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1. Introduction

For many years economists have been interpreting the business cycle as
a non-equilibrium phenomenon. In fact, they have regarded it as the prime
example of inconsistencies between the prediction of Walrasian models and
the reality of capitalist market economies. More recently, various students
of the business cycle have shown that simple, aggregate, competitive models
may be able to explain some relevant features of observed time-series,
provided one introduces stochastic forces that displace the economy from its
stable stationary position. Lucas [1987] contains an excellent overview of
this line of literature.

Here we adopt the modern framework of intertemporal competitive
equilibrium, but at the same time dispense with the need for stochastic
forces in order to produce and sustain oscillations in aggregate variables
over time. We obtain endogenous oscillations despite the very restrictive
framework we adopt. Our economy consists of identical consumers that
maximize the discounted value of consumption over an infinite time horizon.
Production is carried out by two neoclassical industries, one producing
consumption goods, and one producing capital goods. Markets for factors and
commodities clear at all points in time, and equilibrium prices are perfect-
ly known at the beginning of time. With these assumptions, our model has a
unique competitive equilibrium. The local indeterminacy of equilibria that
infects many overlapping generations models used for macroeconomic purposes
is thus avoided. *

The competitive equilibrium path for our abstract economy is summarized

by a dynamical system k - TS(kt) that describes the evolution of the

t+l

aggregate capital stock over time. We show that for certain parameter

values the dynamical system Ts exhibits chaotic orbits. Such orbits may



be regarded as formal equivalents (in deterministic models) of business
cycle behavior.

That oscillating paths may appear in standard models of competitive
equilibrium over time has already been demonstrated by Benhabib and Nishi-
mura [1985], for the case of period-2 cycles, and by Deneckere and Pelikan
[1986], Boldrin and Montrucchio [1986], and Boldrin [1988] for the chaotic
case. What distinguishes the current paper from the research in Deneckere
and Pelikan [1986], and Boldrin and Montrucchio [1986], is that we do not
construct "artificial" economies that exhibit a pre-chosen dynamics in
equilibrium. Rather, we start with a specification of technology and
preferences, and derive the implied dynamics. This was also the object in
Boldrin's [1988] study. The two-sector technology is there analyzed in its
relationship to cyclic and chaotic paths. While the author, building on
previous works of Benhabib-Nishimura [1985], Boldrin-Montrucchio [1986] and
Deneckere-Pelikan [1986], provide criteria for assertimg the existence of
chaotic paths in an abstract, two-sector model, he does not provide a
complete analysis and proof of the existence of such paths for the
parameterized example he proposes. We take up from where that paper left
off: by using a functional form for the two production technologies that is
a special parameterization of the one Boldrin uses, we carry out a complete
parametric analysis of the resulting dynamics. This makes the model’s
predictions potentially testable. We take a preliminary step in this
direction in SectionIS.

Out model is a special parameterization of that of Boldrin [1988]
because, while we retain a Leontief production function for the capital good
sector we impose a Cobb-Douglas function for the consumption sector instead

of a more general CES. This choice does not seem to alter the final results



in any relevant way but simplifies considerably the computations. In
particular, all the results about cycles of a finite periodicity can be
obtained for both models with very similar techniques (see Boldrin [1988]
for this). We have also verified that the presence of chaos carries over to
the CES case. Indeed, chaotic orbits are obtained in that case for values
of the discount factor closer to one than those we present here, if one is
willing to assume that the elasticity of substitution between labor and
capital in the consumption good sector is much smaller than one. We do not
present these numerical analyses here as they do not seem to add anything
qualitatively relevant to the analysis. We do want to stress, though, that
when the named elasticity of substitution is very low, then chaos originates
for values of the discount factor that are between 3 and 4 times larger than
those we present here. Finally, we would like to point out that Scheinkman
[1984] was the first to conjecture that a model exactly like the one we use
here could produce optimal chaotic paths.

What economic forces are necessary in order to produce chaotic
dynamics? As the analysis below will reveal, both a high degree of impati-
ence (i.e., small discount factors), and a huge difference in the
productivity of the two factors (labor and capital) are required. More
precisely, we find chaotic solutions when capital is very productive in both
sectors, but labor is not. This productivity difference accounts for the
huge variations of the capital stock over the course of a "typical" cycle.
It does not, however, explain why the economy finds it profitable to
oscillate, rather than to proceed along a smooth averaged path, exploiting
the concavity in production. In order to understand the economic forces
that drive oscillations, we need to analyze the relative profitability of

the two sectors at each point in time. This profitability, in turn, depends



on the relative capital-labor intensities of the consumption and investment
sector. Since capital-labor intensity reversals play a critical role in our
analysis, we will describe the process in some detail.

In our model, the technology of the investment sector is of the
constant coefficients type. The other one is Cobb-Douglas. The efficient
capital/labor ratio in the investment sector is thus fixed at some level
0 <y <1, whereas it is free to move between zero and infinity for the
consumption sector. Labor is supplied exogenously and normalized to one at
all times. The aggregate capital-labor ratio is thus equal to the aggregate
capital stock. Static efficiency and full employment of inputs require that
during periods in which the aggregate capital stock is less than vy, the
consumption industry must have a capital-labor ratio less than the aggregate
one, and, therefore, smaller than +vy. Thus, when kt’ the aggregate stock
of capital, is between zero and vy, the investment sector is more capital
intensive than the consumption good industry. In fact, similar reasoning
shows that the reverse must be true when kt exceeds 1.

Let us now compare two different periods during which the aggregate
stocks k and k'’ are less than vy, with k' > k. If product prices are
held constant, a straight application of the Rybczynski theorem shows that
we should observe a higher investment output in the period associated with
k' than in the period associated with k. Leaving product prices free to
move will reduce this effect, but not eliminate it. If k and k'’ are the
stocks of the two adjacent periods, this process will yield a path of
increasing capital stocks. This explains the rising portion of the cycle.

After a finite number of periods, the aggregate capital stock will

exceed vy. At that point the same efficiency and market clearing conditions

will result in the consumption sector being more capital intensive. The



substitution effect along the aggregate production possibility frontier then
makes it profitable to increase the consumption output and decrease the
investment output. This "recession" phase will continue until the aggregate
stock falls below <vy. At that stage, the cycle is complete.

Oscillations of the type described above may be exactly periodic, of
some finite period n, or totally aperiodic (chaotic), depending on the
parameter values. We show that any of these cases is, in fact, possible.1
We should observe that because of the strict concavity of the production
possibility frontier the wandering of kt will imply huge variations in
relative prices and rates of return. The high level of discounting is needed
in order to eliminate the arbitrage possibilities that would otherwise
emerge. This, in turn, suggests that one may avoid "unrealistic" levels of
discounting if appropriate portions of increasing returns are introduced in
the aggregate technology. This point is elaborated upon in Deneckere and
Pelikan [1984], and is also discussed further in the conclusion.

The reader should not be tempted to believe that factor intensity
reversals are typical only of the specific technologies we have chosen. On
the contrary, the same phenomenon will be present with any pair of distinct
constant elasticity of substitution production functions, as long as they

are not both Cobb-Douglas, linear, or input-output. Our choice has been

motivated solely by concerns of tractability. One last observation: we
have stressed capital-intensity reversals as the driving force behind
cyclical movements. We made this choice because it makes the underlying
economic forces very transparent. Bug, as the discussion in Section 2

suggests, this is not a strictly necessary condition. The case in which the

1Scheinkman [1984] was the first to conjecture that the parametric
example we study here could produce chaotic optimal paths.



consumption sector is always more capital intensive and the capital stock
does not depreciate instantaneously seems alto to be able to produce chaotic
dynamics (see also Section 5 and Boldrin [1988]).

The rest of the paper proceeds as féllows: in Section 2 we set up the
general model, and recall some useful results spread about in the litera-
ture. Section 3 introduces the specific parameterization, and studies the
dynamical system kt+1 = Ta(kt)' In Section 4 we introduce a related map
h&’ which allows us to prove some global asymptotic stability results. We

also derive analytical expressions for r in certain regions of the

s
parameter space. In Section 5 we analyze a version of the model without
instantaneous depreciation. Section 6 reports on some numerical

simulations, focusing on the covariance structure of equilibrium paths.

Section 7 concludes the paper.

2. A _Competitive-Two Sector Economy

Below, we study the dynamic behavior of a simple aggregate model of
competitive equilibrium over time. We depart from the traditional Cass-
Koopmans one-sector model of growth only in assuming a nonlinear transforma-
tion frontier between consumption and investment. This is equivalent to the
Uzawa-Jones framework, where consumption and capital are different commodities
produced in different sectors. The formal model will be briefly outlined in
this section; a more detailed account may be found in Boldrin [1988].

Let kt denote the stock of capital at date t (t = 0,1,2,...): kt
also represents the aggregate capital-labor ratio. The aggregate amount of
labor supplied is thus exogenous, and normalized to one for all t. Capital

evolves according to the equation kt+1 - pkt + Yo where Ye is the out-

put from the investment sector, and (1l-u) is the capital depreciation rate



(0<1 - pu=1). Consumption is produced according to the process c, =
1,..1.1 - . 2,,2 .2 . .

F (lt,kt). Similarly, for investment, Ye = F (kt,kt). Finally, there is a
single (representative) agent which owns the entire capital stock, supplies
labor and capital to both industries via competitive markets, and maximizes

the sum of discounted consumption over his (infinite) lifetime. We make the

following assumption on the production functions:

Hl: For each i (i =1,2), Fi: Ri - R+ is continuous, concave,

homogeneous of degree one, and increasing in both arguments.

Standard results on the equivalence of competitive equilibria and
Pareto optima establish that the output of the consumption sector may be
expressed as a function of the existing capital stock and the output of the
investment good: ¢ = T(x,y). The production possibility frontier T 1is

the solution to:

Max Fl(ll,kl)

(T) s.t. PPl =y
2 <n
1 .2

kW + k" <x

Lt 2% 0.

Assumption Hl implies that T 1is concave, increasing in x, and decreasing
in y. It will also be of class C2 on its domain when each Fi belongs
to that class and the solution to (T) 1is interior. We also assume that as

an effect of decreasing returns:

H2: There exists a k > 0 such that Fz(l,k) < (1-p)k for all k > k,
and F2(1,k) > (L-p)k for all k < k. 1In addition, F2(£%2,0) =0 for

2
all £ € R+.



Let f£(k) denote the solution to T(k,y) = 0. Then H2 implies that
for k >k, f(k) < (l-p)k, and for k <k, £(k) > (1-p)k. Thus, no
capital stock exceeding k can be sustained, and, without loss of general-

ity, we may restrict our analysis to the feasible set D:

2
D = ((k_,k 1) € R+, s.t. 0 <k

e Key < k and pkt < kt+1 < f(kt) + pkt}.

t

D 1is convex, and has nonempty interior as long as f 1is not identically
zero on [0,k]. The competitive equilibrium sequences {ct,yt,qt,rt,wt,

21 £2 kl k2)oo where q is the price of capital, w_ the wage rate
vt e Tt =0’ t ! t ’

and rt the rental rate (with consumption taken as a numeraire), may then

be derived from the sequence of optimal capital stocks {kt}:_o that solve:

©

t
(P) WS(kO) - Max 2 V(kt,kt+l)6
t=0
s.t. (kk_,,) €D
Vike ke ) = Tl kg omky)

k, given in [0,k],

using the following relations (which hold either by definition or as a

condition for equilibrium:

(1) ce = Viki ki)
(2) Ye = Keyq - Bk
(3) Qe = SWe (ke 0) = -Volki k)
(4) re = Vylkekeyg)
(5) we = Uik ke g) + qp(keyomky) - Tk
(6) ek epky, i=1,2
t £’ “e+1 PR '
(7) k- kb kLpky, 1-1
t t' “e+1 e/ :



The functions ki(-) and Ei(-) above are solutions to (T), and W8:
[0,k] = R is the value function associated with (P). As Wé(-) denotes
the derivative of this function, in (3) we are implicitly assuming that T
is at least Cl, and applying the result of Benveniste and Scheinkman

[1979]. 1In fact we will sometimes make the stronger assumption:
H3: V: D = m+ is of class C2 on 1int(D).

Let 16(-): [0,k] = [0,k] be the policy function associated with
Ws(-), i.e.,

(8) rs(x) = Arg max (V(x,y) + §W(y); (x,y) € D}
y

The optimal sequence {kt} is generated by the discrete dynamical system
kt+1 = Té(kt)’ starting at ko. While 16(-) and W6(-) become analytic-
ally intractable as soon as V acquires (even mild) nonlinearities, a

qualitative analysis can nevertheless be performed. To this end, we first

collect some theoretical results.

Fact 1: Let (x,y) € Int(D) be a point on the policy function, i.e., y =
ra(x). Then if Vlz(x,y) > 0 (<0), the policy function is locally increas-
ing (decreasing) at (x,y). Furthermore if (y,fs(y)) € Int(D), then
Vlz(x,y) > 0 (<0,=0) implies the policy function is strictly increasing

(strictly increasing, constant) at (x,y).

Proof: See Benhabib and Nishimura [1985].

Fact 2 (Turnpike): 1If V12(x,y) = 0 for all (x,y) € IntD, then any opti-
mal sequence kt converges to some k* as t = o, where k* € Fix(rs).
Furthermore, for every given strictly concave V (and associated feasible

set D), there exists a &§ < 1 such that for all § € [3,1) the dynamical
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system kt+1 = rs(kt) is globally asymptotically stable, i.e., there exists

a unique k* such that kt(ko) + k¥ as t + o, for every ko » 0,

Proof: See McKenzie [1986], Scheinkman [1976], Dechert and Nishimura

[1983]), and Deneckere and Pelikan [1986].

Fact 3: Assume Vlz(x,y) <0 for (x,y) € D c int(D). Let (x*(§),x*(§))

€ D satisfy 7 (x*(§)) = x*(§) for § € (67,67] ¢ (0,1). Assume there

exists 80 € (6-,6+) such that:

0

D)V, Gk (82, xx(6%)) + 6% (xx (6%, 1% (5%))

- (l+60)V x*(60),x*(60)) -0

12(
(1D)  V,,(x%(8),X%(6)) + 8V, (x%(5),%%(8))
- (L46)V, (x*(6) ,x*(8)) > 0, for § e (s°,6%
(L11) V,, (x%(6),X*(8)) + 8V, (X¥(8),%%(5))
- (L+6)V,, (x*(6),x*(6)) < 0, for & e (60,67,
Then there exists a period-2 orbit for Ts for all 6§ 1in some (right
or left) neighborhood of 60.

Proof: See Benhabib and Nishimura [1985].

Fact 4: Under hypothesis Hl and H3, we have:

(1) le(x,y) >0 for all (x,y) such that
/oY x,y) < a2/0%) (x,3);

(ii) le(x,y) < 0 for all (x,y) such that
al/th ) > a2/t ).

Furthermore, if (X,y) € D 1is a feasible pair such that le()'{,}'r) = 0 then



11

le(i,y) = 0 for all y feasible from X.

Proof: See Benhabib and Nishimura [1985] and Boldrin [1988].

Fact 5: If is monotonic (either inc¢reasing or decreasing) over all of

5
[0,k] then the most complicated orbit is a cycle of period 2.

Proof: See Deneckere and Pelikan [1986].

As pointed out in the Introduction, the objective of this paper is to
study conditions under which our simple two-sector competitive economy
displays persistent and endogenous oscillations. We will appeal to the

mathematical notion of "chaos" to describe such phenomena.

Definition 1: We say that Ts' [0,k] » [0,k] has topological chaos when

there exists an orbit of period-3 for i.e., 3x e (0,k]: rg(x) - X,

T

and x € Fix(r By Sarkovskii’s theorem (see, for example Guckenheimer

5

and Holmes [1983, p. 311]), this implies that r_. has orbits of period n

)

for any natural number n. It also implies (see Li and Yorke [1975]), that

there exists a nondenumerable set S c [0,k] such that all orbits of Ts

with initial conditions ko € S exhibit aperiodic behavior. More formally
this means there exists ¢ > 0 such that for every pair of points x and

y in S with x = y:

1im sup|r?(x) - 1?(y)| > €

n—+o

lim inf|r (x) - ro(y)| = 0.

T~+c0

and for every y € Per(r and x € S:

5
lim suplr?(x) - r?(y)l > €

As is well-known from the dynamical systems literature, "topological chaos"
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is a weak form of chaos because it might happen to be essentially
unobservable, i.e., the (Lebesgue) measure of S may be zero. A stronger

notion of chaos, more difficult to verify, is that of "ergodic chaos”.

Definition 2: Let f: X + X determine the dynamical system x 1" f(xt).

t
A measure v on X 1is invariant with respect of f 1if wv(A) = u(f-l(A))
for every (Borel) measurable subset A of X. We say that the map f dis-
plays "ergodic chaos" if it has a unique invariant probability measures

which is absolutely continuous with respect to the Lebesgue measure and also

ergodic.

For further details on these delicate matters the reader should consult
Collet and Eckmann [1980), Devaney [1986], or Guckenheimer and Holmes
[1983].

The last formal result we need gives a set of computable sufficient

conditions for the existence of topological chaos in a two-sector economy.

Fact 6: Assume there exists a k* € (0,k) such that Vlz(k*,-) = 0. Then

T has topological chaos for all 6 € (0,1) that satisfy the following

)

conditions:

(i) V2(x,k*) + 8V1(k*,-) = (), has two roots, kl € (0,k*) and k2 €
(k*,k] ;

(11)  V,(x,k)) + 6V (k;,k*) = 0, has a root k, € [k¥k];

(iii) V2(x,k3) + 6V1(k3,kl) = 0, has at least one real root:

Proof: See Boldrin [1988].

Fact 2 is the classical turnpike theorem: we will use it just to note
that there exists an upper bound on the set of § that may produce oscilla-

ting behavior. Fact 3 shows that when r is downward sloping around an

)



13

optimal stead state (0SS), then a cycle of period-2 may bifurcate from the
0SS when it loses stability. Since the information necessary to verify the
hypothesis of this result is local in nature, we can use it to detect orbits
of period-2. This will turn out to be the first (or last) step of a
bifurcation cascade leading to chaos in our specific model. A simple
generalization of Fact 3 will also allow us to detect the existence of
orbits of period-4 and, potentially, of any orbit with period-2n. Fact 5

shows that a nonmonotonic r is necessary, although not sufficient, in

)
order to obtain complicated dynamics. Facts 1 and 4 link the slope of Ts

to factor-intensity conditions. For the case in which u =0 (i.e., the

capital stock lasts only one period) the causal relation is clear: Ts is

increasing when the investment sector has a higher capital/labor ratio than
the consumption sector, decreasing in the opposite case, and flat at the

reversal points. When pu » O we can easily see that:
2 Viglkpokeyg) = Typlkp kg mbk)) - pTgp (ke ke, mpky)

The slope of r depends, therefore, also on u and the sensitivity of the

)

price of capital to variations in the output of the investment sector. The

critical point of when it exists, will not necessarily coincide with a

1'6,

factor-intensity reversal, and will not be independent of §, as in the case

when u = 0. On the other hand, note that r may now be nonmonotonic even

)

in the absence of a capital-intensity reversal: this is true if T12 i's neg-

ative everywhere (i.e., the consumption sector is always more capital in-
tensive) and if both 4 and T22 are "large enough" for small values of kt'

Finally, Fact 6 tells us how to check for chaos when the critical point
k* is independent of § (and thus of rs(k*)). Obviously, this is the

case when pu = 0. In the parameterized model we study below, the result is
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also applicable to the case pu > 0, but that is a consequence of the

functional forms chosen.

3. The Model
In this section (and in Section 4), we analyze the case pu =0,
essentially because it is computationally more tractable. Analogous results

for the case u > 0 are contained in Section 5. Most of the calculations

are also relegated to the Appendix.

3.1 Technology and Preferences

Assume that F1 is of the Cobb-Douglas variety and that F2 is

Leontief:
1 ,1.1 la ,,11-a
(10) c, = F (k) = (20 (k) a € (0,1),
2,,2 .2 2,2

(11) ¥, = FC(g kD) = min(g, ke/v), 7 € (0,1).
Since kt+1 =Y. and It + ﬂi = 1 for all t, the feasible set reduces
to:
(12) D = {((x,y) € [0,1] x [0,1], s.t. O <y < min{l,x/v}}

The PPF is easily derived as:
a l-a
(13 Tlep kpgy) = (okpyg) (kpmvkeyy)

Straightforward economic intuition suggests that k* = y € (0,1). is the
unique value of k where a capital/labor intensity reversal takes place:
as the (efficient) k2/22 ratio is fixed at v, an economy-wide capital/
labor ratio less than v will make the consumption sector less capital
intensive and the opposite will be true for kt larger than +vy. Thus, Ts

is increasing on {0,y] and decreasing on [v,1]. One can check this

formally using equation (19) below. Also, from (11l), note that 16(0) =0
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for all §, and that any choice kt+1 € [0,1] is feasible when kt > 7.
We take utility to be linear in consumption. Since labor is supplied

inelastically, we have V(kt,k - T(kt,k

t+1) t+1)'
3.2 The D ic Equilibri
As shown in Section 2, the optimal sequence {kt} must solve:
@

t [0 4
(14) Max X § (1-kt+1) (kt-'yk

)l-a
=0 t+l

s.t. 0= kc+1 < min(l,kt/v),

ko given in [0,1].

By computing the first partial derivatives of V:

(15) v (x,y) = (L-a) [(1-9)/(x-79)]% > 0
a
(16) V,(x,y) = [x%f-;’; [a[%] + 1(1-a)] <0

we see that:
lim Vl(x,y) = +o0 for x < v,

ytv Ix

1im Vl(x,y) =0 for x> v,
ytl

v (ny) = o)y
Also,
1im Vz(x,y) = -o for x < v,

vty 1x

lim V2(x,y) - -0 for x > v,
ytl

l-ax

Vz('YrY) - -7
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This implies that (x,rs(x)) e D for all x € (0,1], except possibly at

X = v. Concerning the concavity of V, we have:

m ca(l-a) (2I% (xoqyy L
(17) Vll(x,y) a(l-a) (x-yy) (x-vy) ~ =<0, for (x,y) €D
(18) V,,(x,y) = -a(l-a) A=Yy [ G- ® ] <0, for (x,y) €D
22 = L1y xevy)
l-y \a 7-%X > <
(19) Vlz(X,Y) - a(l'a) (x_vy) [(x'7y)(1'y>] < 0, as X > Y.

From (17)-(19) we see that V loses strict concavity in x along the upper

boundary of D, and strict concavity in y along the vertical line x = 7.
2

V11¥22 © V12

Clearly, there is no hope of finding analytical expressions for either

Also, = 0 for all (x,y) € D.

W or 7

s Nevertheless we can use the Euler equation to extract some

5

information on the local behavior of Ts

which its graph is interior to D. The Euler equation is:

1-k a 1-k a k -vk
(20) §(1-a) [———k - 1‘2"1 ] - [————k _tk] [-y(l-a) + a[———ti%k t]]
RS | t-1" "¢ t

for those sets of parameters at

From (20) we may, first of all, conclude that there exists at most omne 0Sss

different from zero, namely:

- (6-y)(1-a)
(21) k¥ = ) (T-a)+all-7)

The position of k* relative to v 1is of some importance, as Ts is

increasing on [0,y) and decreasing on (v,l]. Observe that
(22) k* S if and only if 6 s v/(l-a).

The next proposition uses this information to state-a global asymptotic

stability result for § < v/(l-a).
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Proposition 1: For O < § <y the optimal path kt converges to zero for
any initial condition ko in [0,1]}, and no interior 0SS exists. For v <
§ < v/(l-a), there exists a unique interior 0SS k* defined by (21) and

the optimal path converges to k¥, for any ko in (0,1].

Proof: The first part is obvious. Since O is the only fixed point for
Tgy We have kt+1 - rs(kt) < kt’ and thus kt +0 as t -+ o, If, on the
other hand, 6§ € (v,v/(l-a)), then k* 1lies in (0,y] and the origin is
unstable. Thus, for x € (0,k¥%*), we have rs(x) > x, and the trajectory

from x converges to k*. Conversely, if x € (k¥%,1], rs(x) < x, and thus

the entire interval [k*,1] 1is attracted to k%, 1

Observe that Proposition 1 implies global asymptotic stability if a =
1-y independently of §! From (21), we may also derive some comparative

statics results:

Proposition 2: The 0SS level of the capital stock defined by (21):
a) increases with the discount factor §;
b) decreases with the labor productivity factor a;

¢) decreases with v, the capital/labor ratio in the investment sector.

Let us now turn to the case where § > vy/(l-a). It is well known from
the literature on optimal growth theory (see, for example, McKenzie [1986]

and Scheinkman [1976]), that when k* is locally stable for i.e.,

s
Iars(k)/ak|k_k* < 1, . the second order system produced by the Euler equation
(20) has a local saddle point structure at k*. This means that of the two

eigenvalues of the characteristic polynomial:
2
(23) 8V, (k% Kk¥)A™ + [V, (k*,k¥) + 6V, (k¥ k*)]A + V), (k¥ k*) =0

associated with the linearization of (20), one lies inside, and one lies
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outside the unit circle. In fact, the smaller eigenvalue corresponds to
’é(k*) (see Deneckere and Pelikan [1984]). For our example, (23) reduces

to:
(26) 5Ly /(L-k0) A2 - [6+(r-10%/(1-k0) 2 1A + (y-k)/(1-k¥) = 0
from which we may compute:

A, = (L-k%)/(y-k¥) < 0

(25) 1
Ay = [(r-k%)/(L-k9) )67 < 0

The signs of the expressions in (25) follows from the fact that k¥ > vy

whenever § > v/(l-a). We can easily reduce (25) to:

(26) A, = a/[7-(1-a)8] <0, A, = [y-(l-a)6]/as < O

Thus:

(27) Al € (-»,-1) for 6 € (v/(l-a), (at+y)/(l-a)), and
AL € (-1,0)  for § > (a+7)/(l-a)

(28) Az € (-1,0) for § € (v/(1-a), v(1-2a)), and

A, € (-»,-1) for § > v/(1-2a), if a <1/2, and

A, € (-1,0) for § € (v+/(1-a),1) if a = 1/2.

Hence, we have proven:

Proposition 3: The 0SS k* 1is locally asymptotically stable when a = 1/2,

and when a < 1/2 it is stable for parameter values § in (vy/(l-a),

v/(1-2a)) U ((a+y)/(1-a),l).

An immediate corollary to Proposition 3 is:
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Corollary: The 0SS k* 1is locally asumptotically stable for all § €

(v/(l-a),1) when a2 (l-v)/2.

Proof: If a2 1/2, A, € (-1,0), and if (1-y)/2 s 1/2, X, € (-1,0) as

well, since then +vy/(1-2a) = 1. ]

One should note that Proposition 3 states a local result only.
Intuition suggests that k* may in fact be globally asymptotically stable,
but a proof of this requires additional analysis (see Section 4).2

A natural question now arises: what happens when § € [v/(1-2a),

(a+y)(1-a)]? A partial answer is the following proposition:

Proposition 4: Let a < (1-9)/2. Then the policy function Ts has a cycle

of period-2 in a neighborhood of § = v(1-2a) and 6+ = (aty)/(l-a).
These cycles are locally stable when they exist for § € (6-,6+), and

unstable in the other cases.

Proof: To get existence one needs only to apply Fact 3 to our model. For
our model the sign of B(§) = V22(6) + 6V11(8) - (1+8)V12(8), where Vij(S)

= Vij(k(S),k(S)) evaluated at k* is opposite to that of:
[(kx-7)2 + 6(1-k*)2 + (1+6) (y-k*) (1-k¥) ],

Therefore we have:

2Our discussion above also implies the following stability intervals
with respect to the other parameters of the model: k* € (v,1) 1is stable
for a € (0,(6-v)/(1+8)) U ((6-v)/26, (6-v/6), and for v € (0,(l-a)b6-a) U
(6(1-2a), 6(1-a)).
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>0 for §<36
=0 for § =6

- +
B(6) : {<0 for § <6< &

-0 for 6§ =6 = (aty)/(l-a)
+

(>0 for & > 6§

Therefore cycles of period-2 exist both around §  and 6+. Stability
follows from standard results in dynamical systems theory, a simple proof of

which can be found in Benhabib and Nishimura (1985, Corollary 1). 1

The reader should note that, given 6 < 1, it is always possible to
find « and 4 in (0,(l-9)/2) and (0,1) respectively, such that «v/(1-
2a) = §. This means that, at every level of discounting, we can always find
some technology that has optimal two cycles. In fact, the dynamic behavior
of this economy for § € (6-,6+) may become very complicated. Our conten-
tion is that, for suitable a, p and v, there exists an interval
(6%,6%%) C (8',6+) at which. Ts has (at least) topological chaos. We
demonstrate this at the end of this section. We also believe that the emer-
gence of chaos follows the classical "period-doubling bifurcation pattern"
as & =+ §*% from the left or § = §** from the right. Without complete

knowledge of r this claim cannot be proven. Some supporting evidence

§
from the simulations we have run is available from the authors. We content
ourselves here to show that a second "flip bifurcation" (see Devaney [1986]

for a technical treatment) may lead to an orbit of period 4. We use the

same logic behind Fact 3 and Proposition 3.

Proposition 5: Let x(68),y(§) denote a period-2 interior orbit of T

for 6 wvalues in (6-,6+). Assume there exists an interval [6--,6++] C
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6 .67y anda 6% e (677,56") such that the function

2 2 2 2,00
G(8) = VE Vpp + 87VE Vy + SV VE)-VE)) + 8(V 1V5,-Vyp) + (146)VE,Vy)

where ij - Vij(x(a),y(S)), Vij - Vij(yca),x(S)), i,j = 1,2 satisfies:

>0 for 6 € [5",50)

G(§) 4= 0 for § = 80

<0 for & e (60,6

Then there exists a period-4 orbit for bifurcating from (x(6),y(8))

5
at § = 60.

Proof: See the Appendix.
We may now prove the following corollary:

Coro ry: Let (x(§),y(§)) be a period-2 point for our model, and suppose
it exists for all § in (6 ,6') with x(§) <~y and y(§) > v. Then a
cycle of period-4 exists for all values of 80 € (6-,6+) at which either

one of the following two equations hold:
. 0 0 0,2 0 0
(1) x()- 7/(Q-x(67)) = -(67)"(L-y(67))/(y(67)-7)
- 0 0 0 0
(11) XD -7)/(1-x(87)) = -(L-y(§7))/(y(6)-7).
Proof: See the Appendix.

To verify the presence of such bifurcations in our model, consider the
example a = .03, v = .09, Proposition 3 implies that the steady state k¥*
is locally stable when § 1lies in the interval [.0928,.0957]. For discount
factors in [.0957,.0974] stable period-2 orbits are present, verifying

Proposition 4. At § = .0974, the period-2 orbit x* = .0738, y* = ,3980

bifurcates into a stable period-4 orbit, which exists for § € [.0974,.0978].
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In fact, our simulation results reveal that successive bifurcations
eventually lead to chaos when & reaches the value .099. This chaos exists
for 6§ € [.099,.112], as can be checked directly by applying Fact 6 of
Section 2 to our model. Figure 1 describes the evolution of the policy
function Ts for a= .03 and 4y = .09, as 6§ moves in (0,1), and
Figure 2 depicts the set of (a,y) parameters for which topological chaos is
present for some 6 € (0,1). As expected, the concavity of V implies that
only extreme values of the parameters can yield chaotic dynamics.

One might suspect that part of the reason that such extreme values of
the parameters are needed stems from the fact that the elasticity of substi-
tution between capital and labor in the consumption good sector is fairly
large. To investigate this issue, we also ran simulations for a tractable
generalization of our model, suggested by Boldrin {1988]. This generaliza-
tion retains the Leontief technology for the investment sector, but allows
for a CES in the consumption sector. Thus, Fl(ll,kl) - [a(zl)P +
(l-a)(kl)p]l/p, which approaches (10) as p + 0. The elasticity of substi-
tution, o, for the CES is equal to 1/(l-p); mnegative values of p thus
permit much smaller values of o¢. Our simulations reveal that chaotic

optimal paths do arise for this model as well, and that when ¢ 1is fairly
low, chaos appears for values of the discount factor roughly three times

larger than those found for the Cobb-Douglas model. A typical example has
a= .2, 4= .,2, §=.25, and p = -.5. Since the values fpr the discoﬁnt
factor at which chaos appears in the Cobb-Douglas model are themselves ap-
proximately 100 times larger than the ones found in the artificial economies
constructed by Boldrin and Montrucchio [1986] and Deneckere and Pelikan
[1986], no definite conclusion can be drawn, at this stage, as to whether a

model of this type could produce chaotic dynamics at more reasonable values
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of the discount factor.

4. The First-Order Difference Equation h§

4.1 The Relationship Between Ts and h§

Recall from (20) above that the Euler equation for our model is given

by:

1-k a 1-k a k -6k
(20) §(1-a) [E—;—ﬁil-] - [E"4?1?] [7(1-0) +a “Ei%i"'E]

t™ T e+l t-1" 7%t t
Consider the ratio (1-kt+l)/kt-1kt+1) -z, for t =20,1,2,... From equa-

tions (6), (7), (10) and (11), we see that z_ - li/kt, ie., z_ is the

time t labor/capital ratio in the consumption sector. The advantage of

working with the variable z, is that this reduces (20) from a second-order

difference in equation kt to a first-order difference equation in z.:

- 4 o -1 |1/a
(29) Ze = %1 [s M TRy zc-1]

More compactly, we may write z, = hs(zt-l)'

The purpose of this section is to investigate if any useful information

on the dynamics of the unknown policy function T can be derived from the

study of h Before elaborating on the relationship between r and h6’

5"
we must first establish some properties of the map h&'

)

To simplify notation, let a = v/§ and b = a/((l-a)§), so that h(z)

- [a+bz 111/°,

Since we have already characterized Ts for § wvalues less
than vy, we will confine our attention to the case a < 1l. It is apparent

that h is decreasing on (0,l1/y) and increasing on (1l/v,»), with

limzﬁw h(z) = «., In fact, if we let u = (7/6)1/a < 1l, we see that 1imz*m

[h(z)-pz] = 0, so that h asymptotes to puz as 2z approaches infinity.

Furthermore, h has a unique fixed point z* = h(z*), which satisfies
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Z% = a[(&-y)(l-y)]-l. A typical graph of h (with 6 2 v/(l-a)) 1is

depicted in Figure 3.

Proposition 6: The map h6: R+ -+ R+ is of at least class 03 on any

compact set of R+. It has negative Schartzian derivative for 0 < a < k.

Proof: See Appendix. 1

For § < v/(l-a), we have 2z* = 1/y, and thus hn(z) -+ z% for all z
€ (0,o). This confirms Proposition 1 of Section.3. Henceforth, we will
confine our attention to values of & exceeding +v/(l-a), so that z* <
1/y and h(l/v) < 1/y. Consider now the interval I = [h(1l/7), h2(1/1)].
It is easy to see that I 1is an invariant set for h. Moreover, the basin
of attraction of I under h is (0,»), 1i.e., for every z0 € (0,=)
there exists N sufficiently large such that hn(zo) € I, for all n = N.
Thus, we may restrict our study of h to the interval I, 1i.e., consider

the dynamical system h I1+1I, for 6§ € (v/(l1-),1).

5"
Let us now turn to the relationship between Ts and h6' For any

initial point ko in {0,1), pick an arbitrary k1 that is feasible from

ko. The pair (ko,kl) corresponds to a choice of z, € (0,0). With these

initial conditions, we may run (20) forward to produce a candidate optimal
path [kt], or equivalently, run (29) forward to produce a candidate
optimal path {zt}. Because z, will be in I for sufficiently large ¢,
the associated sequence {kt) will be uniformly bounded and therefore
satisfy the transversality condition limtéw thtk = 0. Hence we cannot

t

rule out nonoptimal (kt} (or {zt]) by appealing to the transversality

condition. Since interior optimal paths must satisfy the Euler equation

(20) (or (29)), and since optimal paths are unique, we conclude that all but
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one choice of k1 from ko will induce a sequence {zt) that corresponds
to a sequence {kt} which is infeasible, i.e., that does not satisfy 0 =
kt+1 < min{l,kt/y}. We will not give a complete characterization of the
relationship between the policy function and the map h6 here. Rather, we
will content ourselves to observing that when the graph of Ts is interior,
Per Ts © Per h6' Because period-2 points play a central role in describing

the dynamics of one-dimensional systems, we will study those in detail

below.

Proposition 7: Let (w,z) be a period-2 orbit for h, 1i.e., h(w) =z

and h(z) = w. Then the pair (x,y) defined by:

_ l-yw-2 - l-yz-w
Tvz) (T-yw)-wz' 7 = (T-yz) (1-yw) -wz

X

is an optimal cycle for Ts if and only if the pair (w,z) satisfies one
of the following restrictions:
(i) 0<w<l/(1+y), and 0 < z < 1/(1+y)

(ii) 1/(1+y) < w < min (1/1,h2(1/7)}, and 1/(l+y) < z < h2(1/7).

Proof: If (x,y) 1is a period-2 point for r the labor/capital ratios w

5’
and z must satisfy: w = (1-y)/(x-vy), and z = (1l-x)/(y-vx). Inverting
these relationships yields the stated expressions for x and y. Some
simple calculations now show that feasibility, i.e., 0 = x < min(y/7,1)
and 0 < y < min(x/v,1) implies either 0 < w,z < 1/(1+y) or z > 1/(l+y)
and 1/(1+y) < w < 1/y. Finally, the Festrictions w < min(l/y,hz(l/y))

and z = h2(1/1) in (ii) follow from the fact that (w,z) and (z,w) must

lie in I x I. [ |

Graphically, the two situations are illustrated in Figure 4.
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Corollary: Case (i) of Proposition 7 is possible only if § > (aty)/(1l-a),

in case (ii) is possible only if 6§ € (v/(1l-a), (aty)/(l-a)).

Proof: For case (i) to apply, we need z* = a/(§-v)(l-a) < 1/(l+y), and
vice versa for case (ii). But this inequality is easily rewritten as §é >
(a+v)/(l-a). Above, we showed that 6 < vy/(l-a) implies global stability

of z*. This yields the lower endpoint of the interval in case (ii). |

4.2 Simple Dynamics for Ts

In Section 3 we proved that the steady state k* is globally
asymptotically stable when 6 < y/(l-a). We also saw that k* was locally
asymptotically stable when § € [v/(l-a),l1) and a 2= (1-v)/2, and when
§ € [v/(l-a), v/(1-2a)) U ((a+y)/(l-a),l). We will now strengthen some of

these results.

Proposition 8: If 6§ =z vy/(l-a) and:

(1-a) + a[6(l-a)/7]1/% < [6(1-a)/v]?

then h6 has simple dynamics.

Proof: Under the conditions of the proposition, 0 < h(l/y) < h2(1/1) <

1/vy. Thus, the map h_, confined to the trapping region I X I 1is strictly

)
monotone (decreasing), and hence can only display simple dynamics. i
Corollary 1: Under the conditions of Proposition 8, the policy function

16(-) has simple dynamics.

Proof: Assume first that graph r_ c Int(D), 1i.e., that 16(1) <1l. 1In

)
that case, the Euler equation (20) must hold along all optimal trajectories.

Observe now that the trapping region for r_. corresponds to the trapping

)

region for h6' Observe also that the trapping region for h6' IXxI, is
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entirely located on the downward sloping branch of that function. Now any
value of k such that 2z(k) = (1-16(k))/(k-776(k)) €I xI must satisfy k

> 9. We conclude that the trapping region for r_. 1is entirely located on

)

the downward sloping branch of that function, and hence that r displays

)
only simple dynamics.

Next, suppose that 18(7) = 1; the Euler equation then holds from
every value of the initial capital stock, except possibly at k = y. Some
reflection now shows that the fact that the Euler condition may hold as an
inequality at k = y implies that the dynamics of z, is now given by a
"chopped off" version of h8’ i.e., that =z
choice of w. The trapping region for this modified function will be a

e+l - max{w,ks(zt)} for some

strict (nonempty) subset of the trapping region for h6’ and hence the same
reasoning as above can be applied. I
Corollary 2: The conditions of Proposition 8 are satisfied whenever a = .

Proof: Let z = §(l-a)/y. By assumption, z > 1.

We may rewrite the condition of Proposition 8 as:

8(z) = (1-a) + az/® - 22 <0

Observe that ¢(l1) = 0, and ¢’'(z) = z(l/m)-1 -2z2=<z - 2z<0. |

One puzzling feature of the map h6(-) should be noticed: we may

easily calculate the slope of h6 at z¥*:
(30) he(z*) = [v-86(1-a)]/ab

The slope of h8 thus coincides with A2, one of the eigenvalues of the
Euler equation linearized at the steady state k*. The second eigenvalue

Al’ defined in (26), apparently gets lost in the transformation (kt’kt+1)
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>z This implies that the (locally) stabilizing effect of Al on the
dynamics of kt when § > (a+y)/(l-a) and o < (1l-7y)/2 1is not transmitted
to the orbits of zZ,- In particular, for such parameter values, ra(-) is
locally stable around k*, whereas hé(') is locally unstable around =z*.

We solve this apparent puzzle in Proposition 9.

Proposition 9: For 6 € ((at+y)/(l-a),l) the policy function satisfies:

(31) Té(kt) - (l-Al)k* + A kt’ for all kt € [v,1].

1

Furthermore, the steady state k¥ is globally asymptotically stable.

Proof: From Proposition 3 in Section 3, we already know that for § €
((at+y)/(1l-a),1), Ts Waps the interval [v,1] into itself. From (27) we
know that Al is stable in the assumed range for §. Global stability then
follows immediately from the functional form (31).

Using (29) and (27), we may rewrite (31) as

e J6pde  _ a
t+l §(l-a)-vy §(l-a)-y 't

To show that this is the policy function, we only need to check that the

pairs (kt,k so defined satisfy the Euler equation for all t. But

t+1)

observe that

1-k1 a(k,-v)

Kok g~ Ce T T G

z%

Since any sequence T? stays in [v,1] for all ko € [v,1] this proves

the desired result. 1

Proposition 9 allows one to derive an explicit expression for not

7'6,
Jjust on [v,1], but actually on all of [0,1]. Indeed, let y € [v,1].

Since Ts is monotone on [v,1], with rs(y) = 1, there exists a preimage
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of y in [0,y]. Let p be the largest preimage of v, 1i.e., P = sup{x:

ra(x) = v}. Then for x € (p,y) the Euler equation holds:

(32) Vz(x,y) + 6V1(y,16(y)) = 0

This operation will yield an explicit functional form for T on [p,7],
where p = 1;1(7) is the left preimage of +y. 1In fact, using (15) and the
fact that (1 - rs(y))/(y-yrs(y)) = z* (proven in Proposition 9), we see

that (32) may be rewritten as:
(33) V,(x,y) + 8§(1-a)(z9)% = 0
Thus we may use the implicit function theorem to derive an expression for
ré(x):
i) = Vi, (Y Vo (X,3) = (1-3)/(7-%)

The differential equation ré(x) = dy/dx = (l-y)/(y-x) can be solved by
separation of variables, to yield: y = 1 - k(y-x). Thus, the policy func-

tion is linear on (p,y), with a slope k that can be determined from

(33). Now let q = inf{x: rs(x) = 7). The monotonicity of rs(-) implies
that ([q,p] 1is an interval.3 For x € (r&l(p),q), the Euler equation

holds again, and so:
(34) Vo (x,y) + §(l-a)z% = 0

where z = (1-ra(y))/(y-16(y)) is constant since TS(.) is linear on
(p,v). Thus, 16(-) is linear on (r&l(p),q) with a slope which can be
calculated from (34). 1In fact, it is easily seen that for all x < q, both
(x,rs(x)) and (rs(x),rg(x)) are in the interior of D, so that the Euler

equation must hold everywhere on (0,q). Repeatedly taking preimages using

3Observe that for y € [q,p], the Euler equation need not hold, and
hence 16(-) is only weakly monotone (see Fact 1).
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the Euler equation (34) then yields the entire functional form for 16(-).
Observe that when § = (a+y)/(1-a), Proposition 9 states that 76(.)

has a continuum of period-2 cycles! For

a ot

ety 2

l-a

simulations indicate that a globally stable period-2 orbit exists which
lives on the boundary of the set D, namely 18(7) =1, 75(1) = 7.
We may also prove that h& has period-2 cycles for §-values in a

neighborhood of v/(1-2a):

Proposition 10: h6 has a stable period-2 cycle when ¢ € (v/(1-2a),

7/(1-2a) + ¢), for some ¢ > 0.

Proof: At § = v/(1-2a), we have hé(z*) - -1, hg(z*) » 0, and

6[h§]’(x*)/66| We may thus apply the flip bifurcation

6=v/(1-2a) ™ ©-
theorem (see, €.g., Devaney [1986, p. 89]) to obtain existence of a cycle of
Period-2 in an open neighborhood of ¥/(l-2a). To see that the cycle occurs
for §-values greater than v/(1-2a), we observe that h6(z*) and
(8/86)h6(z*) have opposite signs at § = v/(1-2a). Finally, stability of

the cycle follows from the fact that z* changes stability at § =

7/(1-2a). 1

Obviously, the cycle we recover here for h6 corresponds to the cycle

we obtained for 76

referred to in the Proof above implies that the two-cycle will be close to

in Section 3, Proposition 4. The bifurcation theorem

z* when § 1is close to v/(l-2a). Simulations reveal that as §
increases, the cycle moves away from z*, and that eventually one of its
points lies on the upward sloping branch of h.. a necessary condition for

)

this to occur is that the trapping region I x I contains part of the
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upward sloping branch of h i.e., hg(l/y) > 1/v. We saw above (in

6 1

Proposition 8) that this is equivalent to

(l1-a) + a[ﬁgilglll/a > (2022,

5. The Model Without Instantaneous Depreciation

When u 1is greater than zero the one-period return function becomes:
(35) V() = Uxey)® ey O
where b =1 + yu with a feasible set
(36) D = {(x,y) € [0,1/(1-p)] x [0,1/(1-p)],
s.t., px <y < ux + min(l,x/v)})

Again, we may show that V 1is of class C2 on D = int(D)\{x=y}, and
strictly concave in each variable, everywhere on the interior of D, except
for the point x = y at which V22 = (0, As before, we also have V11V22 -
V2, =0 for all (x,y) €D.

The first and second partial derivatives of V are in fact:

- l+ux-v.a ) ap(bx-vy)
vy = RS ey + BT > 0

- _rlrux-y . bx-yy
V2 [ bx-7y] v(l-a) + al+px-y <0

2
V  (x,y) = a(l-a) (HEEY)S L) <o
T (bx-yy) (L+px-y)
2
1+ux-y)a (y-x) <0 -
PX-" (bx-yy) (L+ux-y) 2

V22(X,}') - ‘a(l-a) (

a(l-a)(y-x) (b-y) (Ltwx-ya o g
(bx-yy) (Lux-y)® P S

Vlz(x,}') -
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The Euler equation along an interior path [kt} now becomes:

6[1+“kt'kt+1]a (b(l-a) + op bk -7k g _
bk -vk Ltpk -k
[1+pkt_1-kt]a [ bkt-l-‘ykt
- =Lt [y(1-a) + a -7—————1——]
bk, _1-kk, 1-pk -k

The 0SS K* must therefore satisfy:

<—L_1?blf:§1§:>°‘ [(§b-7)(1-@) + a(sp-1) %] -0

which gives:

(6b-y)(1-a)

(37) K = b7 (T-a) (L-w)+a(1-65) (b-7)

Observe that (37) reduces to (21) when py =0 (and b = 1). Observe also
that 6b > v, 1i.e., & > v/(l+yu) 1is now required to guarantee k* to be
bounded away from zero. Hence, an interior steady state will be present for
6 values smaller than in the u = 0 case.

The formula for Vlz(x,y) given above shows that there are two sets of
points at which Vlz(x,y) = (0. The first is, as before, x = y and the
second is y=b =1+ yu. Since 1 + yu <k = (l-p)-l we need to check
what happens at y =1 + yu. It is not diffiéult to see that, as long as

T is interjor, the value y = 1 + yu will never be crossed, so that

)
(x,rs(x)) in fact will always stay within [0,l+yp) x [0,1+yu). Thus, the
critical point is again at x = y, independently of é. This is clearly

coincidental. In general, when p is positive, the critical point of Ts

will depend on § (see Boldrin [1988]). We also compute:

* X
(38) k¥ 2y Aff 6 3 i

Again, we see that the critical value of § at which k* moves on the
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downward sloping branch of Ts is smaller than when u = 0. The

comparative statics of k* with respect to «, vy and § 1is the same as
before, and we also have, consistent with economic intuition, dk*/du > 0.
Consider now equation (24) in Section 3. In this case we have:

2 2 %
[(V22+6V11) - 48V12] -

l+uk*-k*, 2a 1

) x
PRF-TR* ik -yl 2 (Ltpalek - Tox)

- [2®(1-a)? ¢

x (62b-10)® + (y-km® - 285b-k%) 2 (v-k0) %))

a(l-a)
(bk*-ok*) (1+uk*-k*)

(1+pk*-k*
2 bk*-yk*

) (§%(b-k¥)2 - (y-k%)?)

Therefore the expression for the two roots reduces to:

A, = k0?4 50?2 (50 ? - (k0 ?] [26(r-k0) (b))

Recalling that k* = (§b-vy)(1l-a) [(§b-y)(1l-a)(1l-p) + a(l-Sp)(b-y)]-l, we

get:
_ b-kx _ a(l-ép) (b-v)
(39a) M T 3EF T B ey (Tem) (bor) - (6b-v) (1-a) [1-7(1-A) ]
(39b) A = 'Y'k* 6'1 a'y(l-Sp)(b-1)-(6b-7)(1-a)[1-1(1-p)] 6'1

= a(I+yp) (1-6p) (b-v) - (6b-7) (1-a) [1-v(1-4)]

Some straightforward algebra shows that both eigenvalues are negative for §
> v/(l-at+yu), and that their modulus behaves as in the case u = 0. 1In

other words, there exists a pair v/(l-atyu) < § < 6+ < 1 such that:

(40a) A| € (-=,-1) for &€ (1/(1-a+p1),8;)
(40b) Ay € (-»,-1) for &> §

and:

(41a) X, € (-1,0) for &> &

1
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(41b) A2 € (-1,0) for & € (v/(l-a+yu),8 ).

The expression for § and 6+ in terms of «, vy, 4 are, unfortunately,
rather long. and not very informative; therefore, we have dropped them. The
analogy between these results and those previously obtained for the simple
model u = O should convince the reader that all of the analysis in Section
3 can be reproduced for the case u > 0 as well. Period-doubling bifurca-
tions will be present for appropriate values of a, v, § and u. Also,
because Vlz(y,y) =0 for all y € [0,&'], Fact 6 can be applied again.

Important differences with the case u = 0 nevertheless exist. In
fact, simulations reveal that the chaotic solutions disappear rapidly as u
increases from the full depreciation value towards one. For example, with
a= .03, 4= .02 and 6§ = .025 chaos exists for u € [0,0.09], but
vanishes when g > .1, It is easy to understand why the chaos disappears in
this example when capital does not depreciate too quickly. The high level
of capital productivity means that the rising portion of the cycle is
confined to a small region of very low levels of the capital stock; unless
depreciation ratios are quite large, it will never be optimal to let the
capital stock fall to such a low level. Interestingly enough, chaos re-
appears as p moves towards one. In fact, when u 1is larger than .9
(i.e., depreciation ratios are on the order of 10 percent or less), we find
period 3 orbits for a = .03, vy = .02, and 6§ = .025. The polfcy function
for this case is illustrated in Figure 5. Observe that the mechanism gener-
ating chaos is now completely different from the one operative at u = 0.
Indeed, the trapping region now lies completely to the right of the point of
capital intensity reversal <+. This type of chaos, therefore, does not rely
on_ the esence of capit ntensit eversals. Rather, it exploits the

interaction between the downward sloping portion of the policy function and
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the depreciation constraint kt - “kt-l’

6. Chaotic Business Cycles?

We have proved in the previous two sections that, while for a wide
range of parameter values our model produces dynamic accumulation paths that
converge either to a stationary state or to a periodic orbit of finite
periodicity, there exists a non-negligible (albeit rather extreme) set of
values for a, vy and 6 such that the capital stock moves erratically
forever. In this section we examine some typical patterns of behavior for

{k Y ,r ,qt,wt) under this chaotic regime and compare their basic

e e e
correlation properties with those of the U.S. economy, following in this the
methodology introduced by Kydland and Prescott [1982].

We present two sets of simulations, the first relative to the model
with full depreciation and the second relative to the more realistic case
where u 1is in the range (.9,1) which also exhibits chaos as demonstrated
in Section 5. Before reporting the results of our simulations we will
briefly describe the correlation pattern which is theoretically predicted by
our model (a similar analysis can be found in Benhabib-Nishimura [1987],
Sec. III). To do this properly one should assume that the policy function
Ts is differentiable in order to take into account the effects that varia-
tions in kt have on the values of kt+1 - T6(kt)' This is still a
partially open problem even at the theoretical level. Moreover, our own
simulations seem to suggest that for the model we are using T, may well
fail to be of class Cl. We will therefore disregard these second order
effects in what follows. In any case it seems to us that the qualitative

results would not change in any precise direction once this effect is

introduced.
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We consider first the case where u = 0 (full depreciation). Total

output in our economy is defined as Yt -c, + qtk

. - T(kt,k

t+l t+l)

T2(kt’kt+1)kt+l' Therefore we have:
aYt
(42) 5E; = Ty(kpokeyg) - Tplke ke ke
and
aYt
(43) 7 = -T,,(k_,k_ .)
6kt+1 227t T+l

While the sign of (43) is always non-negative because of concavity (implying
therefore that GNP and investments move together) the value of (42) varies
along the cycle: output and capital stocks will move togethér in periods
just preceding a recession (i.e., when kt is such that le < 0) but may
move in the opposite direction when kt is going up. For our specific
model the sign of (42) reduces to the sign of (x-21y+7y2) which is easily
seen to be nonnegative for all values of x and y in D.

The correlation between ct and kt or kt+1 is obvious, o and

kt move together while consumption and investment move in opposite

directions: sectors are out-of-phase in models of this type. For the three

prices we have:

art ar
(44) i =Ty (k_k_..); 70— = T,,(k _,k_,.)
akt 11Vt e+l akt+1 1207t e+l
(45) 2e Kk 29, k. )
i = T, (k_,k_.); z— = -T,,(k_, .
akt 12Vt e+l 8kt+1 227t e+l
8wt
(46) 5'121 = Ttk kiR - TipCepake ke
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aw

akt:+1

(47) - -T22(kt,k

t+1)kt+1 ) T12(kt'1t+1)kt

from which we can conclude that: the rate of return decreases with the
capit#l stock while it moves procyclically with respect to the investment
activity; the price of the capital stock moves in a direction opposite to
kt when the stock is increasing and together with kt during the other
periods of the cycle while it always goes up when investment goes up.
Finally the wage rate moves together with both the capital stock and the
investment activity when the consumption sector is more capital intensive
but has no definite correlation in the other case.

When less than full depreciation is allowed the following derivatives

can be computed (the arguments of the functions are omitted for brevity):

aY
t
(48) &, " Ty - [Ty -hTopllk y-mky) 20
3y,
(49) - T, (k. .-uk.) >0
3k, 22 (Keyg "Mk,
6ct act
(50) LT . uT,>o0; -T. <0
7k, " 1 2 Bk, 2
art art
(51) LT - uT.. >0 T.. >0
3k, ~ 1 12 2 Gk, 122
éq, . dq,
(52) 3k, " "Typ * 6Ty 20 Gk, " Tgy > 0
8wt
(33) 3k, (Keg k) BT5)-Tio) + (BT =Ty 0k 2 0
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aw

t
s = -T,,.(k -pk )
3kt:+1 22 "t+l t

(54) - Tk, 20

From (48)-(54) conclusions similar to the one already reached for the case
with full depreciation can be easily derived. We can therefore conclude
that the general structure of the model is elastic enough to accommodate the
most diverse patterns of correlation among the relevant macrovariables.

This is reinforced by the fact that in the analysis above we have considered
only partial derivatives, while along an optimal path both kt and kt+1
are changing so that the observed correlations may turn out to have a
different sign.

To obtain some numerical evidence we simulated our model economy for
parameter values at which chaos is displayed. The Practical method is ag
follows: a value function and a policy function were computed numerically
by solving (8) over a grid of 1600 points on the unit interval and then
interpolating these pairs (x,7(x)) by means of a piecewise linear
approximation. The function - (0,1] - [0,1] was then applied iteratively
on a generic initial condition, which provided us with a sequence {kt}:=0'
The latter was then used to obtain the Sequences for the other relevant
variables by means of equations (1)-(5), of the definition of GNP given

above and of a measure of the real interest rate computed as:
(55) Rt - rt/qt.

The parameter values we have chosen are such that the.simulated policy
function displays "ergodic chaos", i.e., for generic initial conditions the
associated trajectory (kt)g_o does not converge to any periodic orbit but
tends to fill in the whole feasible set [0,1]. We report the results

associated with o = .03, yv= .09 and § = .0997, for the case p =0,
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some caution. First, the correlations reported in the first two columns of
the table are not based upon raw data. Indeed, as explained in Hansen
[1985], these correlations were computed on the basig of detrended data
(using the Hodrick-Prescott filter), measured in logarithms. The correla-
tions for our model are based upon unfiltered data, using levels rather than

logs of the variables. It should also be pointed out that the negative

variables such ag output, consumption, and investment. Despite the fact
that an analytical eéxpression for the pPolicy function was often unavailable,
we were able to characterize the dynamic behavior of our eéconomy in terms of
its basic bParameters: qa, the labor share of income in the consumption
sector; vy, the capital/labor ratio in the investment sector; and §, the
discount factor, For many values of the Parameters, the unique stéady state
was shown to be globally asymptotically stable. For other values of the
Parameters, we obtained a unique period-2 point, which wag globally attrace-
ive. Successive bifurcations then led to a4 chaotic regime, but only for
rather unrealistic values of the Parameters. The statistical Properties of

the time series associated with thig chaotic regime, while not orthogonal to
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their realized counterparts for the postwar U.S. economy, performed much
worse than those reported by Kydland and Prescott [1986].

This should not be too surprising. As the analysis above indicated,
the analytical complexity of the nonlinear model greatly exceeds that assoc-
iated with linear stochastic models. The primitive stage of our research
technology forced us to work with a rather rudimentary and rigid model. The
introduction of an elastic labor supply, a nonlinear utility function, and
increasing returns to scale in production are all elements of realism that
deserve attention. Nevertheless, our study casts some doubt on the notion
that, in one-dimensional capital good models, chaos is a useful way to model
the apparently self-sustained nature of the trade cycle. The highly
nonlinear bell-shaped form for the policy function that is then necessary in
order to produce complex dynamics forces one to resort to rather unrealistic
higher dimensional state space is bound to be much more successful in this
regard, since even slight departures from linearity may then produce strange
attractors.

While still in its infancy, the study of nonlinearities in economic
models is likely to provide insights into the forces behind observed

economic fluctuations. In our model, we underlined the importance of inter-

sectoral substitution effects (induced by different degrees of profitability

in different sectors) as well as intertemporal substitution effects in
determining factor allocation decisions, investment activities, and so on.
Bypassing the nonlinearities with first order approximations would have
neglected the important contribution of these factors in amplifying and

sustaining oscillations.



41

TABLE 1

Correlations with Output for the U.S. and Artificial Economies

Our Model
U.s. Kydland and Our Model With With Less Than
Iime Series Prescott Model Complete Depreciatjon Full Depreciation
1.00 1.00 1.00 1.00
.85 .94 .99 .99
.92 .80 -.57 -.79
.04 -.07 .99 . .99
- 47 -.98 -.98
-.84 -.98
.94 .98

.99 - .64
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APPENDIX

Proof of Proposition 5

The line of reasoning we will follow here is not new. In fact, it is an
adaptation of the main argument in Benhabib and Nishimura [1985]. Consider
the Euler equation (20): if kt » v it induces a map F: D +» X, defined

as: k - F(kt,k

e+l Following Benhabib and Nishimura [1985] we may

e-1
derive a dynamical system H: D+ D:

k F(k_,y )
[yt+1} - [ t’’t ‘ - H(kt’yt)'
t+1l kt

Note that:
%EF gg; - sz(kt'l’kt) * 8V11(kt’kt+1) i v21(kt-1’kt)
t t 8V12(kt,kt+1) 6V12(kt!kt+1)
1 0 1 0

If x(§),y(6) satisfies: rs(x(a)) = y(§), ra(y(S)) = x(6), it must also

satisfy (deleting the dependence on §):
Vz(x,y) + 6V1(y,x) =0
Vz(er) + 5V1(X,}’) = 0.

The latter implies: x = F(y,x), y = F(x,y), or [x,y] = H(y,x).

Now set zt - (kt’yt)' We have:
FIF(k_.y,) k]

z,,, = H(z_,,) = HH(z)) = H(z) =

t+2 Ze1)

F(kt,yt)

and: ([x,y} = Hz(x,y), so that the period-2 is a fixed point for Hz. Let
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2

us compute the eigenvalues of DH at (x,y). DH2(zt) -
raF(kt+1’yt+l) aF(kt+1’yt+1)- PaF(kt’yt) aF(kt’yt)-
DH(H(zt))DH(zt) - akt+1 ayt+1 akt ayt
| 1 0 11 1 0 J

Now set: k = x and kt+

t ~ Tesl 1
241 %12
DHZ(x,y) -
821 %22
to yield:
a].]. - Fl(th)Fl(x’y) + F2
al2 - Fl(y,x)Fz(x,y)
821 - Fl(x,}’)
8.22 - Fz(xi}’)

The characteristic polynomial corresponding to the linearization of H

around the two cycle is

=Y <Y and

(y,x)

2

2
AT - (a11+a22)A - alza21 + alla22 = 0.
Recall from above that
Exy) - - V22(y,x) + 6V11(x,y). E oy ) = - V22(x,y) + 6V11(y,x)
1'%y 5V, (x,) S R A 6V, ,(y,%)
vV, (y,x) V,,(x,y)
21 21
Fo(x,y) = - m5——— ' F(y,x) = - =——=.
2 8V, (x,y) 2 §V,,(y,%)
Thus A A, = Det(DHz(x )) = 6-2 and A, + A, = a.. + a
12 'y 17 %2 11 7 %22

From now on we use the notation: V?j

We need to compute the sign of

- Vij(x,y) and Vij = Vij(y,x).
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V2 sv2

2
VXV, ,+6 V¥ V. _+§Vk_ Vi _+6V__V 12 12

FoVopts Vi1V +OVE Vg +eV 1Y), 8

2
5 V$9V19

2
tr(DH (x,y)) = a;; + 8y, =

Some tedious, but very simple, algebra show that the concavity of V
implies that the numerator of the above expression is strictly positive.
- * -
Then, sign (a11+322) Sign(VlZVIZ) sign(k1+A2). Because the two roots
have the same sign, and we want one of them to cross -1 at § = 80, it is

clear that sz and V12 must be of different signs. This, in turn, is

possible in our model if and only if x >y and y < vy or vice versa.

Notice also that A1’2 - (ag; + aj, * JD)/2, where D = (a;,+ay,) - 48

2 D may be shown to be nonnegative again by concavity of V. Both roots

are therefore real.

Without loss of generality, let us assume |A1| < |A2|. From A1A2 - 6-2

we see that Al € (-»,-1) for all § in the relevant interval. In

particular, if X, happens to be equal to -1 for some 6§, then Al -

2
-6-2. This is possible only if

2 2
32V22 * 6V Vyy * EOVHVE, - V)

-(1+6'2) - [V
2 2 -1
+ 8V Vyp - VT [87VF,Vp,]
holds for some § € (6--,6++). By using the fact that A2 - (a11 + 359 +

J/D)/2, and the definitions above some additional algebra yields

) 2 2 2
(1) 1E: (L+6T)VEV, + [VEV,, + 8V V) + 6(VE VS, - Vi)
2 -2
+ 8V Vy, - V)] =0, them A, = -§ and A, = -1 .
(11)  if: (1+65)vs V.. + [VE V.. + §2VE. V.. + §(VE. V% - vy
: 12"12 2222 11'11 11722 12

2
+ 6(V11V22 - V12)] > 0, then Al € (-»,-1) and Az € (-1,0)
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+SIVELV. . 4 S(VE. VK. - V#2

coiin s 2
(iii) 1if: (L+6°)v + V5,95, 11711 f1V32 - 1)

T2V12

+ §(V 1 <0

1% Y1)
then Al and A2 both belong to (-«,-1).

From here on, the proof proceeds analogously to Theorem 1 in Benhabib and
Nishimura [1985]. Define H: D> D as ﬁ(zt) - Hz(zt). Obviously,
Fix(H) c Fix(ﬁz), but not vice-versa. In fact, a cycle of period-4 of Ts
is a fixed point of ﬁz which is not a fixed point of H.

As we are only considering interior solutions, we may examine the map

M(z) on the interior of D:
~2
M(z) = z - H (z).

A zero for M 1is a fixed point for ﬁz. Furthermore, i1f we denote G the
Jacobian of H evaluated at a fixed point for ﬁ, then G2 is the
Jacobian of ﬁz evaluated at the same point. Thus, if Al and AZ are
the eigenvalues of G, then the eigenvalues of the Jacobian of M
evaluated at (x(§), y(8)), the fixed point of ﬁ, will be (1-A§) and
(1-A§). Consider now the homotopy M(x(§), y(6)) from [6--,6++] on
int(D). The rest of the proof follows points (i) and (ii) of Theorem 1 in

Benhabib and Nishimura, verbatim. 1

Proof of the Corolla to ogition S

G(6), for our model, may be written as:

X yo x-sy) 7L (peydh e [ EDH2 (T2 4 52

2 2 1-y ,a
1-
a (1-a) (x-yy) (x-yy l-x -y

+ w6 ED ED) - o)

We only have to consider the portion within the last square brackets as the
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other part is always positive on int(D). Simple calculations will show

that G(6) = 0 when either condition (i) or (ii) of the Corollary are

satisfied. Moreover, as the sign of G(§) changes when § goes through

either §  or 6++ the argument of Proposition 4 can be applied. 1

Proof of Proposition 6: We need to compute the first three derivatives of

h:

h'(z) = [a+bz }]1/® yz-1

[1z+a/(l-a)

h"(z) = [a+bz-1ll/a (1-a) >0
zla-(1l-a)vyz]
-(1-a)[a+bz 111 [1+a+3y(l-a)z]
h*(z) = Y <0

22 [aty(L-a)z]>

Observe that h'(z) >0 for z > 1/y and h'(z) < 0 for

z < 1/y. Each

of these derivatives is continuous on (0,»), and thus on every compact

subset of it as well.

Now recall that the Schwartzian derivative of a function f at a point

z 1is defined as (Devaney, 1986, p. 68):

Sf(z) = (£°(2)/£f'(z)) - 3/2(f"(Z)/f'(Z))2-
Thus:

Sh(z) = [(l-vz)z(a+y(l-a)z)] 2

[(1-72) (14+a+3y(1l-a)z)-3/2]

which is negative whenever the following quadratic is negative:

L(z) = -372(1-a)z2 + 2y(l-a)z + a - 1/2.

But L(z) attains a negative maximum at z = (1-2a)/(3y(l-a)), for a <X,

proving the desired result.
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Figure 1: Evolution of the policy function T& as a function
of the discount parameter 6 (¢ = .03, ¥ = .09).
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Figure 2: Values of the parameters & and ¥ for which

chaos is present for some & in (0,1).
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Figure 3: Typical graph of the function hé. (with 6 > 7(1 - a))
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Figure 4: Illustration for two possible configurations
for period two points of h&'
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Figure 5: Evolution of the policy function 13 as a function of the
depreciation rate (1 - u) for @ = .03, ¥ = .02, and § = .028



