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1. Introduction

The idea that market mechanisms are inherently dynamically unstable has
not played a great role in studies of aggregate fluctuations over the past
quarter century. Instead, the dominant strategy, both in equilibrium
business cycle theory and in econometric modelling of aggregate
fluctuations, has been to assume model specifications for which equilibrium
is determinate and intrinsically stable, so that in the absence of
continuing exogenous shocks the economy would tend toward a steady state
growth path. The existence of a stationary pattern of fluctuations is then
attributed to the existence of exogenous shocks of one kind or another --
most often either technology or taste shocks, or stochastic shifts in
government policies.

Recent work, however, has seen a revival of interest in the hypothesis
that aggregate fluctuations might represent an endogenous phenomenon that
would persist even in the absence of stochastic "shocks" to the economy.
Even without giving credence to the extreme (and surely implausible) view
that macroecenomic fluctuations are purely deterministic, the possibility
that exogenous shocks might play a relatively minor role in generating the
size of aggregate fluctuations that we observed must be judged of no small
importance.

A successful explanation of aggregate fluctuations in endogenous terms
would have a dramatic impact on our view of the business cycles. It would,
for example, imply that stabilization efforts should be directed more toward
dampening the structural feedback loops through which the endogenous fluctu-
ations are sustained, rather than the elimination of exogenous shocks either

by making government actions more predictable or by using government



policies to offset temporary changes in technologies and preferences.1 It
would also, most likely, imply a greater degree of optimism regarding the
extent to which undesired fluctuations could in principle be eliminated or
reduced through appropriate structural interventions and/or reform of
government policy responses, relative to what would be the case if one took
the size of observed oscillations to indicate large stochastic shocks to the
aggregate production possibilities or to tastes.

The endogenous cycle hypothesis is not new. Indeed, the earliest
formal models of business cycles were largely of this type, including most
notably the business cycle models proposed by Sir John Hicks, Nicholas
Kaldor, and Richard Goodwin.2 In all these models the stationary growth
path for the economy is unstable, but deviations from it are eventually
contained by "floors and ceilings," such as shortages of productive factors
on the upside or technological limits to the amount by which investment can
be made negative on the downside.

By the late 1950s, however, this way of attempting to model aggregate
fluctuations had largely fallen out of favor, the dominant approach having
become instead the Slutsky-Frisch-Tinbergen methodology of exogenous
stochastic "impulses" that are transformed into a characteristic pattern of
oscillations through the filtering properties of the economy's "propagation
mechanism". There were probably two main reasons for the overwhelming popu-

larity of the latter methodology, apart from whatever comfort may have been

1The destabilizing feedback loops might, of course, involve the
government’'s typical policy response to varying economic conditions, but the
emphasis would be upon the nature of the government’'s reaction function
rather than simply upon its predictability.

For overviews of the early (non-optimizing, non-equilibrium)
literature, see, e.g., Blatt [1983] or Lorenz [1988]. For recent extensions
of Goodwin's model, see Goodwin and Punzo [1988].



provided by a vision of the market process as fundamentally self-stabilizing.

First of all, endogenous cycle models are essentially nonlinear; in
linear models (for generic parameter values) the only possibilities are
globally divergent dynamics -- oscillations that grow explosively without
limit (not what we seem to observe) -- or globally convergent dynamics (so
that continuing fluctuations require continual exogenous shocks). But the
linear specifications that were possible in the case of the exogenous shock
models were extremely convenient, both from the analytical point of view
(the propertieé of nonlinear differential equations could be studied only in
special cases, as when Goodwin was able to demonstrate a formal analogy
between his model and the van der Pol oscillator) and from the point of view
of empirical testing (multi-linear regression techniques were well under-
stood, tractable ways of estimating nonlinear models much less so).

Second, the endogenous cycle hypothesis was thought to have been
empirically refuted. Actually business cycles, it was easily shown, are far
from being regular periodic motions.3 The spectrum, for example, of an ag-
gregate time series typically exhibits no pronounced peaks, let alone actual
spikes as one would expect in the case of deterministic cycles. And econo-
metric models were estimated that, when simulated with repeated exogenous
stochastic shocks, produced data that looked like actual business cycles, but
that when simulated without the exogenous shocks converged to a steady state
(Adelman and Adelman [1959]). Demonstrations of this kind appeared to show
that the true structural relations implied an intrinsically stable economy.

Both of these sorts of considerations have less force today than they

must have seemed to around 1960. For one thing, advances in the mathematics

3., . . . . . s s .
Sir John Hicks, in private communication, has indicated that this was
the reason for his loss of interest in endogenous cycle models.



of dynamical systems, In the econometric theory of nonlinear models, and
above all, in our computational capacity make both the analysis and the
estimation of nonlinear models much more tractable. It is certainly still
true that linear models are much simpler to handle, and if one wants to
allow complicated lag structures not much constrained by any a priori
theory, multilinear models alone easily provide one with a set of free
parameters whose number is quite large compared to the size of one'’s data
set. Nonetheless, it is clearly possible to imagine a demonstration that
some kind of nonlinear specification allows for a reduction in squared error
that more than justifies the inclusion of the additional free parameters,
and it is certainly possible to test particular nonlinear specifications
that might be suggested on theoretical grounds.

Furthermore, we have come to understand that the simple empirical
"refutations” of the endogenous cycle hypothesis do not prove as much as
they might have seemed to. It is now understood that deterministic dynami -
cal systems can generate chaotic @ynamics, that can look very irregular and
that can have autocorrelation functions and spectra that exactly mimic those
of a "stable" linear stochastic model, such as a stationary AR(1l) model
(Sakai and Tokumaru [1980]).4 Furthermore, it is now recognized that the
fact that a stable model gives the best fit within the class of models
considered is no proof that the true (or more accurate) model may not be an
unstable one that generates endogenous cycles. John Blatt [1978] showed

that when a linear autoregression was fit to periodic data from a simulation

QIn fact, even before economists understood the possibility of chaotic
dynamics, it was observed that some endogenous cycle models could produce
cycles of irregular lengths. See Ando and Modigliani [1959]. Modern
mathematical developments allow us to understand that this phenomenon can
occur in robust examples.



of the Hicks cycle model, the parameter estimates implied a stable second-
order autoregressive process for output, of the kind that is in fact
obtained from autoregressions of actual GNP data. 1In fact, nonlinear deter-
ministic models can generate chaotic data that, as far as linear econometric
methods are concerned, look like perfect "white noise" -- not merely a
stable model, but one with no persistence of fluctuations at all.

New techniques for the analysis of economic time series, of course, may
eventually show more convincingly that observed behaviors are genuinely
stochastic to a large extent. Techniques that can, in principle, disting-
uish stochastic fluctuations from purely deterministic chaotic data have
been developed in the natural sciences, especially among physicists (see the
excellent discussion in Eckmann and Ruelle [1985] and the more recent survey
by Farmer and Sidorowich [1988])). They have been refined, improved and
recently applied to economic data by Brock, Scheinkman and their coauthors.
We will not review this literature here, but instead refer the reader to the
updated report contained in Brock [1988]. None of the results yet obtained
provide much evidence for the existence of deterministic chaos. 1In particu-
lar the application of these statistical instruments to the U.S. macro data,
reported in Brock and Sayers [1988], finds little evidence of chaos. Some
aggregate time series appear to involve significant nonlinearities, but the
type of tests used against the null hypothesis of a linear specification
give no indication as to whether the sort of nonlinearity that exists would
give rise to endogenous fluctuations even in the absence of exogenous
shocks. A type of test proposed by Hammour [1988b] is more promising in
that it provides evidence (in the case of statistics for growth of U.S.
industrial production) of a type of nonlinearity that would imply local

instability of the steady state growth path in the absence of exogenous



shocks. But these results remain highly preliminary.

In general, the types of non-parametric tests for nonlinearity and
endogenous instability that havg been proposed seem to require quite large
samples if reliable results are to be obtained, and this may ultimately mean
that definitive conclusions will not be possible in the case of economic
time series, proceeding in this fashion. The question of the relative
empirical validity of the exogenous and endogenous cycle hypotheses is
likely to be decided only by comparing the predictions of theoretical models
from both classes, whose parameters are either econometrically estimated or
"calibrated"” after the fashion of Kydland and Prescott (1982). Thus far, no
tests of this kind have been performed using endogenous cycle models (and
admittedly, none of the available theoretical models appear likely to fare
well under such a test -- some reasons for which are discussed below). The
development of theoretical models that could be tested in this way should be
a major object of further research.

Another reason for the decline from favor of the endogenous cycle
hypothesis concerns the inadequate behavioral foundations of the early
models of this kind.5 The stability results obtained for many simple equi-
librium models based upon optimizing behavior with perfect foresight -- in
particular the celebrated "Turnpike Theorems" for optimal growth models
(discussed further below in Section 3) doubtless led many economists to
suppose thgt the endogenous cycle models were not only lacking in explicit
foundations in terms of optimizing behavior, but depended upon behavioral
assumptions that were necessarily inconsistent with optimization. This

latter issue is the focus of the present paper.

5We discuss this further in the context of a specific example in
Section 2.



We survey the literature that shows that endogenous fluctuations (either
periodic or chaotic) can persist in the absence of exogenous shocks, in
rigorously formulated equilibrium models in which agents optimize with
perfect foresight. We find it useful to divide the known examples into two
categories. On the one hand (Sections 2, 3, and 4) are models with a unique
perfect foresight equilibrium which involves perpetual fluctuations for most
initial conditions. In such cases it is clear how the forces that bring
about a competitive equilibrium also require the economy to exhibit endogen-
ous fluctuations. On the other hand (Section 5 and 6) are models in which
perfect foresight equilibrium is indeterminate and among the large set of’
possible equilibria are ones in which the state of the economy oscillates
forever. 1In cases of this sort, the forces that bring about competitive
equilibrium do not require that perpetual fluctuations occur (since a steady
state position or paths converging to a steady state are also equally
consistent with equilibrium, for generic initial conditions). While we
regard the indeterminacy in cases of this sort to indicate a type of
instability 9f the competitive process, it is of qualitatively a different
sort than in the case of models of the first type, which are the primary
focus of the present survey.

In particular there is no reason to regard models in which equilibrium
is indeterminate as providing a theoretical reason for one to expect to
observe something at all similar to chaotic deterministic dynamics in
economic time series. For in these models, the deterministic equilibria
involving perpetual oscillations are essentially just limit cases (of a very
special sort) of stationary "sunspot” equilibria, in which the state of the
economy follows a stationary stochastic process despite the absence of any

stochastic shock to "fundamentals". And there is no reason to regard it as



more likely that one should observe nearly deterministic fluctuations rather
than large stochastic fluctuations in response to "sunspots" events. Never-
theless, we include some discussion of models of the indeterminate kind in
the present survey because of their historical importance as early examples
of the possibility of complex equilibrium dynamics.

We begin (Section 2) with a quick discussion of an early nonoptimizing
model of complex economic dynamics, because it allows us to raise some issues
regarding the consistency of the postulated behavior with optimization that
are then resolved in the more recent literature on optihiZing models.

For reasons of brevity we have dispensed with mathematical definitions
and theorems almost entirely. The reader who wishes to know more about the
mathematics of endogenous cycles and chaos may wish to consult such standard
references as Collet-Eckmann [1980], Devaney [1986], Guckenheimer-Holmes
[1983], Iooss [1977] and Lasota-Mackey [1985]). Useful introductions to this
branch of mathematics with a view to economic applications are provided by

Baumol and Benhabib [1987] and Lorenz [1988].

2. Non-optimizin odels of Economic amics6

Day [1982] considers a one-sector, neoclassical growth model in which

the dynamics of capital accumulation has the form:

(k) £(k)

ke = ok T ROk .1

vhere s 1is the saving function, f the production function and A > 0 is

the exogenous population’s growth rate. This is a discrete-time version of

6While we concentrate here only on the growth model of Day [1982] it is
worth mentioning that also in recent times a very large literature has
investigated the cyclic and chaotic properties of Keynes-Kaldor and Goodwin
type models. The titles known to us are reported in the bibliography to
this survey.



the famous Solow’s growth model. The latter had used a continuous time
specification to show that under neoclassical assumptions any capital accu-
mulation path will converge to a steady-state position. In the discrete-
time form (2.1) Solow’s assumption of a constant, exogenous saving rate and
of a neoclassical, concave production function give rise to a map h(kt)
which is monotonically increasing and has one and only one interior steady
state k¥ = h(k*). A typical case is represented in Figure la. 1In order to
"see" the dynamic paths one has only to pick any initial condition and
iterate h(kt): we have done this for two initial conditions, ﬁo and ﬁo
respectively larger and smaller than k*. By following the arrows in Figure
la, the reader can easily see that every accumulation path will converge,
monotonically, to k¥, Therefore not even damped oscillations are possible
in this case.

[Figure la about here.]

The trouble with Solow’s model is that it is not an optimizing one,
i.e., the aggregate saving function is not explicitly derived from consider-
ations of intertemporal efficiency. One is therefore f:ee to pick
"reasonable" shapes for s(kt) (and f(kt) obviously) in order to prove

his claim. A typical Solow-like pair would be a constant saving ratio o

and a Cobb-Douglas form for £, (2.1) then becomes:

B
aBkt

kvl = 1o

(2.2)

which is monotonic and therefore stable. The first modification Day
suggests is to the production function. By introducing a "pollution effect"

in it one obtains:
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aBki(m-kt)7

Kear = T+x | (2.3)

which is unimodal and has period-three for certain ranges of parameter
values. Returning to the Cobb-Douglas form and allowing instead for a vari-

able saving rate, s(k) = a(l-b/r)k/y Day obtains:

_$ b ,1-8
koo = 13 k(1 - BB ke 7 (2.4)

using the fact that the rate of interest must be r = By/k. This equation
also displays topological chaos for feasible parameter values.

What is special in (2.3) and (2.4) that makes their dynamics so
different from the ones originated by (2.2)? 1If one tries to picture the
h(kt) functions implied by (2.3) and (2.4) a shape like the one in Figure
1b will typically obtain for reasonable parameter values. As the trajectory
we have depicted there suggests, orbits need not converge to the steady
state anymore. The function is not monotonic, it is hump-shaped, it maps
some interval, say [0,1] into itself, it satisfies: h(0) = 0, h(1) =0
and, denoting with k the critical point, one often has h(ﬁ) = 1 for
appropriate parameter values. Moreover the two stationary states (i.e., the
origin and k*) are both unstable in the sense that Ih'(k)l >1 for
k =0 and k = k¥,

[Figure 1b about here.]

Maps of the real line into itself that, more or less, satisfy these
properties are called "unimodal". They have been extensively studied by
mathematicians and natural scientists as they represent the simplest kind of
dynamical system that displays "chaotic" behavior. A typical, and much
studied, example is the quadratic map h(x) = ux(l-x) for u € [1l,4]. As

the parameter pu moves from 1 to 4 the underlying dynamical behavior
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obtained by repeated iterations of h wundergoes a series of "bifurcations”,
i.e., of qualitative changes. More exactly the structure of the "attracting
sets" change: for pu < 3 the steady state x* 1is globally attractive, at
p =3 a period-2 cycle becomes attractive, and subsequently periods 4, 8,
16 ... cycles emerge, become attractive for a while until a new cycle
acquires the attracting property as u keeps increasing. There is a
precise order followed by the periodicity of these cycles (this is the
famous Sarkovskij theorem) but we will not discuss it. What is more
relevant is that when a period-3 cycle occurs then cycles of period N, for
N any natural number, are simultaneously present (even if they need not,
and will not in general, attract nearby orbits). Not only: there exists
also a subset S of the domain of definitions of h (called "scrambled"
set) on which "chaos" occurs. This is the celebrated "period-3 implies
chaos" Theorem of Li-Yorke [1975]. It has been widely used by economists
because of its simplicity as it requires only checking the existence of a
period-3 orbit in order to deduce the existence of chaos.7 Nevertheless
this kind of chaos (to which we refer with the words "topological chaos"),
may not be very interesting from the economists’ viewpoint. The reason is
that the scrambled set, S, sometimes, turns out to be of (Lebesgue)
measure zero, i.e., the probability of starting in S 1is zero. Moreover,
any initial condition outside S will produce orbits converging to a cycle

of finite period. For the quadratic case this occurs, for example, at u =

7Moreover there are a few simple, qualitative properties that guarantee
the existence of a period-3. 1In fact let h: I - I be continuous, with 1
an interval, if there exist distinct, disjoint subintervals 11 c I and 12

C I such that h(Il) o1 and h(Iz) ) (IIUIZ) then there is a period-3

2
for h. See Devaney [1986] for more details.
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3.828427, where topological chaos exists but almost all initial conditions
lead asymptotically to a period-three cycle. But there is also a more
interesting type of chaos, that we call here "observable chaos" or "ergodic
chaos". This is the case, for example when pu = & for the quadratic map.
Ergodic chaos (loosely speaking) means: 4(a) S has positive (Lebesgue)
measure (it has full measure, for example, at u = 4) so that aperiodic
trajectories are in fact observable and, (b) asymptotically the sequence

(ke Yoo

obtained by iterating h(kt) approximates an ergodic and
absolutely continuous distribution which is invariant under h and that
summarize the limit statistical properties of the (deterministic) chaotic
trajectories. Again, in the case of p = 4 the invariant distribution
exists and it can easily be shown to be f(x) = (ﬁ[x(l-x)]%)-l. Unfortun-
ately to prove that "ergodic chaos" exists is not trivial at all. 1In
particular no standard all-purpose theorems exist as of today. The one
result that economists have found most useful goes, approximately, like
this: if h: I+ 1 is C1 almost everywhere in I and such that |h'(x)]|
> 1 for all x € I where it is defined (i.e., h 1is everywhere expansive)
then there exists "ergodic chaos", (see Lasota-Mackey [1985]).

Day’'s examples (as well as many others) show that extremely simple
behavioral hypotheses and model structures can produce very complicated dyn-
amics. However, one may nevertheless question whether the sort of behavior
assumed is in fact consistent with optimization within the assumed
environment. For example, the assumption of a constant saving ratio was
often used in the éarly "descriptive" growth models and can indeed be
derived from intertemporal utility maximization under certain hypotheses but

it becomes especially implausible when a production function of the type

embodied in (2.3) is proposed. Why should a maximizing agent ever save up
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to the point at which marginal returns to capital are negative if he can
obtain the same output level with much less capital stock? This will
clearly never happen; in turn this implies that (given the assumptions on
the technology) a "policy function" of the type (2.3) would never occur in
an "optimal growth model” of the Cass [1965] type. In fact, as it is well
known, a "turnpike property” holds for that class of one sector models at
every level of discounting.

Although it is less obvious, Day’s case of a variable saving ratio and
a monotonic production function (i.e., equation (2.4)) is equally inconsist-
ent with intertemporal utility maximization. This was pointed out (in a
general form) in Dechert [1984]. Dechert's argument goes as follows: pick,
for example, Day’'s version of the Solow growth model and ask if the saving
function he is using in his example could be determined, everything else
equal, as the solution to a representative-agent infinite-horizon
maximization problem. The answer is negative. More formally we have: let
Ye = f(kt) be total output at time t, as a function of the existing stock
of capital. :The consumer-producer chooses how to split it between consump-

tion and future capital in order to maximize: u(ct)Gt, where u is a

=
t=0
concave utility function, & 1is a time-discount factor, 6 € (0,1) and ko
is given as an initial condition. It turns out that, even if the production
function is not concave, the optimal program (ko,kl,kz,...) can be express-
ed by a policy function kt+1 - r(kt) which is monotonic. The dynamical
system induced in this way cannot therefore produce cycles or chaos. The
economic prediction is that such a society will asymptotically converge to
some stationary position. The latter is unique when f is concave (i.e.,

in this case 7 looks like the h of Figure la). From this we have to

conclude that the chaotic examples derived from a one-sector growth model
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would not pass the rationality critique. Such a critique turns out to be
rather special itself, as it holds true only for the special version of the
one-sector growth model considered above. This will be illustrated in the

next two sections.

3. Optimal Growth Models

An obvious class of models from which to begin thinking about
equilibrium modeling of aggregate fluctuations is the class of optimal
growth models, which we may interpret as describing perfectly competitive
dynamic economies in which all agents are identical and optimize over the
entire infinite horizon of the economy. A stochastic version of such a
model is the basis for the influential class of "real business cycle
models," studied by Fynn Kydland and Edward Prescott [1980] and [1982], the
most fully worked out family of exogenous shock models of aggregate
fluctuations. For our purposes it suffices to sketch here the basic
ingredients of a very general model from which most of the adopted setups
can be derived as special cases. In particular we will consider a world
with a single (representative) agent that controls both consumption and
production decisions and perfectly foresees even the more distant future
(see Bewley [1982] and the literature therein for a reconciliation of this
abstraction with the case of many independent consumers and producers).
Also we will fully describe only the discrete time formalism even if, later
on, we will have to use the continuous-time version of the same model: the

translation should be immediate.8

8The reader is referred to Cass and Shell [1976], Bewley [1982], Becker
and Majumdar [1987] and especially McKenzie [1986] and [1987] for more
complete treatments.
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In every period t = 0,1,2,... an agent derives satisfaction from a
s m . cq s
"consumption" vector . € R, according to a utility function u(ct)

which is taken increasing, concave and smooth as needed. Notice that ct
denotes a flow of goods that are consumed in period t. The state of the
world is fully described by a vector x € R: of stocks and by a feasible
set F C mi“ x R® composed of all the triples of today’s stocks, today's
consumptions and tomorrow’s stocks that are technologically compatible,

i.e., a point in F has the form (x Now define:

t’ct’xt+1)'

V(x,y) = max u(c) s.t. (x,c,y) €F (3.1)

and let D C Rin be the Srojection of F along the c¢’s coordinates.

Then V, which is called the short-run or instantaneous return function,
will give the maximum utility achievable at time t if the state is x and
we have chosen to go into state y by tomorrow. It should be easy to see
that to maximize the discounted sum 2:_0 u(ct)Et s.t. (xt,ct,xt+1) € F is
equivalent to max Z:-O V(xt,xt+1)6t s.t.(xt,xt+1) € D.

The parameter § indicates the rate at which future utilities are
discounted from today'’'s standpoint (impatience): it takes values in [0,1).
For § = 0 the agent is infinitely impatient and there is a sense in which
a repeated myopic optimization of this kind may represent the outcomes of an
OLG model. 1In general § will be greater than zero.

It is mathematically simpler to consider the problem in the latter
(reduced) form. The following assumptions on V and D may be derived
from more basic hypotheses on u and F:

(A.1) V: D+ R is strictly concave and smooth (if needed). V(x,y) is
increasing in x and decreasing in y.
(A.2) DcXxXC Rin is convex, compact and with non-empty interior. X

is also convex, compact and with non-empty interior.
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The initial state X, is given. Notice that the economy we are describing
is essentially time-invariant: return function and feasible set do not
change over time, the latter enters the picture only through discounting and
the intrinsically intertemporal nature of the production process summarized
by D.

The optimization problem we are facing can be equivalently described as

one of Dynamic Programming:
W(x) = Max{V(x,y) + 6W(y), s.t.(x,y) € D) (3.2)

The latter is the Bellman equation and W(x) 1is the value function for such

a problem. A solution to (3.2) will be a map r_.: X - X describing the

5
optimal sequence of states (xo,xl,xz,...} as a dynamical system xt+1 -

fa(xt) on X. The time evolution described by Ts contains all the
relevant information about the dynamic behavior of our model economy. In
particular, the price vectors P, of the stocks X, that realize the
optimal program as a competitive equilibrium over time follow a dynamic
process that (when the solution {xt) is interior to X) 1is homeomorphic
to the one for the stocks. In other words: Pey1 = 0(pt) with 6§ = §DW »
T . (DW&)'l, where D 1is the derivative operator.

The question that concerns us is: what are the predictions of the
theory about the asymptotic behavior of the dynamical system 16? Where

should a stationary economy converge under Competitive Equilibrium and Per-

fect Foresight? A first, remarkable answer is given by the following:

TURNPIKE THEOREM (Discrete Time): Under Assumptions (A.l) and (A.2) plus

smoothness of V there exists a level § of the discount factor such that

for all the é's in the non-empty interval [§,1) the function Ts that

solves (3.2) has a unique globally attractive fixed point x* = 16(x*).
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Such an x* 1is also interior to X wunder additional mild restrictions.

Not too bad indeed: under a set of hypothesis as general as (A.l) and
(A.2) we are able to predict that if people are not "too impatient" relative
to the given V and D then they should move toward a stationary state
where history repeats itself indefinitely and no surprises ever arise. In
the form given here the Turnpike Theorem is due to Scheinkman [1976], where-
as McKenzie [1976] and Rockafeller {1976] proved it for the continuous time
version (on this see also the discussion below), Bewley [1982] and Yano
[1984] generalized it to the many-agents case (but see McKenzie [1986] for a
more careful attriEution_of credits).

As remarkable as it is, the Turnpike property is also very sensitive to
perturbations of its sufficient conditions. In particular, how close should
§ be to one in order to obtain convergence and what happens when § 1is
smaller than &? These are important questions. It is hard to rely heavily
on a property that may depend critically on such a volatile and unobservable
factor as "society's average degree of impatience".

The careful reader should have realized by now that the one-sector
model we briefly introduced at the end of Section 2, and which was used by
Dechert to prove that cycles and chaos are not optimal in that framework, is
a special case of the general model we are considering here, with
V(xt,x

) = u[f(xt)-x and D = ((xt,xt+1) s.t. 0= X1 < f(xt)).

t+l t+l]

For that model the Turnpike Theorem holds independently of the discount
factor as Ts is always monotonic increasing. Unfortunately, such a nice
feature does not persist even if the simplest generalization of the one-

sector model is taken into account. This was proved by Benhabib and Nishi-

mura [1985]. They considered a model with two goods -- consumption and

capital -- which are produced by two different sectors by means of capital
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and labor. Given the two production functions one can then define a

Production Possibility Frontier (PPF) T(xt,x that gives the

e+1) = Se

producible amount of consumption when the aggregated capital stock is L

(a scalar), labor is efficiently and fully employed and the decision of

having an aggregated stock X ,q tomorrow has been taken. The return func-

s.t. 0 =<x

ulT(x_,x 41

tion is now V(x_,x  .) = e ¥es1)]

and D = {(xt’xt+1)

< F(xt,l)} where F 1is the production function of the capital good sector

and labor has been normalized to one. 1In such a case 16

upward-sloping. If the consumption sector uses a capital/labor ratio higher

is not always

than the one used by the capital sector it will be downward-sloping. Let
x* be the (unique) interior fixed point (i.e., 16(x*) = x*), This is the
candidate for the Turnpike. Assume, for simplicity, that Ts is
differentiable in a neighborhood of x*. The derivative will be ré(x*) at
the steady state, it is negative and it changes as § moves in (0,1),
everything else equal. Benhabib and Nishimura showed that it may take up
the value -1 for admissible §6's, in such a way that the conditions for a
flip (period-doubling) bifurcation are realized. In this case an optimal
cycle of period-2 will exist which can also be attractive: no more
Turnpike! One may provide examples of this phenomenon showing that such an
outcome is by no means due to "pathological" technologies and preferences.
Cycles are not a special feature of the discréte time version of our
model. This has been known since long ago. In a very early work Magill
[1979] had pointed out that cyclical (albeit converging to a steady state)
motions were possigle for solutions to optimal undiscounted optimization
problems expressed in continuous time. He was able to show that the origin

of oscillations along optimal trajectories is directly related to the

existence of asymmetries in the Hessian function of the short run maximand
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evaluated at the steady state. The use of a model without discounting
prevented him from making these oscillatory motions persistent and to prove
the existence of limit cycles. This was achieved in Benhabib and Nishimura
[1979]. The two authors use the Hopf bifurcation theorem to prove that
limit cycles can occur. Let us show very briefly how this can happen. 1In

continuous time we face an optimal control problem of the form:

©

max f V(x,i) exp(-pt)dt s.t. (x,i) € D, x(0) given. (3.3)
0

Here x(t) 1is a vector depending on time, x is its time derivative, D
again the convex feasible set, p the discount factor in [0,o), (p =0
is equivalent to § = 1 in discrete time). Using the Maximum Principle one

defines a Hamiltonian:

H(x,q) = max (V(x,X) + <q,x>, s.t. (x,x) € D) (3.4)
X

which can be interpreted as the current value of national income evaluated
at the (shadow) prices q (on this point see Cass and Shell [1976]).

The dynémical system is then:

5 - 8H;x,g)
q (3.5)
. -dH(x,
Linearization of (3.5) around the steady state will yield, after some mani-
pulations, a Jacobian matrix J that can be written as J = J + (p/2)1,
where I 1is the 2n x 2n identity matrix. As J 1is a Hamiltonian matrix

we may consider how its eigenvalues will change with the discount factor

and then add p/2 to obtain those of J. If p =0 J has the form:

- A B
I=le (3.6)
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with A = 82H(x,q)/axaq, B = 62H(x,q)/82q, C= -82H(x,q)/82x. It is a
well known result that under strict concavity in X and strict convexity in
q of H the 2n eigenvalues of J will split into n positive and n
negative ones. The steady state will be a saddle point with a stable mani-
fold of dimension n. As the latter is also the dimension of the control
vector the optimal program will steer the system on the stable manifold
thereby guaranteeing convergence to the Turnpike. For p > 0 this is not
necessarily true: the saddle point property ﬁay be lost as some of the
negative eigenvalues become positive. It remains true, and global
convergence is assumed, in the special symmetric case C = BT, this was
proved in Magill-Scheinkman [1979]. As we noticed before when this symmetry
condition does not hold there is room for oscillations that may destabilize
the steady state and acquire asymptotic stability on their own for p large
enough. The Turnpike Theorems give conditions under which the stability
property of the saddle point is preserved for small p. For the purposes of
this discussion a particularly useful form of Turnpike Theorem is the one
proved by Rockafellar [1976] (see also the related Cass and Shell paper in
the same issue of the Journal of Economic Theory). As we pointed out the
Hamiltonian H(x,q) 1is concave in x and convex in q; we say it is a-
concave in x 1if H(x,q) + a/2 "x“2 is still concave on its domain of
definition for all feasible q and a > 0, it is B-convex in q if

H(x,q) - B/2 "q“2 is convex in q on its domain for all admissible x and

B > 0. Then one has:

TURNPIKE THEOREM (Continuous Time): Suppose the Hamiltonian given in (3.4)
is a-concave and B-convex in a convex neighborhood of (i,a) € m“ X Rn,

where (x,q) is a rest point for (3.5) (i.e., &H(x,q)/8q = O and
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-8H(x,q) /8% + pq = 0). Assume the discount rate satisfies: p2 < 4af. Then
(under a few additional technical conditions) for every initial condition
(xo,qo) the unique solution (x(t),q(t)) to (3.5) that maximizes (3.3)
converges to (i,i) as t - 4w,

This form of the Turnpike property is useful because it relates the
level of discounting to the "curvature" of the Hamiltonian which in turn
depends (albeit in a very complicated way) on the curvatures of. the
technology and the preferences. The more concave-convex is H the higher
is the level of impatience compatible with regular dynamic behaviors. But
as Benhabib and Nishimura showed when p grows for fixed o and B a pair
(or more than a pair) of eigenvalues may change the sign of their real part
by crossing the imaginary axis. 1In such a case they proved that (care taken
for the technical details) a Hopf bifurcation realizes. The limit cycle
associated to it turns out to be an attractor for the system (3.5). Once
again the Turnpike property is lost as people become "a bit more impatient".

Some characteristics of the oscillatory paths so obtained need to be
stressed. First of all they are realized as "equilibrium paths", in the
sense that all markets are continuously clearing at each point in time,
prices adjust completely and no productive resource is left "involuntarily
unemployed". Moreover, they are Pareto efficient in the sense that it is
impossible to modify the allocation of resources they imply, in order to
increase the welfare;of some agent without making somebody else worse off.
The economic policy implications of these facts are straightforward and we
do not intend to elaborate further on them. In second place oscillations
here are strictly market-driven: it is the existence of certain factor-
intensity relations across sectors that make it profitable for the producers

(and the consumers alike) to invest, produce (and consume) in an oscillatory
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form. Even if all the prices are the "right ones" (i.e., no conditions for
profitable arbitrage exist) still the puré seeking of‘individual profits
will bring about cyclic behavior. All of this comes from sound economic
theory and it is hard to rule it out on pure a _priori grounds. Not only, as
we will see in a moment, this very same logic can be pursued further to
allow for chaotic dynamics in the same class of model economies.

This theoretical p§ssibility turns out to be one of the implications of
a more general theorem according to which every dynamical behavior is
consistent with these economies. This was proved in Boldrin and Montrucchio
[1986b] (but see also Boldrin and Montrucchio [1984] and [1986a] and
Montrucchio [1986] for additional results). The Theorem, formally speaking,
has the following form: 1let §: X » X be a C2-map describing a dynamical
system on the compact, convex set X C Rn, then there exist a technological
set D, a return function V and a discount factor 6 € (0,1) satisfying
(A.1), (A.2) and such that # 1is the policy function Ts that solves (3.2)
for the given D, V and §. The proof is of a constructive type, so that
one may effectively compute a fictitious economy for each given dynamics.
This makes clear that any kind of strange dynamic behavior is fully compat-
ible with competitive markets, perfect foresight, decreasing returns, etc.
At about the same time and independently Deneckere and Pelikan [1986] also
presented some one-dimensional examples of models satisfying our assumptions
and having the quadratic map 4x(1l-x) as their optimal policy function for
appropriately selected values of §.

All these results were given for the discrete time version of the
model, but they are not specific to it. In Montrucchio [1987] it is in fact
proved that exactly the same facts hold for the case in which time is con-

tinuous. The proof proceeds essentially as in the discrete case and
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therefore permits the construction of fictitious economies that optimally
evolve according to any prescribed law of motion x = f(x).

The extension to the continuous time case is particularly useful in
clarifying the extent to which a high rate of time discount is not essential
for the existence of complex dynamics. In both Boldrin and Montrucchio
[1986a,b] and Deneckere-Pelikan [1986] all of the parametric examples of
chaotic optimal accumulation paths require very small discount factors, or
equivalently high rates of time preference -- e.g., a rate of time discount
of 10,000% per "period". This is patently absurd as a representation of the
attitudes toward future consumption in actual economies. Some have
therefore concluded that chaotic oscillations are mere mathematical curiosa
(at least in optimal growth models) and not a plausible line of research in
business cycle theory. But one must be careful about drawing such general
conclusions from a small number of examples. Further search may discover
more interesting cases. For example, Neumann et al. [1988] provide a
technical improvement on the Boldrin-Montrucchio Theorem that, after a
slight modification, enables one to derive the classical chaotic map fa(x)
= 4x(1l-x) for é = .25, which is twenty five times larger than the initial
estimates (see Boldrin-Montrucchio [1989] Chapt. 4 for this and other
examples). Furthermore the parameterized example worked out in Boldrin-
Deneckere [1987] derives chaos for values of the discount factor in the
range (.3,.5) (see below).

In fact, it is clear that appropriate choice of the technology and the
single-period utility function can allow chaos to exist for as low a rate of

time preference as one likes. This is clearest in the case of the
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continuous-time examples.9 In such examples, arbitrary rescaling of one'’s
time unit clearly allows one to obtain an example in which the rate of time
preference (in, say, percent per year) is as low as one likes. It should be
clear that for any given system of ordinary differential equations x = f£(x)
and constant 0 < ¢ < 1 one can obtain a perfectly equivalent dynamical
behavior from x = g(x) = ef(x). Only the time parameterization has been
changed. Nevertheless the Cz-norm of g can be made as small as one like
for an appropriate choice of €. As the size of the discount factor
compatible with a given dynamics depends monotonically on that norm it is
straightforward to conclude that any kind of dynamics can be made optimal at
any level of discounting, no matter how small the latter is! A rigorous
proof of this claim can be found in Boldrin and Montrucchio [1989, Ch. 3],
here we content ourselves with one additional remark on the relations
between this result and the Turnpike property.

In particular one may suspect that what we have just stated conflicts
with the Turnpike Theorem of Rockafellar we quoted above. This is not the
case because as ¢ pgoes to zero the degrees of concavity-convexity of the
associated Hamiltonian also go to zero and the Turnpike property still holds
for very small values of thé discount rate p. We will not go through the
algebra here, but the reader can easily check it by himself using the
following method. Let x = f(x) and a = p(q) be the policy functions
that solve (3.5). It is well known that the functions f and p have to
satisfy the relation: p(q) = Dh(h'l(q)) . f(h-l(q)) for some function h:
X - Rn which is a-.C1 diffeomorphism with symmetric Jacobian (i.e., Dh(x)

- [Dh(x)]T), here D denotes the derivative operator. Let H(x,q) =

9We are indebted to David Levine for clarification of this point.
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H(x,h(x)) be the constructed Hamiltonian for which (3.5) holds with:

- Qﬂé_z&l = DH(X,h(x)) = £(x) (3.7
q - '_"’.l_*_a(_;‘_’_cL) +pq = -Dln(h'l(q),q) + pq = p(q)

where Di denotes differentiation with respect to the ith argument. By
substituting g(x) = ef(x) 1in (3.7) together with the associated pe(q)
that one can calculate from the formula given above, it should be easy to
see that the new Hamiltonian ﬂ(x,q) will become less and less concave-
convex as € -+ 0. This is, obviously, consistent with the basic intuition
that relates a high degree of concavity in the objective function to
dynamically regular behaviors. It also suggests an interesting area of
research on the relation between the level of decreasing returns and the
complexity of competitive accumulation paths.

The results of Boldrin and Montrucchio cited above show that an
extremely wide range of types of dynamical behavior can arise within the
optimal growth framework, but they provide relatively little insight into
the economicllogic behind these theoretical and mathematical results. What
is it that makes it profitable for a competitive economy to oscillate
erratically over time? As we noticed above the driving force seems to be
the technological structure of the different sectors that induces profitab-
ility differentials across them at different points in time. Unfortunately
even if we do not have a full-fledged analytical explanation for the
multisectorial case (but see Magill [1977 and 1979], something can be said
for the two-sector, two-good economy that is often used in macroeconomic
applications. A theoretical analysis is provided in Boldrin [1986]. There

are two goods -- consumption and capital -- produced by means of two factors
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-- capital itself and labor, the resulting dynamics in the aggregate capital
stock kt 1s one-dimensional. It is proved that the policy function X1
- 'S(kt) is unimodal when (for example) factor-intensity reversal occurs
between the two sectors (this is not strictly necessary). Remember that for
the case in which the consumption sector always uses a capital-labor ratio
higher than the capital sector, period-two cycles are possible. In the
general case one is likely to find a level, say k¥, of the aggregate
capital stock such that when kt is in [0,k*) the capital sector has a
higher capital-labor ratio, whereas the opposite is true when kt is in
(k*,k], where k is the maximum level of capital that the economy can
sustain. This technological feature provides the unimodal shape for Ts
(i.e., Ts is as in Figure 1b). Variations in the level of the discount
factor § then can produce a cascade of period-doubling bifurcations that
(technicalities aside) leads to period-three orbits and chaos. The problem
is taken up again in Boldrin and Deneckere [1987]. The authors consider the
same two-sector economy as in Boldrin [1986]. The two production functions
are respectively CES (consumption) and Leontief (capital). This implies
that factor-intensity reversal occurs in this model. Once properly para-
meterized the economy displays various types of dynamic behavior, from the
simple convergence to a stationary state, to cycles of different finite
periods, to "chaos". For levels of the elasticity of substitution in
production that are not too extreme, aperiodic motions appear when the
discount factor is in the range (.2,.3) (this still implies an interest rate
around 400%). When the elasticity of substitution becomes extremely small,
then chaos is present also for less unreasonable levels of discounting.

On the other hand Boldrin and Deneckere prove that chaotic orbits are

still present when the elasticity of substitution is equal to one (i.e., the
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Cobb-Douglas case), but in order to obtain them one has to select fairly

unreasonable values for the parameters of the model.

4. Models With Market Imperfections and Determinate Equilibrium Dynamics

In the event that markets are incomplete, imperfectly competitive, or
otherwise less than fully efficient, the conditions under which endogenous
equilibrium fluctuations can occur are less stringent. There is no general
"turnpike" theorems for this case, even for an economy made up entirely of
infinite lived consumers with stationary, additively separable preferences.
In fact, it is possible to construct economies in which different borrowing
constraints permit, for a given speéification of technology and single-
period utility functions, to make consumers’ rate of time preference
arbitrarily small while continuing to have endogenous cycles or even chaotic
equilibrium dynamics.

Nor is the special type of inter-sectoral relations in the production
technology considered earlier necessary in order for endogenous fluctuations
to occur; for example, endogenous cycles and chaos can occur even in the
case of a one-sector production technology, while this would not be possible
with any rate of time preference in the case of complete, perfectly
competitive markets.

A simple type of market imperfection that results in a greatly
increased range of possible dynamics is an assumption that agents are unable
to borrow against all types of future incomes. The first demonstration that
borrowing constraints could make endogenous cycles possible even in the case

of a finite number of infinite lived consumer types and a one-sector
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production technology was due to Bewley [1986].10

Bewley showed how
borrowing constraints could result in equilibrium dynamics in such a model
formally analogous to the capital accumulation paths that could occur in the
overlapping generations model of Diamond [1965]. Bewley’s result depends
upon specifications that typically also imply indeterminacy of perfect fore-
sight equilibrium. Hence further discussion of this example is deferred to
Section 6.

Another model based on borrowing constraints is examined by Woodford
[1988b]. 1In this economy, there are two types of infinite-lived consumers
-- workers, who supply labor inputs to the production process, and entrepre-
neurs, who own the capital stock and organize production, and hence who make
the investment decisions. Workers are assumed to be unable to save by
accumulating physical capital and organizing production themselves (because
of a minimum efficient scale of operatioﬁ, despite the existence of constant
returns to scale at the levels of production at which entrepreneurs choose
to produce). There is also a limitation upon the extent to which workers
can indirectly invest in productive capital by lending to entrepreneurs. In
the simplest case (though admittedly an extreme one), loan contracts are
assumed to be completely unenforceable. In this case workers must consume
each period exactly the wage bill, and entrepreneurs must finance investment
each period entirely out of retained earnings from that period’s production.
The capital stock in each period will then be equal to the previous period’s
gross returns to capital, times the fraction of their wealth that entrepre-

neurs do not wish to consume. In the case of a low rate of time discount on

0A somewhat similar type of borrowing constraint is considered in
Scheinkman-Weiss [1986], but exogenous stochastic shocks play there a major
role in sustaining oscillations.
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the part of entrepreneurs, this fraction will generally be close to one over
a wide range of anticipated rates of return on their investments, so that
the capital stock chosen for each period will tend to vary closely with the
level of gross returns to capital in the previous period. This can easily
result in a unimodal map kt+1 - f(kt) of the form shown in Figure 1b of
Section 2, since gross returns to capital will be a decreasing function of
the capital stock if labor éupply is sufficiently inelastic at high levels
of labor supply, and capital is not too easily substituted for labor. For

example, if entrepreneurs seek to maximize

©

= 8% loge; (4.1)
£=0

where ci is the level of consumption by entrepreneurs in period t and

0 < 8 <1, then entrepreneurs will consume a constant fraction (1-8) of
their wealth in each period. If the preferences of workers are additively
separable between periods, equilibrium labor supply will depend only upon
the current real wage, so that it can be represented by a function s(wt).
If the production function Yt - F(Kt’Lt) exhibits constant returns to
scale, then the equilibrium real wage wt will be determined by the current

capital stock Kt as the solution to the relation

FL (R ,s(w )) = w
This will have a unique solution w(Kt) if s(w) 1is monotonically increas-

ing, and as a result there will be a unique equilibrium solution for the

following period’'s capital stock, namely
Koyp = (R = R Fp (K ,s(w(K.))) (4.2)

The function f(X) in (4.2) cah easily be unimodal. For example, if

workers' preference are of the form
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2 t v.a 1 2a
Z vy [(mec)) -3 (L))
=0 t 2 t

where m >0, 0<y<1l, and 0 < a =<1, and where c: denotes consump-

tion by workers, the labor supply function will be linear
s(w) = mw

If in addition the technology is Leontief, with a > 0 units of output
being produced per unit of capital using b > 0 wunits of labor, then (4.1)

—~
becomes

K, - ﬂ[aKt-(bz/m)Ki] (4.3)

This family of quadratic maps is well known to imply instability of the
steady state equilibrium for parameter values with ﬂazm/b2 > 1. (Note that
if this condition holds, it continues to hold as B 1is made to approach 1.
Hence there is no "Turnpike" property.) Setting u = ﬂazm/b2 (4.3) becomes
the quadratic map discussed earlier in Section 2 and chaos, both
"topological" and "ergodic", will occur for u € [3.57,4].

The existence of strongly chaotic dynamics can be assured for open sets
of parameter values by constructiﬁg an example in which the map £(k) in
(4.2) is everywhere expanding. This requires a kink in f(k) at the peak,
but this can easily come about if, for example, the elasticity of labor
supply is discontinuous at this point. If the elasticity of labor supply
falls sufficiently greatly at the kink, it is possible for f(k) to be
sharply increasing before the peak and sharply decreasing thereafter.

Endogenous cycles and chaos in this type of economy do not depend upon
the assumption of a Leontief technology, but it is important that the
substitutability between capital and labor not be too great. For the fall

in kt+1 for large values of kt obviously depends upon total gross
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returns to capital being a decreasing function of the size of the current
capital stock at that point, which is only possible if it is not possible to
easily substitute capital for labor when the real wage rises. In fact,
Hernandez [1988] proves a "turnpike" theorem for a class of economies in
which consumers cannot borrow against future labor income, under the assump-
tion that the production technology allows sufficient substitutability
between factors for total returns to capitalito be a monotonically
increasing function of the capital stock. It is not clear how far this
result can be generalized, but it suggests that low factor substitutability
may be important for the existence of endogenous instability even in more
complicated examples. See also the discussion by Becker and Foias [1987].
Similar dynamics are also possible in the case of a much weaker
restriction upon financial intermediation, namely, in the case that workers
can lend to entrepreneurs, but debt contracts contingent upon firm-specific
technology shocks (not yet realized at the time of the investment and
borrowing decision) are unenforceable. 1In such a case, if there is a
continuum of -firms with independent realizations of the technology shock,
and the technology shock takes an appropriate form, the equilibrium real
wage and aggregate production are deterministic functions of the aggregate
capital stock despite the existence of a stochastic technology for each
individual entrepreneur/fifm. If entrepreneurs’ preferences are homothetic
(as in (4.1)), each entrepreneur will choose levels of consumption, invest-
ment, and borrowing that are proportional to the amount by which his gross
returns in the current period exceed his debt commitment, so that aggregate
entrepreneurial consumption, investment, and borrowing depend only upon the
amount by which aggregate gross returns to capital exceed aggregate debt

commitments. As a result the deterministic (perfect foresight) dynamics of
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the aggregate capital stock are independent of the distribution of capital
holdings across entrepreneurs with different histories of technology shocks.
In this model, if the technology shock occurring in the worst state that
cannot be insured against is sufficiently bad, then entrepreneurs will be
unwilling to finance a large fraction of their investment by borrowing even
when gross real returns to capital are expected (on average) to be well in
excess of the gross real interest rate on debt. As a result, a low level of
gross returns to capital (because real wages are currently high) will result
in a low capital stock in the following period, even though total current
income is high. Thus kt+1 can again be a decreasing function of kt’ for
high values of kt’ and all of the phenomena discussed above can occur.

The distribution of income continues to have a significant effect upon capi-
tal accumulation, despite the existence of a competitive market for (non-
contingent) loans. Furthermére, the sort of market imperfection assumed in
this model is of considerable empirical relevance, since firms are often
unable to obtain external finance upon terms that make their repayment
commitments contingent upon their level of revenues.

Financial constraints are not the only kind of market imperfections
that can give rise to endogenous fluctuations even with an arbitrarily low
rate of time discount. Deneckere and Judd [1986] demonstrate the possibil-
ity of endogenous fluctuations in the rate of introduction of new products
in an economy in which the creation of a new product involves a one-time
fixed cost, and allows the innovator a one-period monopoly of production of
the new product. (After the first period of production, imitation is
possible, so that the market for the product becomes perfectly competitive.)
The model is a simplified discrete-time variant of that of Judd [1985].

Consumers are assumed to have a "taste for variety" of the Dixit-Stiglitz
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sort. Each period, new products are introduced to the point where the
monopoly rents from the production of each new product are no greater than
the fixed cost of creation of a new product. Since monopoly rents are
earned only for a single period, expectations regarding the number of
products to be produced in the future have no effect on the decision. As a
result, the total number of products produced in a given period (Nt)’ is a
determinate function of the number of old (non-monopolized) products in
existence. Deneckere and Judd show that for a certain parametric class of
preferences, Nt+1 is a function of Nt of the form shown in Figure 2.
[Insert Figure 2 Here.]

For Nt <R, N is a decreasing function, because a larger number of old

t+1
products being produced reduces the level of monopoly rents from production
of new products to such an extent that the equilibrium number of new prod-
ucts falls by an amount even greater than the increase in the number of old
products. For sufficiently large Nt (i.e., Nt > N*), Nt+1 is actually
less than Nt’ because the number of old products produced in period t+l
is assumed to be only 6Nt (wvhere 6§ 1is a fraction less than 1), due to a
constant rate of obsolescence of products. 1If Nt - ﬁ, the level of
monopoly rents is equal to the fixed cost of innovation, even if no new
products are created. For larger values of Nt’ the level of monopoly
rents that would exist in the case of innovation is even lower, but the rate

of innovation cannot fall below zero. Hence for Nt 2R, N is simply

t+l
equal to 6Nt. This results in a kinked function of the kind shown in the
figure. If the slope of the deceasing segment (which is linear in the case
analyzed by Deneckere and Judd) is steeper than -1, the steady state

equilibrium at N* is unstable. On the other hand, the dynamics converge

eventually to a bounded interval [N,N], and fluctuate within this interval
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forever after. Depending upon parameter values, the dynamics are either
asymptotically convergent to a stable cycle of period 2 for most initial
conditions, or are chaotic for most initial conditions.

Like the Woodford example, this one in no way relies upon high rates of
time preference. Producers’ decisions about whether to introduce new products
do not depend upon the rate at which profits are discounted, because profits
are obtained only for a single period and the fixed cost is paid in that same
period. The level of monopoly rents depends only upon consumers’ elasticity
of substitution between different products within a given period, not upon
their preferences regarding present as opposed to future consumption.

Neither of these examples can easily be parameterized for comparison
with actual data, since each makes a number of very special assumptions in
order to obtain equilibrium dynamics that can be described by a first-order
nonlinear difference equation for a single state variable. This is, as of
now, the only case in which a reasonably thorough analytical characteriz-
ation of the types of possible asymptotic dynamics is available. Further
progress in evaluation of the empirical relevance of the endogenous cycle
hypothesis will doubtless depend on the use of numerical simulations to
determine whether chaotic fluctuations occur for realistic parameter values
in more complicated models.

5. ndeterminacy and Endogenous Fluctuations in Overlapping Generatio
Models

Endogenous cycles and chaos can also occur as equilibrium phenomena
even in the presence of complete and perfectly competitive intertemporal
markets, in the case of an economy made up of overlapping generations of
finite lived consumers. In this case, as noted earlier, the equilibria

involving perpetual deterministic fluctuations are only some members of a



35

large set of rational expectations equilibria, which also includes
equilibria converging to a stationary state. Nonetheless, this class of
examples has been crucial for the development of modern interest in the
endogenous cycle hypothesis, since it provided the first general equilibrium
examples of the possibility of chaotic economic dynamics, through the work
of Benhabib and Day [1982].

Consider the simple overlapping generations model treated by Gale
[1973]. The economy consists of a sequence of generations of two period
lived consumers, each identical in number. There is a single perishable
consumption good each period of which each consumer has an endowment vy in

the first period of life and w, in the second period of life. Each

2
consumer born in period t seeks to maximize U(cit’c2t+1)’ where Cjt is
consumption in period t by consumers in the jth period of life, and where
U 1is a concave function increasing in both arguments. Finally, there
exists a single asset, fiat money, in constant supply M > 0, all of which
is initially held by a group of consumers who are already in their final
period of life in the first period of the model.

Let P be the price of the consumption good in terms of money in
period t. Then a young consumer who chooses to hold money in the quantity
Mt at the end of period t must expect a lifetime consumption pattern
(clt’c2t+1) - (wl-Mt/pt, w2+Mt/pt+l)‘ Optimal choice of Mt’ given the

price level P, that he faces and the price level Peyl expected for the

following period, must satisfy the first-order condition

M M P
t v+ t] t (5.1)

U, (w,-M_/p_,w,+M_/pP ) = U [w - — W e
171 /e T2 e e+l 2 Py 2 Pyl Py

(assuming boundary conditions on the utility function that rule out
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existence of a corner solution). A perfect foresight equilibrium price
sequence {pt} is a sequence of positive prices, for t = 0,1,2,..., that
when substituted into (5.1) result in a money demand by the young of Mt - M
in every period (t = 0,1,2,...). Thus the price sequence must solve the

difference equation

P
Wy + M ] - UZ[wl - !—, vy + M ] t (5.2)
t Py Pe Pes1/) Penn

'Ul.’.!

Ul[w1 -

The relation between M/pt and M/p required by equation (5.2) can

t+l
be graphed as in Figure 3.

[Insert Figure 3 here.]
It can easily be shown that if both first and second period consumption are

normal goods, the graph must be such that there is a unique positive solu-

tion for M/pt for each positive value for M/p

el e
Pe Pes1

However, as indicated by the figure, the function f need not be invert-

41’ that we may write

ible. The sort of unimodal function shown occurs if preferences are such
that desired saving in youth is a decreasing function of the expected real
return on money, for high enough levels of that return. The equilibrium
dynamics are graphed for the case of a given expectation regarding the price
level at some date T far in the future; the figure shows what price levels
must be expected to occur in each of several periods prior to period T.

It is apparent that, when the unimodal map is steep enough (which
Grandmont [1985] shows to require simply that the marginal utility of second
period consumption fall sharply enough with increases in second period

consumption, near the level of consumption that occurs in the stationary
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monetary equilibrium), the (backwards) perfect foresight trajectories so
traced can involve complex oscillations. As was first noted by Gale [1973],
deterministic cycles are possible. Cass, Okuno and Zilcha [1979] showed
that the deterministic cycles could be of arbitrary period, and Grandmont
discusses in detail the order in which cycles of variéus periods occur as
the map is made progressively steeper, applying the theory of unimodal maps
set out in Collet and Eckmann [1980]. All such cycles obviously represent
possible equilibria of the forward perfect foresight dynamics as well; i.e.,
they can be extended indefinitely into the future as well as indefinitely
into the past.

Grandmont also discusses conditions under which the backward perfect
foresight dynamics would exhibit topological chaos. This result is of less
obvious significance for the forward perfect foresight dynamics, since the
"chaotic" property of a trajectory can be defined only in terms of its
asymptotic behavior as it is continued indefinitely, and the existence of
such a property for trajectories extended backward indefinitely from a date
T does not necessarily imply anything about the kind of trajectories that
exist going forward from a date T. Nonetheless, it is clear that not just
chaotic but genuinely random perfect foresight trajectories do exist for the
forward dynamics, albeit for reasons that do not require the use of the
theory of nonlinear maps of the interval. For it is evident from Figure 3
that for many values of Pe» there would be two different values of Pyl
expectation of either of which would result in a market clearing price of
P.- So we can construct a (forward) perfect foresight equilibrium trajec-
tory by starting at some arbitrary po 2 P (where M/P = supp>0 £f(M/p)),

and proceeding recursively, for each value of t, choosing p given

t+l’

P.» SO that (5.3) is satisfied, and also so that Pyl > P. 1t is clear
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that this iteration can be continued forever.

Let us suppose furthermore that the map f 1is so steep that f£(M/P) <
fz(M/g) < f3(M/£) < M/P, as shown in Figure 4. Then for any choice of P
so that M/p0 lies within the open interval I = (£(M/P),M/P), it is also
possible to continue the iteration forever, always choosing P, so that
M/pt lies within I. Furthermore, each time M/pt lies within the inter-
val 12 - (f2(M/f),M/f), there are two possible choices of Pyl which
will continue the series. One may use a randomizing device (e.g., a coin
toss) to chose between them. And each time M/pt lies within the interval
I1 = (f(M/D), fz(M/f)], the unique available choice for Peiq places

M/pt+l within I Hence there is never more than one consecutive period

X
in which one does not get to use the randomizing device. The resulting time
series for the price level is accordingly quite random. In order for it to
represent a perfect foresight equilibrium, we must suppose that the outcomes
of the coin tosses are known to consumers in advance, so that the price
level Pi1 is known with certainty at least as of period t. But since
consumer behavior will never in any way reveal the outcome of the coin toss
until period t+l’s price level is reclined, an econometrician observing the
time series would have to model it as one in which random events continually
occur that determine the evolution of the price level.

It is also known from the work of Shell [1977], Azariadis [1983],
Azariadis-Guesnerie [1986] and many subsequent authors that genuinely stoch-
astic ("sunspot") equilibria exist in this model in which consumers do not
know the following periods price level with certainty. These equilibria

correspond to stochastic processes for {pt} that satisfy the

generalization of (5.2)
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Because such equilibria exist in a model like Grandmont'’s, there is no need
of the concept of chaotic deterministic dynamics to explain how erratic,
"random-looking" time series could be generated, even in the absence of
stochastic variations in endowments or preferences. (The existence of such
stochastic equilibria is closely related to the indeterminacy of perfect
foresight equilibrium, as is discussed further in Woodford [1984].)

Benhabib and Day [1982] present a variant of the model in which the
existence of chaotic perfect foresight equilibria is of greater interest,
Their model is the same, except that instead of assuming the existence of a
fixed positive supply of fiat money, they assume the existence of government
lending to the finite lived private consumers. If the initial old consumers

owe to the government real indebtedness of d and if the government'’s

0’
lending policy each period is to lend (at a market clearing real interest
rate) a quantity exactly equal to the amount currently being repaid by the

old consumers, then each period the government will lend dt+1/rt to the

Young at a gross real interest rate of Tes where dt and r, satisfy
d d
t+1 t+1
Ul(wl Fro V2o dt+1J - U2[“’1 Y V2o dt+1]rt
dt+1 -d
rt t

These equations in turn imply that a sequence {dt) corresponds to a per-

fect foresight equilibrium if and only if it satisfies

dt+1
Il(w1+dt’ w2-dt+l) = U2(w1+dt, w2-dt+1)—az— (5.4)
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for all t = 0, given the initial obligation d Now equation (5.4) is

0
identical to (5.2) except that dt replaces -M/pt, and so the equilibrium
dynamics can be studied using the same offer curve diagram as in Figure 3,
except that now (assuming the government is a net creditor) we are interes-
ted in the lower left rather than the upper right quadrant. Rotating the
diagram by 180° we get Figure 5. If consumption is a normal good in both

periods of life, (5.4) can be solved for dt+ as a unique function of dt’

1

which we may write

dt+1 - f(dt) (5.5)

Furthermore, the function f in (5.5) is exactly the same as the function
f in (5.3), if one constructs a Benhabib-Day economy by reversing the time
pattern of endowments and preferences in the Grandmont economy (i.e., one
replaces (wl,wz) by (wz,wl), and U(cl’CZ) by U(cz,cl)). Hence Benha-
bib and Day’s results on the conditions under which endogenous cycles and
chaos are possible are parallel to Grandmonts. The map f can be sharply
downward-bending, as shown in Figure 5, if desired borrowing does not
increase very much as the real rate of interest on loans falls, which in
turn occurs if the marginal utility of first period consumption falls
rapidly with increases in first period consumption;. Again, equilibrium
cycles and chaotic dynamics are possible. In Benhabib and Day’s model, the
chaotic paths relate to the forward perfect foresight equilibrium dynamics,
so they do indicate the possibility of chaotic equilibrium trajectories
starting from a given initial condition. Furthermore, in the Benhabib and
Day model, perfect foresight equilibrium is unique, so that for certain
initial conditions, a cyclic or a drastic trajectory will be the only

possible equilibrium (assuming that the initial private sector obligation
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d0 is fixed in real rather than nominal terms).11 It can however be
objected that Benhabib and Day only give sufficient conditions for the
existence of "topological chaos", i.e., for a map f such that a chaotic
equilibrium occurs for some initial values do, but perhaps only for dO
in a set of zero measure. Hence their example does not clearly provide an
explanation for the observation of apparently stochastic fluctuations. It
should be pointed out, on the other hand, that "ergodic chaos" can occur in
their model, for some particular choices of preferences and endowments, but
it is not clear how robust their examples are.

Grandmont’s cycle example has been criticized on other grounds as well.
Some have argued that the sharply backward-bending supply of savings as a
function of the real return is not empirically plausible. Kehoe et al,
[1986] show that deterministic cycles and chaotic equilibria are both impos-
sible in a general stationary overlapping generations model (allowing for an
arbitrary finite number of goods per period, an arbitrary number of consumer
types per operation, and an arbitrary finite number of periods of life per
consumer), if all goods are gross substitutes, in the sense that the excess
demand for each good is a decreasing function of its own price and an
increasing function of the prices of all other géods (including all goods in
other periods).

However, the Kehoe gt al. result applies only to endowment economies,
i.e., economies in which there is no production. Reichlin [1986] shows that

endogenous cycles are possible in an overlapping generations economy with

1One could reduce the degree of indeterminacy in the Grandmont model as
well by treating it as a model in which outstanding government debt is
rolled over forever, assuming that the initial outstanding government debt
is given in real terms. Then the initial value of -d, (=M/p.) would be
predetermined rather than arbitrary. 'But there would still exist stochastic
equilibria because of the non-invertibility of the map f in (5.3).
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production, even when consumers demands for all goods satisfy the gross
substitutes condition (savings are an increasing function of the real rate
of return, labor supply is an increasing function of the real wage).
Riechlin [1987] also shows that chaotic equilibrium dynamics are possible in
an overlapping generations economy with production. Other results relating
to endogenous cycles and chaos in overlapping generations models with
production are presented by Farmer [1986], Benhabib and Laroque [1988], and
Jullien [1988].

Sims [1986] has also criticized the relevance of the Grandmont example
for business cycle theory on the ground that, since the deterministic cycles
must last for two or more periods, and since in Grandmont's model the
lifetime of consumers is only two periods, the example shows only that
endogenous cycles are possible with periods equal to or greater than a human
lifetime. Sims also presents an informal argument suggesting that such a
result might more generally hold, in which case the sort of mechanisms
illustrated by Grandmont's example would not be relevant for the explanation
of actual business cycles, that occur over periods of only a few years.

The conditions under which endogenous cycles might exist in overlapping
generations models with long-lived consumers have not yet been much studied.
Aiyajan [1987] considers a family of overlapping generations models in which
the number of periodsvthat each generation lives is made progressively
longer, while the rate of time preference and the elasticity of substitution
of consumption between periods remain constant, and while each period’s
endowment continues to fall between the same upper and lower bounds. He
shows that for any integer k, k-period deterministic cycles eventually
cease to exist, within such a family of economies, once the lifetime T is

made large enough. This provides some support for the view that short-
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period cycles are not likely to occur in economies with long-lived
consumers. However, it should be noted that Aiyagan’s result does not
actually show that the cycles that are possible must always be long compared
to the lifetime of consumers; he does not even show that within one of his
families of economies, there exists any positive lower bound G such that
one must have k/T > t in order for a cycle to be possible. Furthermore,
the result is obtained only for a relatively special class of preferences
and lifetime endowment patterns, and only for endowment economies (i.e.,
there is no production).

Whitesell [1986] shows that relativgly short period cycles are possible
in overlapping generations models with relatively long lived consumers. He
considers a continuous-time model with stochastic lifetimes for individuals,
but a deterministic rate of death for each generation in aggregate, of the
kind first examined by Blanchard [1985]. Whitesell's variant allows for
endogenous labor supply and a one-sector production technology. He exhibits
a number of sets of parameter values for which endogenous equilibrium cycles
will exist; for example, he shows that cycles with a period of about 4 years
can exist in an economy in which the average consumer lifetime is 50 years,
labor endowments decline with age at a rate of 4 percent per year, and
consumers’ rate of time preference is 10 percent per year.12

The objection raised earlier to the Grandmont example of endogenous
cycles, that there exist many other equilibrium as well (including an equi-
librium with a constant price level), can be answered if one asserts that

perfect foresight equilibrium is a relevant equilibrium concept only when

12The periods of the Whitesell cyclgs, which he does not report, can be

calculated as approximately 2w(trJ/|J|) , Wwhere trJ and |J| are
evaluated for the parameter values at which the Hopf bifurcation occurs,
i.e., at which Z changes sign in Whitesell's table.
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viewed as the eventual limit of a disequilibrium. "learning" process. In
this case, it is possible that the 'stationary equilibrium would be unstable
under the learning dynamics, which would instead converge, from most initial
conditions, to one of the equilibrium cycles. Grandmont [1985] and
Grandmont and Laroque [1986] give conditions upon the "learning" process for
this to occur.

For example, if expectations regarding the following period’s price
level are always formed by looking at past prices according to the simple

rule

e
Pes1 7 Pear (5.6)

then the temporary competitive equilibrium dynamics13 (in which P is

determined by (5.2) each period, but where p in (5.2) is replaced b
t+l y
e
pt+1) will take the form
M M
. £( )
t Pesl

where £ is the same function as in (5.3). In this case, the temporary
competitive equilibrium dynamics are uniquely determined by the initial
condition P.q- Furthermore, if the mﬁp f 1is such that the stationary
monetary equilibrium is unstable in the backward perfect foresight dynamics,
and there exists a two-period cycle that is globally stable under the back-
ward perfect foresight dynamics then the (forward) temporary competitive
equilibrium dynamics converge asymptotically to the two-period cycle for

most initial conditions Pq-

13For further discussion of the concept of temporary competitive

equilibrium, see Grandmont [1977, 1983].
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Grandmont and Laroque show that this result holds not only in the case

of the extremely simple forecasting rule (5.6), but also for a wide class of

e

forecast functions giving Piil

as a function of the history of past price
levels, and similar results are given in the case of equilibrium cycles with
periods longer than two as well. These results provide some reason to
suppose that the deterministic cycles treated by Grandmont could represent
observable phenomena. But no such results exist in the case of the chaotic
perfect foresight dynamics shown to be possible in the Grandmont model. It
is obviously true that some specifications of preferences, endowments, and
forecast function would imply chaotic temporary competitive equilibrium
dynamics for most initial conditions; for example, forecast function (5.6)
would imply this in the case of backward perfect foresight dynamics that
exhibit "ergodic chaos". But these chaotic temporary competitive equilib-
rium dynamics would involve a systematic failure of expectations to be
fulfilled, that would not improve with time. Under such circumstances, it
is implausible that consumers would continue to simply mechanically apply a

rule so crude as (5.6).

6. Indeterminacy and Endogenous Fluctuations in Models With Infinite Lived
Consumers and Market Imperfections

The overlapping generations examples are also relevant as an indication
of what can happen in economies with long-lived consumers, facing various
sorts of financial constraints. As noted in Section 4, Bewley [1986] has
shown that borrowing constraints in an economy with a finite number of
infinite lived consumer types can result in dynamics formally analogous to
those in an overlapping generations economy. An economy with equilibrium
dynamics like those of the Grandmont [1985] example is discussed by Bewley

[1980]. Suppose that the economy is made up of equal numbers of two types
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of infinite lived consumers, each of whom has preferences of the form

2t
Z Bu(ce,)
t=0 t

‘where 0 < B <1 and u is an increasing, concave function. Type A

consumers have an endowment of vy in all even periods and v, in all odd

periods (where vy > w2)

is exactly the reverse. Suppose furthermore that debt contracts are unen-

while the endowment pattern of type B consumers

forceable, so that neither consumer type is able to borrow against future
income. Consumers can save only by holding fiat money, which exists in a
fixed positive supply M > 0. An equilibrium is possible in which the

entire money supply is held at the end of each period by consumers of the
type with endowment vy if the price level sequence {pt} satisfies the

following sequence of conditions:

r 3 r P. P

u’ Wy o- ) . Bu’ vy + t t (6.1)
* P/ : Pes1/ Peal
( A [ P_y P

u’ w, + M = pu’ Wy - —t t (6.2)
L ¢ Py 5 Peyd) Pey

Conditions (6.1) shows how P is determined in period t as a function of
expectations regarding the value of Pey1s and the relation is exactly the
same as in the case of an overlapping generations model with consumers whose

first period endowment is vy whose second period endowment is and

W2,

whose preferences over lifetime consumption patterns (cl,cz) are given by
U(CI’CZ) = u(cl) + ﬂu(cz)
There exists solutions to (6.1) if and only if

u'(wl) < pu’(w (6.3)

9)
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which is to say, if endowments are sufficiently variable. Condition (6.2)
necessarily holds in all periods if (B.l) does, and P always satisfies

2M
Y1 ¥

p =P = (6.4)

This condition is necessarily satisfied by the stationary solution to (6.1),

i.e., the constant price p* satisfying

M
E;)

u'(w1 - %;) - ﬂu'(w2 +
since B <1 and strict concavity of u implies that p* > P.

Now just as in the case of the overlapping generations model it is
possible for the dynamics éonsistent with (6.1) to involve endogenous cycles
or even chaos. This requires simply that the function u exhibit suffici-
ent curvature near the point ¢ = w, + M/p*.) If the fluctuations in
question remain in a sufficiently small neighborhood of the stationary
equilibrium price level p*, (6.4) will necessarily be satisfied as well,
and these will be possible equilibria of the model with borrowing
constraints.' It should be noted, however, that in order for examples of
large fluctuations to be constructed in this manner (or for that matter, in
order for examples of chaotic dynamics to be constructed without resort to
extreme curvature assumptions, since chaos cannot occur unless the price
level fluctuates over a large enough range to allow the demand for real
balances to be sometimes an increasing and sometimes a decreasing function
of the expected return on money balances), the bound P must be much lower

than p*. Since G(R)/G(p*) = B, where G(p) 1is the increasing function
u’ (w, + ﬂ)

G(p) =
u’ (w

2

M
17 p
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this will in general require B to be much less than 1.

If consumers smooth their consumption path by accumulating capital
(rather than fiat money) in their high-endowment periods, and one interprets
the endowments as being of labor rather than of the consumption good, a
similar model of infinite lived consumers subject to borrowing constraints
can mimic the dynamics of capital accumulation in the Diamond [1965] over-
lapping generations model. In this model, endogenous equilibrium cycles are
possible in the case that aggregate savings are a backward-bending function
of the expected real return. In this way Bewley [1986] shows that
endogenous cycles are possible. This example again depends upon a high rate
of time discount (B8 = .5).

Woodford [1988a] shows that cash-in-advance constraints can result in
dynamics similar to those of an overlapping generations model with short
lifetimes even when all agents are infinite lived. Consider, for example,
the cash-in-advance model studied by Wilson [1979], in the case of prefer-
ences that are additively separable between consumption and leisure. All
consumers are infinite lived and seek to maximize

©
2 pTlue)-v(n)] (6.5)
t=0

n

where e is consumption in period t and n is labor supply, u',vz,v

t
>0, u" <0, and 0< B <1, subject to the sequence of budget

constraints
P.Cc, = Mt (6.6a)
Mt+1 - Mt + pt(nt-ct) (6.6b)

where Mt is money balances carried into period t. (One can also intro-

duce a competitive loan market, as Wilson does, but as long as bonds are in
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zero net supply this has no effect upon equilibrium dynamics for the price
level and output). The technology allows one unit of labor to be converted
into one unit of the same period’s consumption, and hence the price of
consumption goods p, must also be the nominal wage. In equilibrium, the
representative consumer’s desired money holdings th must in every period
equal the constant money supply Mt' and his labor supply n must equal
his consumption demand C,- In equilibria in which the cash-in-advance
constant (6.6a) always binds, consumption demand e always equals the

level of real balances M/Pt' In this latter case, the price level sequence

{pt) must satisfy

vi(M/p) = Bu /P, ) (6.7)

Pes1

uw (M/p.) = v’ (M/p) (6.8)

in all periods. Condition (6.7) indicates how the equilibrium price level
P, is determined by expectations regarding Peyq- This condition has the
same form as that arising in the case of an overlapping generations model in
which consumers supply output n. in the first period of life and consumer

c in the second so as to maximize

t+l
Ulng,epyy) = Buleg,y) - ving)
There exist price level sequences satisfying (6.7) as long as Vv’'(0) <

u"(0). Any price sequence also satisfies (6.8) as long as

M M
P, 2 p = arg m;x [u(p)-v(p)] (6.9)

Condition (6.9) is necessarily satisfied by the stationary solution to

(6.7), i.e., the constant price level p* satisfying

M M
v(;;)-ﬁu(;;
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since g < 1.

Endogenous cycles and chaos characterize some solutions of (6.7) in the
case of certain kinds of preferences (in particular, if u exhibits suffic-
ient curvature near the level of consumption c¢ = M/p*). Again, such
solutions must satisfy (6.9) if the fluctuations round the stationary
equilibrium price level p* are small enough. Again, such a construction
works in the case of large fluctuations only if g 1is much less than 1, fof

again G(R)/G(p*) = B, where in this case G(p) 1is the increasing function

- P
G(p) M

Similar results are possible even in the case of exogenous labor supply
if, as in Lucas and Stokey [1987], one allows consumers to substitute
between "cash goods" (purchases of which are subject to the cash-in-advance
constraint) and "credit goods" (purchases of which are not). Suppose that

the representative consumer seeks to maximize

©0

t
Z B [uley )+v(c, )]
0 1t 2t

where ¢

1t represents consumption of "credit goods" in period t, ¢

2t
represents consumption of "cash goods"™, u and v are both increasing con-
cave functions, and 0 < 8 < 1, and suppose that the fixed labor endowment
(that can be used to produce either "cash goods" or "credit goods" at equal
cost) is n > 0 per period. Then equilibria in which the cash-in-advance
constant always binds involve price level dynamics identical to that in an

overlapping generations model with two period lived consumers who seek to

maximize

UlegprCgpyp) = ulegy) + Avley yy)
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and who have an endowment of n in the first period of life and zero in the
second period. Again endogenous fluctuations analogous to those in the
Grandmont example are possible (for low enough B) 1if v exhibits enough
curvature near the stationary equilibrium level of consumption of "cash
goods".

Woodford [1986] also shows that equilibrium dynamics similar to those
occurring in an overlapping generations model with production can result in
a model with infinite lived workers and entrepreneurs, from the existence of
a cash-in-advance constraint upon workers’ consumption purchases, together
with a constraint of the sort discussed in Section 4, according to which
entrepreneurs must finance investment entirely out of the returns to capi-
tal. In this case the equilibrium dynamics are very close to those
characteristic of the Reichlin [1986] model, and as a result endogenous
cycles are possible under circumstances similar to those discussed by
Reichlin., In particular, in this case (unlike the Bewley example of a
production economy) endogenous cycles can occur even when savings are an
increasing function of the expected return.

These examples show that it is not entirely fair to criticize the
examples of endogenous fluctuations in economies with overlapping genera-
tions of two-period lived consumers as involving mechanisms that could
generate cycles only at very low frequencies (i.e., cycles as long or longer
than the lifetimes of consumers), and hence mechanisms that must be irrele-
vant for the explanation of actual business cycles. The same sort of
intertemporal substitution can also generate endogenous fluctuations in
models where consumers are represented as infinite lived, and in which the
period of the fluctuations bears no relation to any time scale relating to

human biology. Indeed, the "periods" in the models with financial
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constraints just described must surely be interpreted as relatively short,
so that if anything these models should be criticized for only generating
cycles of frequency too high to correspond to actual "business cycles". For
example, in all of the models that yield dynamics analogous to those of the
Grandmont model, perfect foresight equilibrium fluctuations must have the
property that the level of real balances must never increase for more than
one consecutive period; the observed pattern must consist of single periods
in which real balances increase, each separated from the others by some
number of periods in which real balances decrease. (This is a property of
the sort of unimodal map shown in Figure 1b. Similarly, real balances
cannot be higher than their stationary equilibrium level for more than one
consecutive period. Hence, although (as shown by Grandmont) it is possible
for equilibrium cycles to have arbitrarily long periodicity, either cycles
or chaotic fluctuations will usually exhibit a strong degree of negative
serial correlation, so that the period of a typical cycle (measured, say,
from peak to peak) would be not much longer than two "periods" on average.
In the case of the cash-in-advance interpretation of this model, a "period"
should represent only the length of time for which the money received from
the sale of labor must be held before it can be spent upon "cash goods",
presumably a very short period, so that cycles of this kind would be very
short. 1In the case of the borrowing constraint interpretation, the
"periods" could be longer but not in any event longer than the reciprocal of
the velocity of money (so only a few months), so that the cycles are still
too short to be business cycles. Reichlin’s overlapping generations model
yields cycles that are approximately six "periods" in length (again, from
peak to peak, since the fluctuations need not repeat exactly in any finite

time), or three times the lifetime of consumers, in the life cycle
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interpretation of his model. This is a time scale much longer than that on
which "business cycles" occur, it is even much too long to be a theory of
"RKondraftieff waves". But in the Woodford reinterpretation of this model,
six "periods" is still too short for a "business cycle", under the most
reasonable interpretation.of the length of a "period" in a cash-in-advance
model (a week or at most a month). (From this point of view, the restric-
tion of attention to purely deterministic endogenous fluctuations in these
models makes them look particularly'unrealistic. For example, Woodford
[1988a] shows that if one considers stationary "sunspot" equilibria rather
than only the limiting case of purely deterministic cycles, it is possible
to obtain cycles that last for several quarters even if "periods" are
identified as a week or less.)

Perfect foreéight equilibrium is also indeterminate in many other kinds
of models with infinite lived agents in the case of various market imperfec-
tions that need not involve financial constraints. In many such cases
endogenous cycles or chaotic dynamics are among the possible types of
equilibrium dynamics. For example, Shleifer [1986] demonstrates the exist-
ence of a large number of types of equilibrium cycles in the case of an
economy in which the firm that implements a cost-saving technological
innovation obtains a one-period monopoly of its market (before imitation
restores perfect competition, as in the Deneckere-Judd model discussed in
Section 4), and in which firms can choose to deter implementation of such
discoveries so as to obtain the one period of monopoly rents in a higher-
demand period. Chaotic dynamics are also consistent with perfect foresight
equilibrium, since Shleifer shows that the equilibrium conditions place only
very weak restrictions upon the possible pattern of time lags between

periods of implementation of new technologies. Murphy et al. [1988]
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similarly demonstrate the indeterminacy of equilibrium and the possibility
of equilibrium cycles of many different periods in the case of a model of
durable goods production with increasing returns. In this model equilibrium
must be cyclic (no steady state equilibrium exists), although many different
cycles are possible. Diamond and Fudenberg [1984] demonstrate the possible
existence of endogenous equilibrium cycles in an economy with search
externalities of the kind proposed by Diamond [1982). Drazen [1988] also
makes a similar point. Indeterminacy and endogenous cycles are shown to be
possible for similar reasons in other models with externalities by Howitt
and McAfee [1988] and Hammour [1988a].

As in the previous section, an objection to all of these models (except
that of Murphy et al.), is that the conditions for perfect foresight
equilibrium in themselves provide no reason why a fluctuating equilibrium
should occur, rather than a stationary equilibrium or an equilibrium
converging asymptotically to a stationary state. Again, however, one may
well be able to show that reasonable sorts of disequilibrium learning
dynamics would under some circumstances diverge from the stationary state
and converge to perpetual fluctuations. In the case of each of the examples
just discussed that result in perfect foresight equilibrium dynamics
analogous to those of the Grandmont [1985] model, the analysis of learning
dynamics by Grandmont and Laroque [1986] is directly applicable. Similar
results are not available for other.examples, and such analyses would be a

useful topic for further research.
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