pn - €4(t) = pn - Pnle(t)] — p - e(t) for almost all ¢, and ®,(8) = B for n > i (since
B € M; and ®, is the identity on M; for n > 1), so we conclude that, for sufficiently large n,
there is a subset T™*** of T™**, having positive measure, with the property that f,(t) <: 3
and p, - B < pn-en(t), for each t € T****, This contradicts the equilibrium nature of { f,ps)
Thus, the supposition that A(T*) > 0 leads to a contradiction. We may therefore apply
Lemma 2 to find a bounded Borel function p*, agreeing with p almost everywhere, such
that (f,p") is an equilibrium; the argument of Lemma 2 shows that in fact p = p* so that
(f,p) is an equilibrium, as desired.

That all equilibrium prices belong to Cs(X) follows exactly as in the proof of Lemma

It remains only to show that the set P(e) of normalized equilibrium prices is com-
pact in the norm topology. To this end, let {(fn,pn)} be a sequence of equilibria with
prices satisfying the normalization p, - ¢ = 1. Arguing exactly as before, we conclude that
lpall € M)lpll~! < oo for each n, and that for each € > 0, there are indices n*,k* such
that var(px, £) < € whenever k > k*,n > n* and F € II,. Lemma 6 implies that some
subsequence of {p,} converges uniformly to some price p. As before (and passing to a sub-
sequence if necessary), we see that the allocations {fn} converge weakly to an allocation f,
and that (f,p) satisfies the hypotheses of Lemma 2. Hence there is a bounded Borel func-
tion p* which agrees with p almost everywhere such that (f,p*) is an equilibrium. Since
pn — p uniformly and p, p* represent the same class in Lo (1), it follows that p, — p in the
Loo(p) norm. Hence P(e) is a norm compact subset of Lo (u). This completes the proof of
Theorem 1. 11

Theorems 3 and 4 rest on a result about points of continuity of an upper hemi-continuous
correspondence. The usual version of this result, which requires that the range space be
compact (see Hildenbrand {1974] for example), would be adequate for Theorem 3, but
Theorem 4 requires the stronger version below, which requires only that the correspondence
has compact values.

Lemma 9: If X and Y are complete metric spaces, and P : X —— Y i3 an upper hemi-
continuous correspondence with compact values, then the set of points of continuity of P 1s
a residual subset of X.

Proof: For each compact subset A of Y and each integer k, let A* denote the open set of
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points of Y whose distance to A is smaller than 2k, Since P has compact values, upper
hemi-continuity of P at the point z € X means that for each k there is an open set U
containing = such that P(z') C P(z)* whenever 2’ € U. In the presence of upper hemi-
continuity, continuity of P at the point z € X would mean that for each k there is an open
set V containing z such that P(z') C P(z")* whenever z/,z" € V.7

For each k , let W) be the set of points z € X for which there is an open set V' which
contains z and has the property that P(z') C P(z")* whenever z’,z"” € V. It is evident
that each of the sets Wy is open. Moreover, the set of points of continuity of P is simply
the intersection of all the sets Wy, so to prove the lemma it remains only to show that each
W; is a dense subset of X.

To this end fix a k, and suppose to the contrary that Wy is not dense. There is thus
an open set W C X with the property that, for each open set V' C W, there are points
t',z" € V such that P(z') ¢ P(z")*. We pick a point z; € W and use upper hemi-
continuity of P to find an open subset V; of W, containing z; and having diameter at
most 1, such that P(z') C P(z1)? for every z' € Vj. Since V; C W we can find points
z2,y2 € Vi such that P(y2) ¢ P(z2)*. We may again use upper hemi-continuity of P
to find an open subset V5 of V; containing zo and having diameter less than 1/2, such
that P(z') C P(z2)% for every ' € V5. We can again find points z3,y3 € V3 such that
P(y3) € P(z3)*. Proceeding by induction, we choose a decreasing sequence {V,} of open
sets, and sequences {z,}, {yn} such that: V; has diameter at most 2", the points z, and
yn belong to Vi, P(z') C P(z,)"* for every z' € V,, and P(y.) € P(zn)". Since the
sets V,, have diameter at most 2~ ", the sequences {zn}, {yn} are Cauchy; completeness
of X means that they converge, necessarily to the same limit, call it z. Upper hemi-
continuity of P means that P(y,) C P(z)?* for n sufficiently large. On the other hand, our
construction guarantees that P(z) C P(z,)"* for every n. Combining these, we obtain that
P(yn) C P(z4)* for k sufficiently large. This contradicts our supposition that W; is not
dense, and this contradiction completes the proof. §l

Proof of Theorem 3: Theorem 1 establishes the existence of equilibrium under assump-
tion (E), that the support of the mean societal endowment is all of X. However, when
markets are thin, withholding by a small group may yield a mean societal endowment
whose support is no longer all of X. Our first task is to show that, with the hypothesis
of economic thickness, equilibrium continues to exist even for an initial allocation €’ with
mean societal endowment o' with suppw’ # X. In essence, the difficulty is to find the
“correct” reservation prices for commodities in X \ suppw.®

Choose a positive measure @ for which supp@ = X and, for each positive integer n, set
e™(t) = e(t) +(2~")&. Note that e” is an allocation for which the mean societal endowment
w" = w+(2~™)& has support equal to X. Define the reference bundle u" = w™ and observe
(as was already noted earlier) that, for this (or any other) choice of reference bundle, (US)

"Compactness of the values of P is used only here, to insure the validity of these characterizations of

continuity and upper hemi-continuity.
®The argument we give for the existence of equilibria is based on our Theorem 1; an alternate argument

could be given along the lines of Jones [1983].
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implies (PLD), and that the assumption (E) is also satisfied. It thus follows from Theorem 1
that, for the initial allocation e, an equilibrium exists. Moreover, since the supply function
S" is identically 1, every equilibrium price is (essentially) continuous. Indeed, the argument
of Lemma 2 shows that the modulus of continuity of all equilibrium prices (of norm 1) may
be chosen independently of e and &. Moreover, (B) implies that all equilibrium prices
of norm 1 are bounded below by M~!. In particular, the sets P(e") of all normalized
equilibrium prices for the initial allocation e" all lie in a bounded, equicontinuous family in
C(X). Ascoli’s theorem tells us that bounded, equicontinuous subsets of C(X) are relatively
compact, so if we define P(e) to be the limiting set of {P(e™)}, it follows that P(e) is a
non-empty compact subset of C(X), and every price in P(e) has norm 1.

We assert that every price in P(e) is an equilibrium price for the initial allocation e. To
see this, let {(f™,p")} be a sequence of equilibria (with (fa,ps) corresponding to the initial
allocation e"), and such that ||p,]| = 1 for each n. Arguing as in the proof of Theorem 1,
and passing to a subsequence if necessary, we may show that the allocations f" converge
weakly to an allocation f, the prices p® converge uniformly to a price p with ||p|| = 1,
and that (f,p) is an equilibrium corresponding to the initial allocation e. Since every price
in P(e) arises as the limit of such prices p®, we conclude that every price in P(e) is an
equilibrium price for the initial allocation e. In particular, equilibria exist.

To see that all equilibrium prices are continuous on the support of the mean societal
endowment, fix an initial allocation e with mean societal endowment w, and let (f,p) be
an equilibrium. Note that, if we restrict attention to commodities in suppw, the pair (£, p)
remains an equilibrium. If we define the reference bundle s = w, then the supply function S
is identically 1 (on suppw), so we may simply apply Theorem 1 to conclude that p|suppw
is continuous, as asserted. (We do not draw any conclusions about the behavior of an
arbitrary equilibrium price on X — suppw. However, the equilibrium prices in P(e) enjoy a
special status, since, by construction, they are continuous on all of X.)

We turn now to the core equivalence test.® Fix an initial allocation e with mean societal
endowment w. Without loss of generality, define the reference bundle 4 = w, and let f be
an allocation which belongs to the core. We construct an equilibrium price by finding a
linear functional supporting an appropriate cone. Let us identify (via the Radon-Nikodym
theorem), Ly (u) as the subspace of M(X) consisting of those measures which are absolutely
continuous with respect to 4. Let G be the space of pairs (T, g) such that T' is a subset of
T having positive measure and g : T — L] (i) is a measurable function having the property
that f(t) <; g(t) for almost every t € A. Let P be the preferred net trade set:

P= {/T g(t)dA(t) — /T e(t)dA(t) : (T',9) € G} ,

and let P* be the weak star closure of P, and let C be the cone generated by P*. We
will find a linear functional p € Lo (1) that supports the cone C N Li(u); an appropriate
representative of the equivalence class of p will provide the equilibrium price.

In the usual finite dimensional context, the corresponding results are established by

9The argument we give for core equivalence is in the spirit of Gretsky and Ostroy [1985]; an alternate
argument could be given along the lines of Mas-Colell [1975].
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appeal to the fact that the integral of a correspondence is compact and convex. This fact
depends in turn on the Lyapunov convexity theorem, which says that the range of a non-
atomic vector measure is compact and convex. As we have already noted, the Lyapunov
convexity theorem is not true in infinite dimensional spaces; in particular, the range of a
non-atomic vector measure with values in M (X) need not be compact or convex. However,
it is true that the weak star closure of the range of such a measure is (weak star) compact and
convex. It follows, exactly as in the finite dimensional context, that the weak star closure
of the integral of a correspondence is compact and convex. With this change, convexity of
C follows in the same way as in the finite dimensional context. (For details, we refer to
Gretsky and Ostroy [1985].)

Our next task is to show that the norm closure of C N Li(u) is a proper subcone of
L1(p). To accomplish this, it suffices to show that P* misses a norm open subcone of L1(u)
containing —w = —u. In fact, we show that P* contains no measures of the form —cw + v,
where ¢ > 0 and ||v|| < ¢/(4M)||lw||. (M is the constant specified in assumption (B).)

Suppose to the contrary that —cw + v € P*. Then there is a sequence (T™, g") € G such
that

/ g (R)dA(E) - / e(t)dA() = —cw + v + (7,
T» Tn

where (" — 0 (weak star). Write v* = [r. g"(t)dA(t) and w™ = [, e(t)dA(t). Passing to a
subsequence if necessary, we way assume that y* — 7 and w" — @ (weak star). Note that
¥ —@ = —cw + v. Since ¥ and @ are positive and ||lv|| < ¢/(4M)||w|| < cllwl|, we conclude
in particular that @ # 0.

For each n, we shall construct an allocation A" that is feasible for the group I™. We
then show that for sufficiently large n, A"(t) > g"(t) for each t € T". Transitivity implies
h™(t) »¢ f(t) for each t € T™; together with feasibility this will contradict that assumption
that f is a core allocation.

We begin by choosing a real number r such that 1 <r < M, r < 1+4¢/4, M(1-1/r) <
c/4. Let & be the corresponding number from the uniform substitutability assumption (US).
Choose a finite covering of X by open sets U;, and let ¢; be a partition of unity subordinate
to the cover {U;} (i.e., {:} is a family of continuous functions from X into [0, 1}; support
(pi) C U; for each i, and 3 ¢; = 1). For each i,n set:

a} = min{p;-w" rpi-7"}
o= iyt —rla}
a®
Al = el = —piw"
pi-w
g =

> 8
(Here and below, we follow the notational convention that 0/0 = 0.) For each ¢t € T™, set
n — Pi 'gn(t)) ( a? ) 4
Ry = E(w*r" pi-wm) O
@i 'g"(t)) ( bY ) n
+ .
z( pi- " pi-wh g
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(For motivation, see below.)

A straightforward calculation, keeping in mind that [ g"(t)dA(t) = 7" and that 3~ ¢; =
1, shows that [ A"(t)dA(t) = w". That is, A" is feasible for the group T™.

We want to see that A™(t) >; g"(¢) for every ¢t € T, provided that n is sufficiently large.
To this end, it is useful to make an observation (which is the motivation underlying our
construction of A"). Let a,n,60 € M*(X), let p; be any element of the partition of unity
{®i} chosen above, and let > be any preference relation satisfying our assumptions. We ask
the following question: For what positive, real values of a,b is

() a<pja+b17+(1—qu)0 - 07

Since 0 < ¢; <1 and 8 = p;0+ (1 — ¢;)8, and support (¢;) has diameter < §, (US) implies
that (*) holds whenever

ap; - a = |la(pja)ll > rlle;0ll = r(p; - 8),
(independently of b > 0). On the other hand, (B) implies that (*) holds whenever
bllnll = llbnll > Mlle;6ll = M(p; - 6),

(independently of a > 0). More generally, if we combine (US) and (B), we can conclude
that (*) holds whenever

bivll > M(p; -8 — r~'min{a(p; - @),r(p; - )}).

To see that h™(t) >; g"(t) for each t € T™, we need only apply this observation sequentially
for j =1,...,n. This will yield the desired result, provided that

&) 1871 > MY (i7" = r~ap).

To verify that this inequality is valid for sufficiently large n, we use the fact that ||la; +a2|| =
laall + llaz|l, if a1, a2 are positive measures to write:

"= = usrl
= 3 llow" -
- piw”
= YIs

= Y (pi-w"—a})

= 2 (pi - w" —min{p; -w",re; - 7"}).

a? n
Pi piw"||

(pi-w" —ad)ll

Since y* — 7 and w™ — @ (weak star), to verify (1) for large n it suffices to verify

Z (pi - @ —min{y; -@,rpi-7}) > M Z(‘Pi -5 — v~ ' min{p: - 7,79i - 7}).
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Write J = {j: pj @ < ryp;-@} and K = {1,...,n} \ J. Simplifying (2) yields

S (pk-@—ror-7) > MY (¢ y=rlej @)
k€K jed

Substitute ¥ = @ — cw + v, write &; = 3¢, ¢; and ®x = Lk Pk, simplify, transpose all
terms to the left side, leaving us to verify that the following expression is positive:

A=(1-10x - a-M1A-r"1H8; - 0+rc®g -w+Mcbj w—r0Pgv—Md; v

We now simplify and estimate, using the facts that r > 1, M > r, &; > 0, &x > 0,
P;+Pxk=1,0<o<L,lw=|w|,1-v=]|v,l1<r<l+4+c/4, M(r~1 —=1) <c/4, and
vl < ¢/4M to obtain:

A > (Q-n)fwll-MA=r Y|l + Pk -w
+cPjw—MO - v—-Md; v
> (1=n)lwll =M1 -rHjw| +clwll - M(vll
> =(c/Dlwll = (/Dllwll + cllwll = (c/Dllwll
> (/-

As we have shown, this inequality yields (1), so that A™(t) »,; ¢"(t) and hence that
h™(t) > f(t) (by transitivity), for all t € T, provided n is sufficiently large. Since A" is
feasible for the group T™, this contradicts our assumption that f is in the core.

We conclude that P* indeed misses a norm open subcone of L (4) containing —w. Hence,
C N Li(p) is a proper subcone of Lj(u), and —w ¢ C N Li(p). The separation theorem
provides a non-zero continuous linear functional p on L) () (i.e., an element of Lo (4)) such
that p- ¢ > 0 for each ( € CNLi(u) and p- (—p) < 0 (so p- u > 0). We assert that some
representative of the equivalence class p is an equilibrium price supporting the allocation f.
To this end, choose any bounded Borel function § representing p. It will suffice (by Lemma
2) to show that, for almost every t € T there does not exist a measure a € L7 () such that
f(t) <, @ and p-a < p-e(t). If this were not so, then separability of L) () and continuity of
preferences would enable us to find a set 7" of positive measure and a measure § € M HX)
such that f(t) <; Sand p- B < p-e(t) for each t € T". If we let g" : T" — M*(X) be
the function which is identically equal to §, then the pair (T",g*) belongs to G, so that
M(T")B € C; since C is a cone, # € C also. Hence p- 3 > 0, which contradicts the fact that
p-B < p-e(t) for each t € T'. We conclude that for almost every t € T, there does not exist
a measure a € LT () such that f(t) <; @ and p- a < p-e(t). Lemma 2now implies that
there is a bounded Borel function p* that agrees with 5 almost everywhere and supports f
as an equilibrium price. Thus, every initial allocation passes the core equivalence test.

To see that a generic set of initial allocations pass the uniform withholding test, consider
the correspondence P : A —— C(X). We have already seen that P has compact values,
and a similar argument shows that it is upper hemi-continuous. Lemma 9 implies that the
set of points of continuity of P is a residual set. This is not quite enough: If e is an initial
allocation with suppw # X, then P(e) is not the full set of (normalized) equilibrium prices
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(because there may be many choices for reservation prices of commodities in X — suppw,
and continuity of P at e will not imply that e passes the withholding test. However, if
suppw = X, then P(e) is the full set of (normalized) equilibrium prices, and continuity
of P at e will imply that e passes the withholding test. In other words, if e is a point of
continuity of P and suppw = X then e passes the withholding test. To show that the set
of all such initial allocations is a residual set, it suffices (because the intersection of two
residual sets is a residual set) to show that the subset Ay of A consisting of initial allocations
e with suppw = X is a residual subset of A.

To this end, choose a countable dense subset Xy of X; for each point z € Xy and each
positive integer r, let B(z,r) be the open ball in X of center z and radius r. Since Xj
is a dense subset of X, every open subset of X contains a set in this family. Hence, if
w € M (X), then supp(w) = X if and only if w(B(z,r)) > 0 for every B(z,r). Thus, A is
the intersection of the sets A;, = {e: w(B(z,r)) > 0}, and these sets are open and dense
in Ag. Since the family {B(z,r)} is countable, we conclude that A is the intersection of
a countable family of dense open sets, and is thus residual. This completes the proof of
Theorem 3. §

Proof of Theorem 4: Fix a thick markets allocation e and a core allocation f. As in the
proof of Theorem 3, we construct an equilibrium price as a supporting functional for the
cone generated by an appropriate net trade set. In this case, we want to take G to be the
set of all pairs (7", g), where T" C T is a subset of positive measure and g: T — L (u) is a
Bochner integrable function (i.e., a measurable function such that [ ||g(t)||dA(t) < oo) such
that f(t) <; g(t) for every t' € T". Set

P= { /T g()ar(®) - /T e(t)dA(t) : (T',g) € g}

and let C be the norm closed cone generated by P. Note that C is contained in L;(u) since
Ly(u) is a norm closed subspace of M(X). Since e is a thick markets allocation, it is in
particular Bochner integrable, so as in Theorem 3, we may appeal to the usual arguments,
together with the fact that the norm closure of the range of a vector measure defined by
a Bochner integrable function is convex, to conclude that C is convex. (See Gretsky and
Ostroy {1985] or Khan [1986].)

We claim that C is a proper subcone of L;(u). To see this, set
Q={¥ e Li(w: ¥ <M Y¥ |}

Since Q is an open cone, to show that C is a proper cone, it suffices to show that PNQ = 0.
If this were not so we could find (7", g) € G with

[, saxe - JIECEORS A"
TI Tl

and |¥+|| < M~!||¥~||. Since Q is open and g is Bochner integrable, there is no loss of
generality in assuming that g is a simple function. Since ¥*, ¥~ are disjoint, we conclude
that

¥us [ gware.
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The Riesz Decomposition Property (see Schaeffer [1974]) allows us to find a simple function
s such that 0 < s(t) < g(¢) for each ¢t and

/ s(t)dA(t) = U* .
T'

Set h(t) = g(t) — s(t) + M||s(¢)||(¥~u). Direct calculation, making use of the additivity of
the norm on the positive cone of Li(u), shows that

/ h()dA() — / e(t)dA(t) < 0.
T T

On the other hand, our assumption (B) implies that h(t) >; g(t), and hence h(t) >; f(t)
for each t € T". This contradicts the fact that f is in the core. We conclude that PNQ =0
and hence that C is a proper convex cone, as desired.

We can now find a norm continuous linear functional p on Li(u) (i.e., an element of
Lo (p)) which supports the cone C. As in the proof of Theorem 3, we can then apply
Lemma 2 to obtain an equilibrium price for the core allocation f, as desired.

To obtain the withholding test, we will wish again to apply Lemma 9, but for a different
space of allocations. We consider the space T of thick markets allocations; for each e € T,
we let P(e) be the set of normalized equilibrium prices, so that (by Theorem 1), P(e) is a
non-empty norm compact subset of Lo (u). We claim that the correspondence P : 7T ——
Lo (p) is upper hemi-continuous. To see this, let {e;} be a sequence of thick markets
allocations which converge to e (in the metric of 7), and let wg,w be the corresponding
societal endowments, with supply functions Sk, S. For each k, let (fi,px) be a Walrasian
equilibrium for the initial allocation e, with |[pi|| = 1. We want to show that some
subsequence of {(fn,pkr)} converges to an equilibrium for the initial allocation e.

The definition of convergence in T implies that S, — S in the Lo (x) norm. Since S
is bounded above and bounded away from zero, we may find constants c;, ca > 0 such that
0< ¢ £S5 <cy<oo. Let {Il,} be a sequence of partitions constructed as before so that:

(a) II, is a partition of X into a finite number of measurable sets of positive measure;
(b) I,41 is a refinement of II, (i.e., every set in II,,4; is contained in some set in II,,);
(c) every set in II, has diameter less than 277;

(d) for each set E € II,, essvar(S, E) < 27".

Since Si — S uniformly, it follows that, for each n there is a k™ such that essvar(Sk, E) <
2-" for each k > k* and each E € II,,. Arguing as in Theorem 1, we conclude that for each
€ > 0, there are indices n*, k* such that essvar(Si, F) < 2~" whenever k > k*,n > n” and
E € 11,. By Lemma 6, some subsequence of {pi} converges in the L (s) norm to a price
p with ||pllec = 1, and some subsequence of {fi} converges weakly to an allocation f. As
in the proof of Theorem 1, we conclude that (f,p) is an equilibrium. In particular, P is an
upper hemi-continuous corresponcence. By Lemma 9, the set of points of continuity of P
is a residual set; it is easily seen that every initial allocation that is a point of continuity of
P passes the withholding test. This completes the proof. i
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