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ABSTRACT

The symmetry possessed by exchangeability is the key to its usefulness.
The methods that are used to comprehend reality will be successful insofar
as they contain this symmetry. This is true of theoretical models,
empirical methods, and algorithms. Indeed, if the design of mechanisms is
by rearrangement of natural matter, their survival value will depend on the
degree to which they retain the symmetry of the original matter. This
comment encompasses complex machinery and sophisticated political, social,
and economic institutions. This paper is simply an elaboration of this
observation.

The process begins with designing experiments to decode nature's

mysterious language. The success of these experiments hinges on their

symmetry. The basic epistemological problem-of economics is to build codes

that will unscramble the mixed-up messages contained in the single
realization of each economic process.



1. Introduction

This paper has several goals. The first is to acquaint economists with
some of the recent developments in exchangeability analysis and exemplify
several of its many applications in dynamic economics. The second is to
demonstrate the unifying power of exchangeability. We claim that this
unifying characteristic of exchangeability is strong enough to reverse the
seemingly inexorable tendency to Balkinize economics into separate non-
communicating subsets. In particular, a link is forged between economic
theory and empirical economics. The apparently irreconcilable differences
between the New Keynesian and New Classical approaches to macroeconomics are
reconciled. The separation between macro and micro economics is narrowed.
Historical and institutional economics are recognized as an integral part of

- evolutionary economic processes.

Exchangeability belongs to the potential probabilistic family whose
members include Markov Processes, martingales and diffusions with stopping
times and conditioning the founding fathers. Thus, with a single economic
arrow propelled by an evolutionary bow of symmetric and ancient design, we
unify economics and see its connections with institutions, history, the
other social and physical sciences and applied mathematics.

Another goal is to show the relation between the dilation ordering of
information and the dilation operator. The former corresponds to the
familiar "mean preserving spread" and is the natural measure of heterogen-
eity while the latter resides in function space and simplifies the
estimation of complex economic processes. Both the ordering and the
operator are exchangeable entities. This is the source of their similarity
and endows each with the symmetry that is the basis for their analytical

prowess,



It is important to emphasize at the outset that the approach advocated
here is not novel. It is a continuation of ongoing economic research and
merely changes é few labels and observes several connections that seem to
have been overlooked. For example, the contract theory of the firm is
classical; the application of stochastic processes to economic activities is
the essence of rational expectations and finance: the significance of
heterogeneity, misclassification and segmented labor markets is appreciated;
and the formation of groups, clubs and coalitions has been studied from

institutional and mathematical perspectives.



2. A Survey of Exchangeabiligyl

Exchangeability2 is a powerful and elegant concept that permeates and
unifies economic processes. It links price theory and macroeconomics and
provides a bridge between these two Processes and econometrics. 1Its
apparent conceptual simplicity belies its profundity.

Our task is obvious: to trace the radiations of exchangeability and
alert the reader to their economic significance. We begin with a simple
description of exchangeability.

Consider the following experiment. A coin is flipped 5 times. 1If a
head (tail) occurs a 1(0) is recorded. What probability shall we assign to
the 25 = 32 possible outcomes? De Finetti answers this question by assum-
ing that sequences of length 5 having the same number of 1's are equally
likely. Hence, the sequence 11000 has the same probability as the sequence
00101. The precise position of the ones is irrelevant; only their sum
enters the probability calculation. This type of symmetry was christened

"exchangeability" by de Finetti.

lA more complete elementary survey is presented in McCall (1988a). The
definitive survey is Aldous (1985), rigorous, comprehensive and inspiring.

2Exchangeable, symmetric dependence and interchangeable are synonyms .
There is much to be said for "interchangeable”. It emphasizes the homogene-
ous aspects of "exchangeability." One of its most important applications in
economics and elsewhere is decomposing heterogeneous populations into homo-
geneous subpopulations. However, "exchangeable" is used most frequently.
"Exchangeable" also can be interpreted according to its economic meaning.

It is inextricably tied to heterogeneity and classification. The success of
the physical sciences is explained partially by the connections discovered
among seemingly diverse phenomena. The conversion of the heterogeneous into
the homogeneous also has occurred in economics. The introduction of money
converted the diverse into a common or exchangeable good with price the
stopping rule. Thus trade not only smoothed out the differences among goods
via prices, but expanded boundaries. See Hicks (1969) for a nice
discussion.



Let us consider two basic exchangeable sequences of random variables:

an infinite exchangeable sequence and a finite n-exchangeable sequence.

Definition: The finite sequence (Xl,...,Xn) is said to be n-exchangeable
if
Ky, X) S LX),
1 n n(1) m(n)
for every permutation x of (1,...,n}.
An infinite sequence (Xl,Xz,X3,...) is said to be exchangeable if
d

(Xl,Xz,...) = (Xw(l)’xﬂ(Z)"")
where = 1is a finite permutation of ({1,2,...}.]

1) The Method of Urms
Urn models comprise simple generators of exchangeable sequences.

a. Let an urn contain n balls labelled L R SERRNL An infinite
sequence of random samples of size one with replacement generate an
infinite exchangeable sequence.

b. On the other hand, a sequence of n random samples of size one without

replacement generates an n-exchangeable sequence.

NOTE: Recall that Feller has shown that every Markov chain can be

represented as an urn model. All Markov chains are exchangeable.

Defi jon: An n-exchangeable sequence (X is called m-extendable (m>n)

g)
if (X.,...,X) 2 (X ,...,i ) for some m-exchangeable sequence (i.).
1 n 1 n i
Consider an urn containing n balls each numbered, where the numbers
are members of {1,2,3,...,m) = S. A random sample of size j 1is taken

from this urn first with replacement and then without replacement. This



produces two distributions on the set of j-triples. Diaconis and Freedman
(1980a) show that the variation distance between these two distributions Hj

and M. is
J
2c,
[, -M, | = —1,
J ] n

where Cj < o is the cardinality of 8, Hj is the without replacement
distribution (hypergeometric), M, 1is the replacement distribution

J

(multinomial), and

Ie-q] = 2 sup |P(A)-Q(A)],
A

is the variation distance.

2) The Bayes Method

Suppose there are J probability distributions: 01,...,0J, defined
on the real line R; suppose pj - P(ﬂ-aj), j=- 1,2,...,J.‘ Finally, let
(Xi) be i.i.d. with distribution 6§. Now, choose ¢ at random from
{01,...,0J). Then sample from the selected distribution # giving the

exchangeable 189380, .
exchangeable sequence X1 X2 X3

3) The Combinatorial Method

It is remarkable that many combinatorial (deterministic) calculations
can be used to obtain theorems for i.i.d. sequences of random variables.
Furthermore, most of these theorems remain true when "i.i.d." is replaced by

"exchangeable.

Properties of Exchangeability
a) n D uted

Suppose n = 2. Then exchangeability means that

FX’Y(x,y) = FY’X(x,y)



for all x and y € R. Letting y - o gives

Fx(x) = lim FX,Y(X’y) = lim FY’X(x,y) = FY(x).
y-ND

y—K!)

Therefore, exchangeable random variables are identically distributed.3

b) Stationarity

Furthermore, it can be shown that for any j, 1 < j <mn, the

distribution of the subset (Xi ,...,Xi ) of the set of exchangeable r.v.’'s
1 h|

(Xl,...,Xn) is given by P{Xil € Bl,...,Xij € Bj) = P{X1 € Bl""’xj € Bj}

for all Bl""’Bj € B(R), the Borel subsets of the o-algebra generated by

the open subsets of R.
¢) Correlation of Exchangeable Random Variables
Suppose (Xl,...,Xn) is an n-exchangeable sequence. The correlation

coefficient p(Xi Xj)’ i=j is given by:
Js

-1
(1) PZ_7

with equality when sampling without replacement from an urn containing n
n

balls, i.e., X, X, = constant.
i=1 71

As n - o, the RHS of (1) approaches 0. Thus in the limit

p = 0.

Aldous (1985) also shows that for an infinite exchangeable sequence p

satisfies

0=<p<l1.

3The significance-of this observation is a consequence of the following
fact: the ergodic hypothesis is true for i.i.d. sequences. Exchangeability
is decomposable into two important concepts: conditional independence and
identically distributed. See Loeve II (1978).



The practical and theoretical significance of exchangeability have

their source in de Finetti’s remarkable Representation Theorem:

Theorem 1: (De Finetti)

Let Pn(r) be the probability of a sequence of r heads and n-r
tails, where the order is irrelevant, by exchangeability. Then
1
(2) P_(r) = I 6T (1-0)""T p(8)as

o]

for some "prior" probability, P(4) =2 0 and fé P(8)ds = 1.4

Note that exchangeable sequences are mixtures5 of Bernoulli sequences
where the mixture is by a distribution over 6@, the probability of a head.
Recall that probability assessments are altered as new information unfolds.
Let A be the event of interest and suppose our initial probability assign-
ment is P(A). An event C occurs and we wish to modify P(A) to
incorporate this information. This is accomplished by a mechanism that is
fundamental to probability theory -- conditional probability. It is

represented as P(AIC) and defined by:

P(AC)

P(a|C) = G

P(C) > O

The conditional probability P(e|C) 1is a revision of the original or prior

probability measure P(A) and contains all the information in C that

4More formally, let (X,, i = 1,2,...,n} be a sequence of exchangeable
Bernoulli r.v.’s. For each 'n 3 a unique probability measure pu on
[0,1] >

P(X1 - 1,...,Xr =-1,X - 0,...,Xn =0) =

r+l
- fé 8 (1-0)" Tdu(s).

5The relations among mixing (shuffling), stopping times and randomness
are studied in Aldous and Diaconis (1986).



affects the occurrence of A. If this information is null, we say that A
and C are independent events. This is represented by: P(AIC) = P(A).
Hence, P(AC) = P(A)P(C) iff A and C are independent events.
Independence is the cornerstone of probability theory. Indeed, some
have claimed that its absence would render probability theory indistinguish-
able from measure theory. Any method that "creates" independence enhances
the significance of probability theory. It is remarkable that independence

can be generated by using the methods of conditional probability.

Definition: Let A, B and C denote three events. The two events A

and B are said to be conditionally independent given C iff
P(AB|C) = P(A|C)P(B|C).

Note that conditional independence is independence with respect to the

C).6

conditional measure P(-

Remark 1: Clearly, a sequence of i.i.d. random variables is exchangeable.
The de Finetti representation theorem shows that a general infinite exchange-
able sequence is a mixture of these i.i.d. sequences. This observation
diminishes the surprise associated with the asymptotic behavior of
exchangeable sequences. For example, the limit laws that apply to i.i.d.
sequences also apply to mixtures of i.i.d. sequences, that is, exchangeable
sequences. Of course, the significance of these representation theorems for

empirical phenomena relies entirely on the symmetry inherent in the concrete.

Remark 2: An alternative statement of de Finetti’'s theorem is: Suppose

{Xn, n=1,2,...) is an infinite exchangeable sequence and G = n:_l Gn is

6 . . s : .
An extensive discussion of conditional independence is contained in

Pfeiffer (1979).



an exchangeable o-algebra in that for each n, Gn is impervious to
permutations of the first n subscripts. Then conditional on G, {Xn,
n=1,2,...) 1is an i.i.d. sequence. This statement leads "immediately” to
limit theorems. For example, by conditioning on G, applying standard
results to the i.i.d. sequences, and then averaging over G, Buhlman (1960)
proved the CLT for infinite exchangeable sequences.

On the other hand, the SLLN can be calculated using conditional
expectations, rather than conditional independence. Simply calculate the
partial sums, Sn - Z?=1 Xi and assume E[|X1|] < o, It follows via a
simple martingale argument that Sn/n converges 4a.S.

Indeed, Kendall (1967) and others reversed directions and showed that
the SLLN implied de Finetti’s theorem.

In his important paper, Eagleson (1982) eschews the conditional
independence route and uses projection methods to derive his asymptotic
distributions. This preference for conditional expectations is that the
asymptotic results obtained in this manner apply to finite and partial

exchangeable sequences, whereas the conditional independence theorems only

apply to infinite exchangeable sequences.

Example 1: In econometrics many estimators have the form:

n
(3) Sn = E: ani Xni
i=1

where {ani} and [Xni} are sequences of constants and random variables,
respectively. It is important to show that these estimators are weakly or
strongly consistent, that is, converge to the appropriate parameter (weakly)

in probability or (strongly) with probability one.
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The asymptotic properties of estimators can be derived if Sn also

converges in distribution.

It is almost always reasonable to assume that, for each n, the
sequence an,an,.... is exchangeable, whereas the same can not be said
for independence.

For examﬁle, consider the sample mean in of the random sample,

Zl""’zn' Clearly, 2n can be put in the form of (3) by letting
a.=1/n and X ., =Z,. Then
ni ni i
n
z 1
@) s =2 - Z[E]{Zi]'
i=1
In similar fashion, the sample wvariance 52 = 1/(n-1) 2?_1 (Zi-zn)2
= 2
can be transformed to (4) by letting a.- 1/(n-1) and Xni = (Zi-Zn) s
1 <1i=<n. The Xni are not independent, but are exchangeable.

Example 2: Regression and Conditional Independence

A firm wishes to explain its annual income Y. The key explanatory

variables are believed to be: Xl""’XT' We wish to choose estimators of
the T+1 parameters ﬂo,ﬂl,...,ﬂT such that the L2 norm of Y - (ﬂo +
ﬂlxl + ... + ﬂTxT is minimized. Geometrically, we project Y on [X] =
[1’X1’X2""’XT]' The "goodness of fit" is measured by E[Y-§]2, where
Y - ﬁ + ﬁlxl + ...+ ﬁTXT is the solution to the minimization problem.

o
Given these "least squares" estimators, the difference between Y and

¢ is independent of (Xl""’XT)'

Example 3: A major motive for studying exchangeability is to span the chasm
separating modern economic theory from empirical economics. To achieve this

goal a theory of inference for stochastic processes must be developed. The
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symmetry inherent in exchangeability implies that many economic models are
exchangeable processes and that conditional expectations are derived easily
for these processes. This means that the well-known limit theorems for
martingales can be used to develop an asymptotic theory of inference for
exchangeable economic processes. These statistics are applicable to finite
exchangeable processes, to partial exchangeable processes and, of course, to
the infinite exchangeable processes assumed in de Finetti’s original

theorem.

Example 4: Convergence to the Poisson Distribution (Eagleson)

Let (Anj: j=1,2,...) be an infinite sequence of exchangeable events

for each n and consider the following sum of indicator functions:

k
Tnk - }: IA
=1

j=1 ™

The o-algebra of events in a(Anj

exchangeable w.r.t. the first m of the second index. Let G =N G
n m>0 nm

, J =21) 1is given by Gnm and is

be the exchangeable algebra of the nth row and consider:

(m)
(5) Fnj - a(Anl,...,Anj) Ve .

Notice that the first component of (5) guarantees that Anj € Fé?), while

the second component lets one calculate conditional expectations, that is

(m) (m) (m)
P(Anlen,j-l) - P(An,j+1|Fn,j-1) - T P(An,man,j'l) -
- (T Tn,j-l) / (m-j+1)

7A complete discussion of the SLLN, CLT, and LIL for martingales is
contained in Hall and Heyde (1980). An excellent presentation of functional
limit theorems is contained in Greenwood and Shiryayev (1987).
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If m 1is fixed, F(m? C F(m?, all n and j. If n and j are fixed,

n,j-1 n,j
(,m) i Ci.q 8.8
lim  F %’j a(Anl,...,Anj) VG . Now (T Tn’j_l)/m 41 557, P(An1|Gn),
SO
lin P(a_ |F™ ) = A |G)
nj''n,j-1 nl! "n"’
m—oo
If
nP(A |G ) B a constant8
nl' n ! .
then

n
v
T = }: IAn. S P()),
=1 ™

where P()) 1is the Poisson distribution with parameter .

The Hausdorff Moment Theorem

There are few problems that have generated more practical and
theoretical results than the moment problem. Landau observes its influence
on functional analysis, operator theory, Fourier analysis, the prediction of
stochastic processes, probability, statistics (and, of course,
econometrics)), inverse problems and the design of algorithms. The moment
problem is: when can a specified sequence of numbers represent successive
moments of a nonnegative measure. There are four moment problems: the
power, the trigonometric, the Hausdorff and the Stieltjes, corresponding to
the measure being defined on the line, the unit circumference, an interval

and the half-line, respectively.

8Kendall (1967) gives a sufficient condition for the hypotheses to
hold. See Theorem 3 of Eagleson (1982).
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Hausdorff showed that a sequence my,my,... were moments of a

probability measure p on [0,1] if the following condition obtained:

(6) m = Iy nay).

Condition (6) implies moq oWy < 0. Let A be the difference operator

and apply (6) repeatedly to give
k
(7) -1 a'm = fy (1-y)" p(dx) = 0.

Moment Theorem (Hausdorff)

A sequence m, = 1,m, ,m has the moment representation (6) iff (7)

0 172

is satisfied for all k and r. The Hausdorff moment theorem is equivalent

to deFinetti’s exchangeability theorem.9

Partial Exchangeability

When exchangeability is not present sometimes there is sufficient
symmetry to induce invariance of a joint distribution under a sgbgrouplo of
permutations or another group of transformations of the sample space into
itself. This yields the partial exchangeability introduced by de Finetti in
1938.

Examples of partial exchangeability are weak exchangeability,

row X column exchangeability, and mixtures of Markov chains.11

For a proof and edifying discussion of exchangeability and the moment
problem see Diaconis (1987). Obviously (6) is a Choquet representation with
(7) the iff positive definite (convexity) condition. Bernstein's theorem is
also here. See Feller, vol. 2 (1971).

10Let g be a nonempty subset of a group G. Then g is a subgroup
iff a,beg>iff ajbeg=>abeg and ae g=>a €g.
11

The Markov chain analysis is in the important paper by Diaconis and
Freedman (1980b). The most important economic application of partial
exchangeability is the partitioning that accompanies insurance in particular
and all firm behavior in general. Roughly speaking, this generalized notion
of exchangeability means that each of the partitions created by the
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Let {Xi’ i=1,...,n) be random points on the plane whose joint
distribution is exchangeable and suppose g(x,y) 1is a symmetric function.

Then the 2-dimensional array of random variables

g = 8%, 1,5 = 1,...,n

is invariant to permutations applied to each subscript simultaneously.

Hence

(X,.; 1,5 =1,...,n) 2

1] = Eey,mepyt B3 Lem)

These arrays were called weakly exchangeable by Silverman (1976).

Let o, (ﬁi, i=1l) and 74 i,j =2 1) be mutually independent

j’
uniformly distributed (on [0,1]) random variables. A standard weakly

exchangeable array is given by

Xﬁj - f(a,ﬁi,ﬁj,vij)

where f 1is a measurable function. Aldous (1985) shows that infinite
weakly exchangeable arrays are distributed like a standard weakly exchange-
able array. The Choquet representation theorem for row X column exchange-
ability is a deep result and has many practical applications including:
analysis of variance (Consonni and Dawid 1985), the structure of vision
(Diaconis and Freedman 1981), and the design of algorithms, complex systems,
and policy. French (1988) observes that symmetry is a distinguishing
feature of the production process. Yet "for all its importance, functional

design has hardly been studied at all."

splitting action of conditional independence can be treated as exchangeable
entities.
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Extensions of De Finetti's Theorem

Definition: Let xl’XZ"" be a sequence of random variables. The g-

algebra generated by (X,,X,,...X ) is F .
1°72 n’ ==n

n
Let F be the o-algebra generated by (Xn,Xn+1,...). Then F°° =

©

nn-l F' is called the tail g-algebra. The sets in F‘:° are known as tail
events. An F_-measurable function is called a tail function. Clearly, a
tail event is immune to fluctuations of any finite number of the X's. Two
familiar tail functions are: 1lim sup Xn and lim inf Xn'

A sequence of random variables is called spreading invariant if, for
every integer k and every n,, < n, < ... < n, the distribution of
(Xl""’xk) is identical to the distribution of (X _ ,...X ).

b ] e

A stopping time T 1is a random variable satisfying,

{T =t} € Tt, for all t.(¥)

Roughly speaking, Tt is the history of the process from 0 till t. The
event (T < to} means that the process is stopped at or before to.

Clearly, we want this event to belong to the process history and this is

what (%) requires.

Theorem 2: The following statements are equivalent

(i) The sequence of random variables (Xn) = X X2,X3,...X ..., 1is

1 n

exchangeable, for all n.
(ii) The sequence (Xn) is spreading invariant.
(iii) The sequence (Xn) is i.i.d. given the o-algebra Fn’
(iv) The sequence (Xn) is i.i.d. conditional on the tail o¢-algebra Fw.

D .
- (XT1+1’ XT2+1, XT3+1’ ...) for each

increasing sequence 0 =< T1 < T2 < T3 < ... of stopping times.

. D . .
(vi) The sequence (Xn) = (XT+1’ XT+2"") for each stopping time T = O.

(v) The sequence (Xn)
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(vii) There is a random variable X* such that the sequence (Xn) is

i.i.d. conditional on X%,

Remark 3: Kallenberg refers to property (vi) as strong stationarity.
That is, not only is an exchangeable process stationary, but it also has the

strong Markov property.

Remark 4: (vii) is based on Olshen’s theorem (1973). Let Xl’ g be an
exchangeable sequence of random variables taking values in a complete,
separable metric space. There is a real-valued r.v. X* such that:

(L) xl’XZ"" are conditionally i.i.d. given X¥; (2) if W 1is another

r.v. with property (1), then a version of X* 1is measurable o(W) and (3)

o(X*) 1is identical to the tail o-algebra, 7@.

Spherical Symmetry

Let the random vector Y- = (Yl’YZ""’Yn) be spherically symmetric
ss 1if Uy - Yn, where U 1is an arbitrary nxn orthogonal matrix. An

infinite sequence Y® is ss if Y" is ss for each n. An i.i.d.
N(0,v) sequence is ss and so is a mixture over v of i.i.d. N(O,v)

sequences. Now consider

Maxwell’s Theoremlz: An independent ss sequence is N(O,az) for
some 02 = 0.

It should be clear that an ss sequence is exchangeable.

Aldous (1985) shows that the theorems of Maxwell and de Finetti imply
the celebrated

Schoenberg Theorem: An infinite ss sequence (Yn,n=1,2,...} is a

mixture of i.i.d. N(O,az) sequences.

12A proof is in Feller (1971).
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Spatial Exchangeability

Statistical mechanics has made considerable use of de Finetti'’s
Theorem.13 Much of this work is couched in terms of point processes and
these have received attention by the queuing theorists (led by the East
German school) and the Scandinavian theorists (Lauritzen, Kallenberg,
Johansen, et al.) A substantial statistical methodology has been developed
that appears to be a great promise for econometrics. For example, the
spatial mobility that accompanies business cycles can be modeled in a manner
compatible with the model of temporal fluctuations. These statistical
methods can be adapted to estimate the joint spatial-temporal business
cycles. They also are applicable to advertising, other forms of information
flow and the contagion phenomenon. Under certain conditions there is a
critical number, such that the contagion spreads (dies) if the contagion
rate exceeds (lies below) this threshold.

Georgii (1979) has extended De Finetti’s theorem replacing the
homogeneous product measures with Gibbs states. Pitman (1978) does the same
for an inhomogeneous product measure. A configuration of particles is
described by w, a point in the space Q = {0,1}N, N=(0,1,2,...}). A

particle (or person) lives at site n if Xn(w) = wn = 1. Hence, Sn -

n

§=1 Xi is the number of individuals living at the first n sites. The

collection @ of probabilities on (f1,%), where 7F 1is the product o-
algebra, is composed of measures X. That is, X ¢ @ assigns a positive
probability to each finite dimensional configuration. Let C(A) ¢ @ be the
associated collection of canonical states: u € C()A) 1iff for each n,m € N,

the conditional distribution of (Xl,Xz,...,Xn) given Sn and (Xn+1,...,

13Liggett {(1985) and Kallenberg (1986) are excellent sources.
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xn+m) is the same under p as under A. Thus X € C(X) and each u ¢
C()\) has a unique integral representation over the set of extreme points
ExC()).

If A=2Xp for 0=<p =<1, where Xp € ® is the homogeneous product
probability such that Ap(Xn=0) = 1-p, it has been shown that C(ip) = C,
0 <p<1l, with C the set of exchangeable probabilities. Applying de

Finetti gives
Ex(C) = {Axp,0 = p < 1}.

Theorem 3: Row-Column Exchangeability (Aldous)
Let X be an exchangeable row-column array. Then there is an
arbitrary measurable function £: [0,1]4 -+ S such that X D X%, where X%

is represented by f, with i,j element

- fea, €4, o
x’j‘jj f(a! é‘ s r' ’ Aij)'

The random variables, e, El, nJ, Aij are independent TU(0,1).
Proof: See Aldous (1985).

De Finetti’s Theorem for Markov Chains

Theorem 4: Let Y,.,Y

0 be an exchangeable stochastic process on

17
(Q,F,P), with (0,F) Polish and the Yi taking values in a compact metric
space S. Let Pw(A) be a regular conditional probability on F given the
tail a-algebra F(w) of the Yi' Then the Yi are i.i.d., a.s. Pw'
Proof: See Diaconis and Freedman (1980b).

Zaman (1986) developed a finite version of this Markov theorem. He
considered a finite, stationary, sequence Xl,...,Xn which is Markov

exchangeable. By an ingenious combination of urn analysis and extreme point

theory, Zaman shows that any portion of k consecutive elements, k < n,
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is an approximate mixture of Markov chains where the metric is the variation
norm. Hence, Zaman follows roughly the same procedure as Diaconis and
Freedman (1980b) in obtaining a finite version of de Finetti’s theorem.

Both proofs are constructive, enlightening and general enough to apply to
all previous versions.

The Markov chain analysis began with de Finetti'’s conjecture that all
infinite length Markov sequences are mixtures of Markov chains. Freedman
showed this to be true for stationary sequences, Diaconis and Freedman
(1980b) replaced stationary by recurrent, and Zaman (1986) replaced infinite
by finite. Using entirely different methods Kallenberg proved that Markov
processes were exchangeable. Kallenberg considers the continuous analogue

of partial sums of exchangeable sequences to obtain his fundamental concept:

processes with interchangeable increments. Aldous suggests that inter-
changeable increment processes be viewed as integrals Xt = fg sts of
some underlying exchangeable "general process" Z.

Kallenberg studies Levy processes -- those processes having stationary
independent increments. Remember that for a Levy process X, X1 possesses

an infinitely divisible distribution. Recall that the random variable X

1
is infinitely divisible (i.d.) iff for each n, X1 has the same distribu-
tion as the sum of n 1i.i.d. random variables. Hence, X is i.d. if for

1

each positive integer n it is the nth power of some characteristic
function cn(t).
. s o . . . . 14
Infinitely divisible distributions are extremely important. They

were discovered in 1929 by de Finetti, who proved the following.

14Feller's volume II devotes considerable space to these distributions.

Feller argues "simply that if certain phenomena can be described probabilis-
tically, the theory will lead to infinitely divisible distributions”.
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Theorem 5: A characteristic function is infinitely divisible iff it has the

form

c(t) = 1lim exp {pj[hj(t) - 17,

j—m

where the pk's are positive real numbers and the hj's are characteristic
functions.

While de Finetti proved this theorem, it was Levy and Khinchine who
developed the theory of infinite divisibility. For any i.i.d. distribution
there is a Levy process such that X, has that distribution. The two most

1

distinguished Levy processes are:

(8) Xt = at + bBt’

where Bt is Brownian motion, a and b constants and

) Yo = Ne

where Nt is a Poisson process with rate 1 and X a constant.
The process Xt has continuous paths, whereas Yt has jumps and is

called a counting process. Buhlman (1960) proved that a process on R is

exchangeable iff it is a mixture of Levy processes.
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3. The Unifying Power of Exchangeability15

This section illustrates the versatility of exchangeability: (1) in
its ability to comprehend seemingly contrary methodological positions of the
two major schools of Economics: the "Rational" and the "Behavioral;"16 (2)
in its technical prowess to close the breach between economic theory and
empirical economics, and finally (3) in its demonstration of the equival-
ence of superficially distinct solution methods it forces the economist to
rely on economic criteria in determining the best solution technique. While
our instincts tell us that the elegant, symmetrical solution also will be
the most pragmatic, these intuitions must be checked at every stage of the
problem-solving activity.

(1) The Arrow-Lucas Debate

It would be difficult to find more lucid and forceful defenses of the
Behavioral and Rational economic positions than the definitive papers by
Arrow (1986) and Lucas (1986).17

The approach to dynamic economics espoused by Lucas concentrates on

steady-state analysis.

15 . : .
In the recent literature on Bayesian econometrics (for example see

Poirier (1988)) there is a tendency to select those aspects of "Bayesianism"
that are divisive and controversial. The practical and unifying
contributions of exchangeability to psychology, physics, biology and
statistics are ignored. The equivalences among versions of de Finetti's
theorem and the SLLN, Hausdorff's moment theorem, and semimartingales are
facts independent of metaphysical profundities. They are the source of this
unifying force.

16The labels "rational® and "behavioral" are used to divide economists
in a simple but imprecise manner. The "rational" includes those who
emphasize market efficiency, rational expectations, steady-states, and
homogeneity, whereas the "behavioral” concentrates on fairness, disequilib-
rium, segmented markets and heterogeneity, the new classical macroeconomics,
"bounded" rationality and market imperfections.

17The books by Arrow (1974) and Lucas (1987) as well as the papers by
Simon (1984), Winter (1986), and Zechauser (1986) are recommended.
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Technically, I think of economics as studying decision rules that
are steady states of adaptive process, decision rules that are
found to work over a wide range of situations and hence are no
longer revised appreciably as more experience accumulates.

On the other hand,

experimental psychology has traditionally focused on the adaptive
process by which decision rules are replaced by others. In this
tradition, the influence of the subject’s...preferences are kept
simple by choosing outcomes that are easily ordered (rewards vs.
punishments), and the focus is on the way that behavior is adapted
over time toward securing better outcomes.

Lucas' description of the Walrasian auctioneer is especially pertinent
to this paper:

If the trial price equates demand and supply, it does prevail and
trade is consummated. If it does not "clear the market", all bets
are off and the auctioneer selects a new trial price. Under some
quite reasonable conditions, this adaptive process (though it is

only the auctioneer who does any adapting) converges to the market
clearing price. . [emphasis added]

This mechanism "has the virtues of being concrete, of relying on simple
adaptive capacities, and of being, under a wide range of circumstances,
stable".

In his trenchant critique of "rational" economics, Arrow (1986) claims
that "it is possible to devise complete models of the economy on hypotheses

other than rationality ... the use of rationality ... is ritualistic, not
essential." Furthermore,

The attainment of equilibrium requires a disequilibrium process.
What does rational behavior mean in the presence of disequilib-
rium? Do individuals speculate on the equilibrating process?
Since no one has market power, no one sets prices; yet they are
set and changed. There are no good answers to these questions

In particular, the homogeneity assumption seems to me to be
especially dangerous. It denies the fundamental assumption of the
economy, that it is built on gains from trade arising from
individual differences ... it takes attention away from ... the
distribution of income

The main implication of this extensive examination of the use
of the rationality concept in economic analysis is the extremely
severe strain on information-gathering and computing abilities.
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Recall Smale’s (1976) critique of general equilibrium analysis:

the theory has not successfully confronted the question, "How is
equilibrium reached?" Dynamic considerations would seem necessary
to resolve this problem. Another weakness is the reliance of the
theory on long range optimization ... economic agents make one
life-long decision, optimizing some value. With future dating of
commodities, time has almost an artificial role. The model is
reminiscent of John von Neumann’s game theory ... the very best
chess players don’'t analyze very many moves and certainly don't
make future commitments .... Between one economic decision and
another there has been a real passage of time, circumstances have
changed, and the new decision takes place in this environment.
[emphasis added]

Finally, "long-run optimization would be impractical ... because of barriers
of complexity .... Dynamic models based on some kind of behavioral strategy
could meet these obligations."

Returning to Arrow: "Walras’ arguments can only be rescued by assuming
a stationary state".

In his insightful commentary, Winter (1986) strongly objects

to an alternative image of economic rationality that seems to have

ever-increasing influence among theorists. This is the image of

the economic actor as superoptimizer ... Subtle inferences from

observations to underlying conditions are always correctly made,
as in models of fully revealing rational expectations equilibrium

or in recent models of reputation effects .... Above all, the
superoptimizer has unlimited access to free information-processing
capacity

This characterization is "totally inappropriate in a science concerned with
the social implications of resource scarcity".

Zeckhauser sagaciously observes that both Arrow and Lucas have seized
the high ground in this "turf battle" between the rational and behavioral
schools and from these heights are able to select battlefields where victory

is most likely.18 However,

18This struggle exemplifies nicely the scope of exchangeability
analysis. 1In the mosaic comprising the intellectual disciplines, conflict
(interdisciplinary research) occurs near the boundaries. Thus the partit-
ioning of knowledge into disciplines and schools is analogous to the
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time to time there will be mutually agreed-on skirmishes.
recent ones have centered on macroeconomics, where the

nce remains exceedingly controversial and inconclusive, and
ce, where markets work exceedingly well but not perfectly --
tcome sufficiently ambiguous to enable both sides to claim
ry. In the future, I suspect, the behavioralists will

nue mounting experiments or micro evidence of non-rational

e The rationalists will take succor from the overwhelming
of their model and the absence of any equivalently

ful competitor.

rms of exchangeability the intellectual basis of this

ehavioral conflict resides in the distinction between a contract-
efficiency view of society. This divergence is embedded in a

of society that has the contract school focusing on the welfare
hange, especially labor mobility, externalities and asymmetries of
mises. The efficiency school applauds resource mobility and
initiative and responsibility. Guided by rational expectations

kers prepare for adversity and seize opportunities as the future

Interference with this rational behavior creates more costs than

an exchangeability perspective the key decisionmakers in an

ystem are the firm and the individual. Each is a collection of

contracts. The stochastic contract is governed by a birth and

ess. both the

This view of the economy is compatible with

rational ﬁnd behavioral approaches to economics. The stability of economic

behavior 4esides in the institutions, customs and routines that govern

|
civilized |

behavior.

partitioniof the globe into countries. Homogeneity reigns within borders.

Borders possess the martingale property.

Analysis of conflict can be

studied iﬁ the benign environment of computer networks, where the competi-

tion is fq
Bob Hall.)

r access to transmission nodes. (I owe this network analogy to
Furthermore, these conflicts can be diminished by dilating the

nodes. Sée Padmanabahn and Netravali (1987).
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s subjective, de Finetti system there is no business cycle --

dual, firm and industry has its own set of sample paths.

s are rainbow phenomena.

ity emerges when critical economic properties are found to be

o normal fluctuations. Heterogeneity and stability work

For example, the insurance company partitions customers so that

he "best" ergodic theorem) can be applied to each partition.
then predictable and the premiums charged allow the insurance

survive. Formally, partial exchangeability applies to hetero-

s.

The method is similar to the two stage process used by

al. in the actuarial literature. First, split the space into

independent subsets. Then apply the SLLN to each subset and
he "fair" premium. With de Finetti'’s partial exchangeable
11 of this is accomplished in a single elegant stroke.

eneral theory of partitions explains the formation of other

economic institutions whose range encompasses the street gang and the

prestigiou club.20 A vibrant healthy society is composed of segmented

groups with permeable boundaries.

constrain individual mobility the society stultifies.

When the partitions become rigid and

It is absolutely

essential that all of these segmented groups be embedded in the larger

societal network.

The institutions that bind society'’s members must in

19ThiL approach to business cycles is consistent with the empirical

results reported in Lucas (1987):

the trend.
remarkable
(1988) and

20

subsequent

the cycle is insignificant compared to ’
This theory also is compatible with de Finetti and the

book by Pigou (1926). For further discussion see Velupillai
McCall and Velupillai (forthcoming).

These partitions or clubs correspond to those in the seminal work by
Buchanan (1965).

See Cornes and Sandler (1986) for a fine survey of the
literature.

some
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vague, but essential sense dominate the bounds that satisfy the instinctual
urge to belong to a segmented group. This is achieved by conditional
independence and the corresponding conditional expectation and conditional
martingale. They split and then project from the larger space into the
smaller spaces with conditional martingales preserving the "conservation of
fairness" across partitions.

The equilibrium concept associated with the exchangeable, economic
process is based on the "no arbitrage principle" -- a martingale. An
economy abiding by this principle is automatically "efficient" and "fair".
The martingale also is equivalent to the conservation of fairness.21

This equilibrium concept is the stochastic version of the Arrow-Debreu
general equilibrium. However, the "Levy demon" replaced the Walrasian
auctioneer, the deus ex machina corresponding to the "Maxwell demon".22 The
"Levy demon" is the natural extension of the Lucas-Sargent steady-state.23
Both originate in function space and are efficient relative to the fluctu-

ating phenomena. Now, however, endowments, tastes and technology are random

processes and there are many sample paths. Optional stopping times enforce

21The fairness espoused by Baumol (1986) et al. is related to this

conservation principle. See McCall and Velupillai (forthcoming).

221 am indebted to K. Velupillai for this and many other insights.

Loeve (1978) has a nice description of these demons.
Statistical physics has a familiar -- the "Maxwell demon" who
travels along the individual paths of particles subject to
deterministic laws of mechanics; his clock is the same along all
paths. In sample Analysis there is now also a familiar -- the
"Levy demon" who travels along individual sample paths of r.f.s
(random functions) and his "random time" clock varies with the
paths. In fact, the Maxwell demon is but a degenerate form of the
Levy demon. [Loeve (1977)]

23The "Levy demon" is related to the analysis of Willinger, Taquu,
Aldous and Metevier, who study the fine structure of "general processes”.
Stopping times and information structures are fundamental to this analysis.
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the "conservation of fairness" along each path. The exchangeable/martingale
equilibrium analysis accommodates many stochastic processes including the
recent research on dynamical economics,

In 1926 L. Szilard exorcised Maxwell's demon by observing that a demon
so "well-informed" (to track every molecule’s sample path) required so much
entropy that the corresponding perpetual motion machine was impossible.2

In their pathbreaking paper Anderson and Sonnenschein (1985) "feel
strongly that positing the existence of a market-maker, who is able to infer
the joint signal, is both unrealistic and antithetical to the spirit of
decentralized competitive analysis". A demonic translation: they don't
like Maxwell’'s demon, but this doesn’'t imply they would embrace Levy's
demon -- they must be willing to substitute Meyer for Brouwer, that is,
trade a fixed point for a floating crap game.

(2) The Bridge From Economic Theory to Empirical Economics

Most "moderate"26 economists and many "extremists" agree that progress
in economics is tied to sophisticated and steady empirical analysis.

Perhaps the most important feature of the exchangeability approach is its
ability to sustain such an endeavor. We will see that the dilation
operator, an exchangeable entity, can be used to estimate dynamic economic
models. It also has many other applications in designing and estimating

economic theory in function spaces.

24For discussions see Brock (1986) and Day (1984).

25The economic implications of these demons are discussed extensively

in McCall and Velupillai (forthcoming).

26Zeckhauser (1986) reflects this moderate position: "Empirical
support should be our criterion ... we moderates should be happy ... knowing
where rational models hold sway and where behavioral explanations" apply."
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The spacings between order statistics are exchangeable. This
observation has immediate implications for estimating tournament theory,
auction theory, Stiglerian search theory and other economic theories that
ask: whose on first (second, third, ...), how long have they been there,
etc.

Finally, the U-statistic must be mentioned.

The U-Statistic27

The U-statistic for a sample xl’XZ""’Xn’ nz=m is given by
m n -1
Un = (m) z h(Xi ,...,Xi R
c 1 m
where Ec is the sum over the m distinct combinations (il,...,im) from
{1,2,...,n}, h 1is a symmetric kernel. The sample is independently drawn

from F, the objective being an unbiased estimator of 4.

let 6 = 6(F) be the parameter function:
6(F) = Eplh(X, ..., X )] = [ ... fhGxp, ... x )dF(xp), ..., dF(x).

The unbiased estimator of 4 1is obtained by averaging the symmetric

. : ce 3 m
kernel with respect to the observations. This is exactly how Un is const-

ructed a_la de Finetti. The sequence of r.v.s Xl,...,Xn is exchangeable.
Let Tn be the o-algebra generated by U?, j =2z n. Then for nt+l >
iz ...z ilzl,
m
E[U?;l';ml] - l;"‘[U:+1|F’Kn+1] = Uhe1
Now let U* = g™ and F* =7F , n=<-m and ({(U*,F*)}), n< -m is a
n -n n -n n’''n

27The U-statistic was found by Halmos (observe the similarity to his
dilation operator), developed by Hoeffding, Serfling (1980) and Denker et
al. (1985). W. Brock introduced U to me. Its economic applications are
considered more thoroughly in Brock et al. (1987).
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martingale closed on the right.
Many familiar estimators are U-statistics. They include the sample
mean and variance, Gini’s mean difference, the empirical distribution, and

the sample moments.

Example: Exponential Bounding

Three of the major methods for bounding the net return from a decision
are based on moments, marginals, and the exponential distribution. Recall

that if F has a constant hazard rate, it is the solution to:
1 - F(s+t) = (1-F(s))(1l-F(t))

and
6(F) = (J (1-F(t))dF(t))2
0

Let ﬁ(x,y,z) = then

1(x-y-z>0);
8 = [h(x,y,z)dF(x)dF(y)dF(z).

Finally let

h(x,y,2) = 3 [h(x,y,2) + h(y,x,2) + h(z,x,y) + h (z,5,9)].

Substitution yields an unbiased symmetric estimator for 6 and the

corresponding U-statistic can check for exponentiality.

Example: Cumulants., Mobius Theory and the U-Statistic

In a series of papers, Speed has probed the deep interplay between
combinatorics and moment problems. The Mobius function of a partition

lattice is ingeniously applied to moments, cumulants28 and k-statistics.

28Let L be a measure on R"® and suppose MG(p) 1is the moment
generating function of pu. the cumulants {Kr} are defined by:
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Several equivalences are derived and both the cumulant and the moment are
generalized. Symmetry and exchangeability assume a prominent role in this
analysis. The extension to analysis of variance and multiply-indexed arrays
is developed and is related closely to the joint work with Lauritzen et al.
on contingency tables. It is impossible to do this work justice here, but
several points are too tantalizing to postpone.

(1) The generalized moments are not the same as those used in econometrics.
Why not?

(2) Fisher’'s k-statistics are exchangeable!

(3) The Mobius function has been exploited in the spatial analysis
(stereology) of Matheron, Serra, Kendall and Stoyan. These
applications are in the form of dilations.29

(4) The spatial version of the de Finetti representation theorem has been
developed by Pitman.

In his brief and insightful review of Speed's research, Diaconis
displays great enthusiasm: (Application of the Mobius function yields a
formula (2.9) linking moments and cumulents). "Formula (2.9) is brilliantly
presented and developed by Speed who uses this combinatorial approach to
prove all of the standard facts about cumulants in a unified way".

Finally, the flow of deterministic methods into and out of stochastic
processes is displayed lucidly in Speed’s analysis. The transitions from
moments to polynomials, to reverse martingales to cumulants, etc. are

indicative of the unifying methodology.

1.5 Tn
MG(u) = Zr Kr 01 02 v 0n /ri R e

29Serra (1982) shows that a compact set is infinitely divisible w.r.t.
dilation iff it is convex. This connects four of the unifying principles:

dilation/exchangeability (Halmos/de Finetti), infinite divisibility
(Feller), convexity (Strang, 1988) and compactness.
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(3) Combinatorics, Algorithms and Network Theorx30

One of the major sources of exchangeable processes is combinatorial
analysis. Andersen, Baxter, de Finetti, and Feller were among the first to
show that a deterministic combinatorial analysis at some point becomes pro-
babilistic. This is a deep duality and has sweeping practical consequences.
It is possible to choose many equivalent methods for solving and/or estimat-
ing stochastic economic processes. A stubborn combinatoric problem may be
tractable when posed as a Markov process31 or point process. Alternatively,
a point process may simplify when characterized as a network flow and
interpreted as an economic equilibrium. For example, in a study of labor
mobility in a particular market the potential at a node corresponds to a
price (wage), whereas the potential differences across arcs correspond to
wage differences. 1In arc j there is a general relation Fj which roughly
requires the flows of labor to obey the "conservation of fairness". In some
applications it is more useful to treat Fj as demand and supply relations.
This is a simple application of Rockefeller’s monotropic optimization (1984)
to the dual linear programming problem. The power of the equivalences among
network theory, Brownian motion and harmonic analysis are revealed in

function space and has not been exploited fully by economics.

30The interested reader may wish to consult Riordan (1978), Grotschel

et al. (1988), Greene and Knuth (1986) and Rockefeller (1986).

31One of the first applications of L.P. to solve Markov decision
processes was Manne (1965). Stochastic processes reciprocated when Khachian
used (exchangeable) dilations to construct his celebrated algorithm. Sinden
(1962) was earlier than Khachian. See Rustem and Velupillai (1987) for a
discussion and nice application of Khachian’s algorithm and the first
economic application of complexity. Now hashing, sorting, and merging all
have probabilistic equivalents. These are discussed in Ramakrishna (1987).
The Mobius transformation was first used by Rota (1962) to characterize
combinatorial methods.



32

These probabilistic processes founded on stopping times and
conditioning are equivalent to harmonic analysis (potential theory).32 All
of the algorithmic and combinatoric methods used in economic processes33 can
be converted using probabilistic potential techniques.34

These methodologies imply that computers can be designed according to
exchangeable principles.35 Furthermore, the organizational structure of the
firm, the design of its product and sales policies may benefit from symmetry
transformations. The decisive observation is the absence of economics in
many of the symmetry transformations. Most economists would agree that
market survival is higher for processes possessing economic symmetry than

for those that are only technically symmetric.

32The pathbreaking paper by Ressel (1985) exploits this equivalence to

obtain "harmonic" representation theorems.

33An excellent survey of these methods is presented in the appropriate
format by Arniel et al. (1988).

34Excellent introductions to this important literature are contained in
Dynkin and Yushkevich (1969) and Doyle and Snell (1984). The remarkable
paper by Samuelson (1952) "sees" the equivalences among electrical networks,
general spatial equilibrium, linear programming and graph theory!

35Masani (1978) hints at this while Kailath (1987) is more explicit.
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4. Dilations and Their Economic Consequences: A Brief Overvi_ew36

In the early 1950s Blackwell, Girschick, Shapely, LeCam, et al. began
asking how one chooses among experiments on the basis of their "information
content". The partial ordering of majorization emerged from this sustained
analysis.37 So de Finetti, Savage, Karlin and Wald emphasized the

indispensible link between decision theory and any measure of the value of

information. At about the same time, sufficiency was being incisively
analyzed by Halmos and Savage, Bahadur et al. Perhaps the most influential
paper on this subject was by Strassen (1965). It not only "solved" the
stochastic ordering problem, but also demonstrated the significance of the
marginal problem, lifting and much more.

A dilation is essentially a norm preserving stretch and it is
equivalent to exchangeability. The essence of the dilation operator is to
magnify a problem so that the basic complex structure is preserved but
"simplified through enlargement". Roughly put, this clarifies the problem,
enlightens the researcher, and improves the analysis. The applications of
the dilation methodology are manifold, ranging from the estimation of

complicated stochastic processes to assessing the degree of heterogeneity in

38

an income distribution.

6A more complete description of dilations, delation operators, and
their economic applications is contained in McCall (1988). The connection
between dilation ordering of stochastic processes and the dilation operator
is the major contribution.

37A recent analysis is conducted by Cheng et al. (1987).

38The dilation pervades Fourier analysis and group theory. Gantmacher
maintains that every linear transformation in R is obtainable by a series
of rotations and dilations.
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Exchangeability, Stochastic Ordering and Dilations

The influence of "mean preserving spreads" (MPS) on probabilistic

economics has been decisive. Without ordering relations stochastic

economics would have foundered. Generalizations of MPS’s have been

developed to compare dynamic stochastic models.

Majorization

: n A .
Let x and y be vectors in R . The vector y majorizes x if

i=1 i=1

where X[l] > x[z] > ... 22X

Thus x 1is less diffuse or spread out than y.

x <y.
Theorem 6: The following statements are equivalent
(10) x <y
(11) x' = Py’ for some P € @n,

the set of all nxn doubly stochastic matrices.39

39

k k
}: x[i]vs ‘}: y[i], for k=1,...,n-1 and
=] =1

This is symbolized by

P sometimes is called the Schur transformation. Let M be the set
of double stochastic nxn matrices. M 1is convex with the permutation
matrices its extreme points. (A permutation nxn matrix has a single
nonzero entry in each row and each column). The convex hull of the n!
permutation matrices is identical to M. See Marshall and Olkin (1979) and

Appendix 2.
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(12) X € conv(y1r | n a permutation of {1,2,...,n))40
n n

(13) }: f(xi) < }: f(yi) for every convex function £: R - R.
i=1 i=1

Proof: See Marshall and Olkin (1979).

Schur Functions

Let A C R". The real valued functions that preserve the order of
majorization are called Schur-convex: f: A + R is Schur-convex if x and
y€A and x sy > f(x) < f£(y). A function f 1is termed Schur-concave if
it reverses the order.

Let By and Ko be two measures defined on a set s in R". Suppose

(14) f fdu, < 1) fdu,
S s

for all bounded functions f contained in the convex cone 7F. When ¥

contains all convex functions, By is referred to as a dilation of #1.41
Clearly, a dilation in R" corresponds to majorization and MPS.
The following urn analysis relates dilations to exchangeability.42 Let

Sn and S; be the partial sums of n random draws from an urn without and

with replacement, respectively. Then it can be shown, that roughly,

S* > § for each n>1.
n n

Oconv = convex hull,
41It is also called Choguet order. See Kingman, (1978) for a
martingale analysis and Phelps (1966) for a Choquet analysis.

42Of course, exchangeability has already entered as an integral part of
a one-dimensional dilation. The dilation is a conditional expectation, and
a contraction mapping. Every contraction has a unitary dilation. This

connects de Finetti and Halmos!
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The rationale for this is clear: the information derived from an n
sample without replacement exceeds that from an n sample with replacement.

Observe that ergodicity (invariance to permutations) is the defining
property of exchangeability, whereas entropy is used to compare exchangeable
processes.

Some of the most important contributions of exchangeability to
economics reside in the following analysis: identify those elementary
probability measures and express all others as convex combinations of these.
Often this set of probability measures lives on a Choquet simplex, with the
extreme points representing the elementary measures. This is the approach
taken by de Finetti using symmetry arguments and also by Dynkin (1978) using
sufficiency arguments. The most elegant approach using this methodology is
Lauritzen (1982). This deep analysis reveals the relations among exchange-
ability, martingales, sufficiency, Markov processes, the interplay between
stochastic and deterministic (e.g., linear programming) methods, and much

43

more.

The Dilation Operator

The functional-theoretic path to the dilation operator began with Sz.
Nagy and Halmos. Let the Hilbert space H be a subspace of the Hilbert

space H. A bounded operator T on H is said to be a dilation of an

operatcr t and H 1if the following projection relation obtains:
L
T = m,T "[H vn > 1,

where ™ is the orthogonal projection in H' with H as the range

43A more complete discussion is contained in the Appendix.
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space.44

Sarason (1987) claims that Halmos introduced the dilation operator to
learn more about its then "mysterious structure,” and that this intention
has been "realized repeatedly". All isometries and coisometries possess
unitary dilations. In addition, Sz-Nagy showed that every contraction has a
unique dilation up to an isomorphism provided it is minimal -- not the
direct sum of two unitary dilations. Sarason reminds us that the dilation
operator can solve a number of classical moment and interpolation problems
by its "lifting" ability. For example; let Sb be a shift operator

RICHA

relative to the inner function b = ; then

S, e

_ e 41 n <N
b™n

0, n = N.

The exponentials form an orthonormal basis and the matrix associated with
Sb is Toeplitz. 1In order that the Caratheodory-Fejer interpolation problem

is solved, operators must be devised that commute with S By its lifting

b
45
b

In recent years there has been an enormous theoretical literature on

ability, the dilation operator is able to commute with S

various features of the dilation operator. The trend of this literature has
been toward simplification. For example, Masani develops an argument that
portrays the dilation operator as a "simple" generalization of Kolmogorov's
theorem on positive definite kernels. The dilation operator has been used
to solve moment problems, the realization (identification) problem, and

prediction (extrapolation and interpolation problems). An important example

QHalmos' original definition set n = 1. The dilation described in
the text usually 1is called the power dilation.
45The details are important and definitely not trivial. See Sarason
(1987) and references therein.
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is the following: Let Xt’ t € R' be a stochastic process with values in

a specified Hilbert space H. The process is harmonizable provided

X, = f e-ltu dd(u),
£ OR

where ¢ 1is a countably-additive Hilbert valued measure on R of bounded

semi-variation. The class of harmonizable processes includes projections of

stationary processes. Miamee and Salehi (1978) show that these classes are
equivalent -- a stochastic process is harmonizable iff it possesses a stat-
ionary dilation. That is, the harmonizable process is a projection of a
stationary process taking values in some larger Hilbert space. There is an
immediate connection between the dilation operator in this setting and

ergodicity.

Suppose Xt is a Hilbert-valued harmonizable process. Then

1 T luot
lim = J X e dt = Q(uo).
0

Proof: See Miamee and Salehi (1978).

There is a string of connections that ties dilation theory to almost
every stochastic economic process. These include: identification, ergodic-
ity, entropy, the economics of information, prediction, interpolation,
approximation (splines, moments, and marginal problems), classification,
projections and the corresponding estimation processes in both cross-
section and time-series studies in econometrics. There is also a close

connection between dilation operators and dynamical systems.46

46These are explored extensively in McCall and Velupillai

(forthcoming) .
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5. Exchangeability, Semimartingales and the Mean Ergodic Theorem

In a recent article Kallenberg (1988) shows that exchangeability and

. . . 47
semimartingales are equivalent. Furthermore, he demonstrates that

exchangeability is implied by the mean ergodic theorem. The first equival-

ence means that exchangeability can use the powerful analysis of the
Strausberg School. It also verifies a long held conjecture: anyone who
uses semimartingales must be a Bayesian.

Kallenberg notes that his theorems depend crucially on the stationarity
assumption. We will see shortly that the dilation operator can transform
some non-stationary processes into stationary processes. Kallenberg's
theorems hold for finite and infinite sequences as well as for continuous
processes. These theorems generate many counter intuitive examples.

When assessing the proof that the ergodic theorem implies
exchangeability, recall that de Finetti proved that his exchangeability
theorem implied the strong law of large numbers and Kendall (1967)
demonstrated that the SLLN implied de Finetti'’s theorem. Also, in his
recent survey article Dacunha-Castelle (1982) proves the following theorem.

First, he defines splitting in the sense of McKean. That is, suppose

B is a subo-algebra of A and Xl,...,Xn,... are random variables on
(Q,A,P). Then Xl’x2"" are conditionally independent w.r.t. B 1iff Vk
the bounded measurable functions fl’f2""’fk are split by B, 1i.e.,

E[(£,(X), .. £.(X))[B] = E[£,(X)[B] ... E[£ (X )|B].

Theorem 7: The following statements are equivalent:

(1) The random variables xl’XZ"" are exchangeable above B.

7See Appendix I for an introduction to semimartingales.
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(2) The random variables Xl,Xz,... are spreading invariant above B,
that is, the distribution of (Yl""’Ym’xl""’xn) is the same as
the distribution of (Yl,...,Ym,an,...,Xnn), where n1 < ... < n Vh
and Yl""’Ym are B-measurable.

Exchangeability is roughly the same as a stretching or dilation

transformation.

The Mean Ergodic Theorem:

Let J be a contraction on a Hilbert space H. Then the sequence of

operators, {l/n 22;3 J*) on H is strongly convergent.

Proof: (Sz Nagy).

Apply the dilation operator.48

Hence, while the mean ergodic theorem implies the de Finetti theorem,
an elegant proof of the former exploits an "exchangeability" operator.

Kallenberg (1988) observes that all of his results depend on the
stationarity assumption. Indeed, one of his most important theorems shows
that exchangeable sequences are strongly stationary in the sense that the
sequence is invariant to random time shifts.49

Recently, it has been demonstrated that application of the dilation
operator transforms a class of special nonstationary sequences to a

stationary sequence. Thus there may be additional practical implications of

Kallenberg’s important paper, modulo dilation theory.

48See Halmos (1982, p. 327).

49Observe that this is an ergodic theorem and it is closely related to

the dilation operator via the shift transformation.
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APPENDIX 1

Exchangeability and Martingale Theory

The sudden and explosive growth of exchangeability analysis was
possible because of its intimate relation with martingale theory. The
latter has had a sustained period of development under the leadership of
Doob, Meyer and the Strausberg School. While extremely abstract, martingale
theory has been applied in almost all of the disciplines, especially
physics, biology and financial economics.

Martingales are created rather easily. Let {Xn, n = 0} be a sequence

of random variables with E[X] < ». The function

n
M(X) = { Z (x; - E[X1|Xi-1""'x1])}
i=1
is a martingale relative to the sequence of co-algebras generated by Xi’
i=<n.
Definitions: Let {Xi, i 2 0) be a sequence of random variables that are
conditionally independent (c.i.) given the sigma algebra G. Suppose
E[X.|G] t ain i a.s., i21. If S =3X. and F_ = o(GU
i n i n
a(Xl,...,Xn)), then {Sn,Fn, n = 1) is a submartingale.
If c.i. is replaced by exchangeable and E(Xi’xj) = 0 all 1i,j, then
{S ,F_ ,n=1}) 1is a martingale.
n''n

If E[X

n+1IFn] = 0, the sequence (Xn,F , n>1) 1is said to be a

n
martingale difference.

It is now routine to go from the submartingale to the principal
martingale convergence theorem: The law of large numbers.

Let 51’52"" be a submartingale and let K denote sup_ E[|Sn|].
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If K< =, Sh ™ S w.p.l, where S is a random variable such that E[|S]]
< K.

The central limit theorem and the law of iterated logarithm are also
easily obtained. Finally, estimators can be calculated (most of these are
martingales), parameters of interest in the exchangeable process can be
estimated, based on the observed temporal behavior.50

Semimartiggales51

A stochastic process X = (Xt’Ft)’ t €T 1is a gsemimartingale if it is
decomposible into a local martingale X1 and a process X2 with locally
bounded variation.

The process X1 is said to be a local martingale with respect to F
if there are stopping times o increasing without limit so that XtAa is

a martingale with respect to (F t=0).

tao_’
n
The local martingale corresponds to the rapidly changing aspect of the

semimartingale.

The process X2 = (X2t,Ft;t > 0) has locally bdd. variation if

fg Idxzs(w)l <oVt and w € Q.

The semimartingale is a rich class of stochastic processes encompassing
all discrete processes, all exchangeable processes, and all processes with
stationary independent increments.

Protter (1986) observes that stochastic integration, until recently,
referred to the Ito integral, that is, integration with respect to Brownian

motion. For example, many diffusions can be depicted as solutions to

50A fine discussion of the limit theorems for exchangeable processes is

contained in Hall and Heyde (1980).

51An excellent discussion of the semimartingale’s economic significance
is presented in Sims (1984).
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systems of stochastic differential equations represented by:

t
X, =X+ Jo o(s. X )dB_ + Jb(s,X )ds,

where B 1is Brownian motion.52

Now it is "well-known" that the Ito integral with respect to Brownian
motion is inappropriate both for the practitioner and the theoretician. The
more general semimartingale integral is the correct form of stochastic
integration.

There are two reasons why the attachment to Ito integration is
difficult to sever. First, the new semimartingale approach is abstract and
exceedingly difficult. Second, Brownian motion is a very attractive pro-
cess. Indeed, it, among all stochastic processes, must be singled out for
special consideration, being a member of three families: the martingales,
the strong Markov processes, and the Gaussian processes. It is also
exchangeable and self-similar. Yet Doob insisted on the importance of the
martingale. He saw that it was the key to the Ito integral and also showed
that the submartingale is decomposible into a martingale and a nondecreasing
process. Meyer followed the decomposition trail and encountered many subtle

obstacles. Given a filtered probability space (O,F,{Ft] with FS C

t=0' )

F when s < t, F_ =n F

t’ € Sty and Fo containing all P-null sets, consid-

er the stochastic process Ht' Ht is a function mapping R+ X I to R.
The predictable o-algebras P = o{H: Ht € Ft’ vVt and t - Ht is left
continuous). The optional o-algebras 0 = o(H: Ht € Ft and t - Ht is

right continuous), where o( ) is the smallest o-algebra on R+ X Q

conferring measurability on all these stochastic processes.

52For an extensive analysis see Karlin and Taylor (1982).
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Now the puzzle was that for Brownian motion, P = 0. This follows from
the strong Markov property together with continuity. Yet for general
martingale integrals (with respect to Brownian motion) the integrand was
restricted to predictable processes. Deep reflection by Meyer saw that this
limitation was patural. He proceeded to extend the theory of stochastic
integration to local martingales including the generalized Ito's change of
variable formula. (Ito’s original formula had been generalized by Kunita
and Watanabe. They showed that any submartingale can be decomposed into a
local martingale and an increasing predictable process.) The semimartingale
now occupies center stage in the theory of stochastic integration. It is
composed of a local martingale and an increasing process, where the latter
can be viewed as the difference of two increasing processes.

The semimartingale is the most general differential for which an
integral exists: a local martingale integral for the martingale and a path
by path Lebesque-Stieltjes integral for X2. It has been shown that if a
right-continuous process X 1is a linear differential satisfying a weak
dominated convergence theorem, then X 1is a semimartingale. The semimart-
ingale X can be decomposed into M + A, where M is a locally square
integrable local martingale and A 1s a process whose paths have finite
variation on the compacts. This reduces the problem of stochastic
integration in that elementary Hilbert space methods greatly simplify the
theory.

Protter (1986) has observed that the theory of stochastic integration
is now a mature field in stochastic theory. The two key objects -- semi-
martingale and predictability -- have been identified. Furthermore, the law

of large numbers and the functional central limit theorem have been obtained
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for semimartingales by Lipster and Shiryayev.53 Thus, semimartingale theory
is ready for applications. Out contention is that stochastic economics has
and will continue to reap enormous rewards from applications that combine
this robust and elegant mathematical edifice with the de Finetti-Savage

methodology as portrayed by Lauritzen (1982).

53These are discussed in the fine survey article by Shiryayev (1981).
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APPENDIX 2

Comments on the Integral Representation Theorem

At first it may seem odd that all of Bayesian inference can be
represented by an integral of mixtures with exchangeability being the
driving assumption.

Comment 1: The integral representation theorem is a deep result in
functional analysis. Indeed, it is the generalization of two profound
theorems: those by Minkowski and Krein-Millman.

A subset K of a real linear space is called convex iff the following
condition obtains: Let (yi} i =1,2,...,k be points in K; then K is

convex iff

1

i

k

135 € K; v >0, i=1,...,k and E: 7. = 1.
i=1

Any point y € K is called an extreme point of K (ext K) if y can

only be represented in a trivial manner, that is,

y = % X + % z, x,z €K

with x =2z = y.

Minkowski's Theorem: Let K be a compact convex subset of a finite
dimensional vector space. Then every point in K can be represented as a
convex combination of K's extreme points. That is, if K C Sn, an n-

dimensional space, then each element of K 1is a convex combination of n+l

or fewer extreme points.71

1For proofs and discussions of this important theorem see Phelps
(1980) and Mirsky (1963).
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In probability theory, economics, statistics and, of course, functional
analysis K is frequently infinite dimensional and Minkowski does not
suffice.

The Krein-Milman theorem does approximate each point in infinite

dimensional convex sets by convex combinations of extreme points. However,
it does not provide a representation theorem for this more abstract setting.

To remedy this consider H, a separable real Hilbert space with inner
product ( , ) and norm (x,X) = "x"z, K a nonempty compact convex subset
of H, X, an arbitrary compact Hausdorff space, C(X), the Banach space of
all real valued functions on X possessing the sup norm, £l = sup{If(x)|:
x € X}, f e C(X).

From probability theory we know that the Borel subsets of X comprise
the smallest o-algebra of subset of X containing the closed subsets. A
probability measure p on X is a nonnegative measure on the Borel sets

such that
p(B) = sup{u(A): A compact, A € B} and u(X) = 1.

By the Riesz representation theorem, if L is a linear functional on
C(X) such that L(f) = 0 whenever f = 0 and f € C(X), there exists a

unique measure px on X satisfying

L(f) = [ fdu, £ € C(X).
X

Phelps notes that the Stone-Weierstrass theorem implies that if X is
a compact metric space, C(X) 1is separable.

Choquet Theorem: Let K be a compact convex subset of the separable
Hilbert space H. For any x € K, there is a probability measure pu on K

such that:
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(a) f fdu = f(x), for each f € A(K), the subspace of all continuous
K

real-valued affine functions on K, and

() p(ext K) = 1.72

It is this analysis that accounts for the generality of the modern

versions of de Finetti'’s theorem.
: 73

Comment 2: In the sophisticated econometric research on estimation,
mixture methods have been used to cope with heterogeneity and other
specification problems. 1Is this work related to the de Finetti analysis?
Not only is it related directly via heterogeneity, but it also reveals
powerful connections among exchangeability, the design of experiments and

convex programming.

Comment 3: The partial ordering of majorization in R and the Schur
functions are closely related to heterogeneity.74

Let R be an open convex subset of Rn, where R" has exchangeable
coordinates. A function ¢: R - R® is called Schur comvex if it is
nondecreasing relative to the parted ordering of majorization (<) on R.

Schur convex functions are always exchangeable. For example,

n
¢(x1,...,xn) = }: f(xi) where f: R -+ R 1is convex.
i=1
Now x = (xl,...,xn) is said to be majorized by y = (yll,...,yn) or

that y 1is a dilation of x, written x < y if

72A detailed and illuminating proof is given by Phelps (1966).

73A fine example is Heckman and Singer (1984).

74 . c e s s . . . . .
A brief and incisive description of dilations is given in Kemperman

(1981).
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n n
}: f(xi) = Ifdp < Ifdv = }: f(yi)
i=1 i=1

obtains for each convex function f on R, where pu and v are the
appropriate measures.

A necessary and sufficient condition for (1) is

k k
(2) Z"m < Zy[i]’ k=1,2,...,n-1,
i=1 i=1
and
n n
52 *ri1 ° E: Y11y
i=1 i=1

where [i] denotes the order of the observation in the n-sample.
When the analysis is conducted in abstract spaces the dilation is the
appropriate ordering. Let S be a compact metrizable space and C a

convex cone of continuous functions on S. Then a measure p < r iff

r(B) = [k(x,B)p(dx),

where k(x,B) 1is the kernel.

The dilation is also called Choquet ordering and has the martingale
property. A rigorous analysis will be presented in a subsequent paper.

By indicating the more diffuse probability measure, the dilation is a
natural measure of homogeneity (and entropy). By integrating over measures

via mixing, heterogeneity is treated explicitly in the estimation process.

Comment 4: The equivalence between de Finetti's theorem and the
Hausdorff moment problem clearly demonstrates the connections among

exchangeability, the moment problem, interpolation and approximation theory,
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Wiener-Masani prediction theory and operator theory. The relation between
dilations and exchangeability reveals the connection between exchangeability
and Strassen’s Marginal theorem. That both the class of moment problems --
the typical example is given some subset in R, determine the probability
measure on R having specified moments, perhaps the lst, 2nd, and 3rd, so
that a criterion function is optimized -- and the class of marginal problems

-~ the typical example is given n marginal distributions on S ,S

Spsenn
1’72 n
what is the joint measure on S1 X ... X Sn that optimizes some criterion

. 5 . .
functlon7 -- are glued to de Finetti, means that the fundamental research

on convex programming of Rockefeller and Wets and the Ford-Fulkerson network

analysis are all intertwined in what may be an economically productive web.

Comment 5: The equivalence of the Bayesian representation theorem and
Hausdorff’s moment theorem means that the robustness analysis and approxima-
tion theory associated with sophisticated studies of complex systems is not
only compatible with the Bayesian methodology, but required by it. These

approximations are discussed in McCall (forthcoming).

Comment 6: The admissibility problem first detected by Stein has been
studied extensively by Brown (1986) and Johnstone (1986). Johnstone (1986)
shows that a unique reversible birth and death process on the positive
integers is associated with every generalized Bayes estimator.76 Johnstone
estimates a Poisson mean X based on one observation x with a quadratic

loss function (d(x)-A)Z/A, with d(x) the estimator. An adroit

7SWhitt (1976) has a clear analysis of the bivariate marginal problem
with an excellent historical account of its genesis. The moment problem and
the marginal problem are treated extensively in the important book by Klein-
Haneveld (1986).

76The "generalized" estimator need not have a proper prior. For a full
discussion see Berger (1985).
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application of harmonic analysis shows d(x) 1is admissible iff a "zero
energy" conservation principle obtains. In economic terms this corresponds
to a "no arbitrage" condition. In a subsequent piece, we will show that
hitting the boundary of a Choquet simplex corresponds to solving the admis-
sibility problem. In both cases the equilibrium condition is a martingale.
Coherence of an inductive process also is equivalent to a martingale

condition. Thus, the "no arbitrage" condition is a fundamental equilibrium

condition.

Comment 7: Consider the Choquet simplex in a locally convex Hausdorff
space. Well-behaved functionals like Markov decision processes and

dynamical systems achieve their maximum (minimum) value at an extreme point

of the simplex.
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