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Abstract

This paper defines a new concept of attitude towards risk. For an
actuarially fair random variable €, w(t) 1is the risk premium the
decisionmaker is willing to pay to avoid te. In expected utility, and as
it turns out, in the case of smooth Frechet differentiability of the
representation functional, «’'(0) = 0. There are models (e.g., rank
dependent probabilities) in which ax/at|t_0+ % 0. We call the latter
attitude as being of order 1, and we call the first one attitude of order 2.

These concepts are then applied to analyze the problem of full insurance.



1. Introduction

Since Pratt (1964) it has been known that in expected utility theory
the risk premium a risk averse decisionmaker is willing to pay to avoid an
actuarially fair random variable te 1is proportional, for small t, to t2
and to the variance of ¢. Formally, let E[¢] = 0. The risk premium =«
is that amount of money that makes the decisionmaker indifferent between

o~
=

paying = and the lottery x + te. For a sufficiently small t, =«
-(t2/2) o% u"(x)/u’(x). The risk premium = is proportional to t2,
rather then t, and therefore approaches zero faster than t. For small
risks, the decisionmaker is thus almost risk neutral, and his major concern
will be the expected value of the risk. This is the case because for small
risks the differentiable utility function is almost linear. This property
of expected utility theory implies Samuelson’s (1963) revision of Ulam'’s
definition of a coward -- a person who will not make a sufficiently small
bet when you offer him two-to-one odds and let him choose his side. For a
formal exposition of this discussion see Proposition 1 below.

The supposition that people are not cowards (a la Ulam-Samuelson'’s
definition) has some clear implications to financial markets. It implies
that a risk averse decisionmaker will not buy full insurance, unless there
is no marginal loading. If all but the last unit are already insured, the
decisionmaker will consider this last unit almost only by its expected value
and will insure it only if the insurance premium at the margin does not
exceed its expected loss. This prediction is considered by Borch (1974) as
being "against all observation".

In Proposition 1 we show that these properties of expected utility

theory hold whenever the risk premium =n of a small actuarially fair random

X ~ . 2 .
variable te 1is proportional to t°. On the other hand, we show that if =



is proportional to t, these results are no longer valid and people may buy
full insurance even though they have to pay some marginal loading. The
existence of such functionals is proved in Section 4. We call such an
attitude risk aversion of order 1, while the expected utility attitude is
naturally regarded as being of order 2. We show in Section 4 that under
several smoothness assumptions, Machina's (1982) Frechet differentiable
functionals also exhibit attitudes of order 2. We thus attach economic
meaning to the seemingly innocuous technical assumption of Freéchet
differentiability. Section 5 concludes the paper with an analysis of
attitude towards risk when the decisionmaker receives a transformation of

the random variable, rather than the random variable itself.

2. Orders of Risk Aversion

Let M be a bounded interval in R and let D be the set of random
variables (or lotteries) with outcomes in M. For a lottery xeD, let
F;(x) = Pr(x<x) be the cumulative distribution function of X. Lotteries
with a finite number of outcomes are sometimes written as vectors of the

. . e >
form (xl,pl,...,xn,pn), where Zpi 1 and pl,...,pn = 0. Such a

lottery yields =x, dollars with probability P;> i=1,...,n. SX stands

i
for the degenerate lottery (x,1).

On D there exists a complete and transitive preference relation =x.
We assume that = 1is continuous with respect to the topology of weak

convergence, and monotonic with respect to first order stochastic dominance

(i.e., Vx F;(x) < F;(x) > Xz §). V: D » R represents the relation » if

LR

V(x) = V(;) <=> z ;. The certainty equivalent of X, CE(§), is defined
implicitly by SCE(E) ~ X. 1Its existence is guaranteed by the continuity

and monotonicity assumptions, and it can be used as a representation of =.



Special attention is given below to the difference between the certainty

equivalent of a lottery and its expected value.

Definition 1: The risk premium of a lottery X 1is given by n(x) = E[x] -

CE(X).

The risk premium = may be positive, which is the case when the
decisionmaker is risk averse, or negative, the case of risk loving. In both
cases, ﬁ(&x) = 0. If E[X] = 0, then the risk premium is that amount of
money the decisionmaker is willing to pay (or to receive, if #<0) to
avoid participating in the lottery X.

Let ¢ be a random variable such that E[¢] = 0O, and consider the
lottery x + te. Its risk premium x is a function of t, and it is
defined by 6x-n(t) ~ X + te. Of course, =n(0) = 0. We assume throughout
this paper that =« is continuously twice differentiable with respect to t,
except maybe at t = O where it may happen that only right and left
derivatives exist. Unless otherwise stated, we assume, in addition, that
all these derivatives are continuous in x.

If the decisionmaker is risk averse, then for every nondegenerate €
such that E[¢] = 0, and for every t = 0, 8x > x + te. It thus follows

that dn/dt 2 0 ‘and an/atlt_o- < 0. 1If the decisionmaker is risk

+
t=0
loving, the inequalities are reversed. It may of course happen that these
two side derivatives have the same strict sign.1 However, if ¢ is symmet-

ric around zero, then 8w/at|t_0- = -9n/8t =0t It turns out that the

signs of these side derivatives, and in particular, their being nonzero,

1Suppose, for example, that for every t > 0, (x+9t,0.1;%-t,0.9) >

(x,1) » (x-9t,0.1;x+t,0.9). These preferences result in buying both

insurance and lottery tickets.



have some interesting economic application. For reasons of clarity, we will

concentrate below on the right-hand derivatives only.

Definition 2: The decisionmaker’s attitude towards risk at =x 1is of order

-~

1 if for every ¢ such that E[¢] = 0, an/atlt_0+ » 0. It is of order 2

2

if for every such ¢, dn/dt The sign of

2 .2
¢mg = 0, but 8°m/3t It-0+ ~ 0.

his attitude is opposite to the sign of the first nonzero derivative at O+.
[Insert Figure 1 Here]

This definition actually says that the decisionmaker attitude towards
risk is of order one if limt*0+ n(t)/t = 0, that is, if =x(t) 1is not
o(t). The attitude is of order 2 if limt+0 n(t)/t = 0, but 1imt*0+
1r(t)/t2 » 0, that is, =x(t) = o(t) but is not o(tz).

In the next section we derive some conclusions concerning
decisionmakers’ behavior based on the notions of Definition 2. 1In Section 4
we calculate the orders of attitude towards risk for several theories of
decisionmaking under uncertainty. It turns out that examples for both

orders of attitude can readily be found, therefore,the discussion in the

next section is not wvain.

3. Optimal Insurance

Since Mossin (1968), it has been known that an expected utility
consumer will prefer to buy less than full insurance if his cost of
insurance include positive marginal loadihg, i.e., if purchasing one more

unit of insurance increases his premium by more than the fair actuarial cost

2As E[-€] = 0 it follows that an attitude of order 1 implies

an/atlt_o- % 0, and an attitude of order 2 implies azw/atzlt_o- » 0.
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of this insurance. As claimed by Borch (1974, pp. 27-28), this result is at
variance with common observation. In this section we show that this result

holds whenever the decisionmaker’s attitude towards risk is of order 2, but
not when it is of order 1.3

We start with a discussion of the lottery x + te when E[¢] > 0.

Proposition 1: Let E[e] > 0. If the decisionmaker’s attitude towards risk
is of order 2, then for a sufficiently small t > 0, x + te > 5x' If his

attitude towards risk is of order 1 and is negative (i.e., 4dn/3t + > 0),

t=0
and if E[e¢] 4is small enough, then for a sufficiently small t > 0, 6x > X

+ te.

As mentioned in the Introduction, Samuelson claimed that a
decisionmaker is to be considered irrational if he rejects small gambles
that are in his favor. According to Proposition 1, this suggests consider-
ing attitude towards risk of order 1 irrational. In the next section we
show that this implies that expected utility maximizers with nondifferenti-
able utility functions are to be considered irrational. (The importance of
the differentiability was recognized by Samuelson (1963).) 1In this section
we present another argument in favor of not abolishing attitudes of order 1.

Consider a consumer having an initial wealth W and facing a risk of

losing X wunits with a probability p. The insurance premium in the market

3This analysis follows Arrow (1974) and Raviv (1979) in assuming away
moral hazards, so the probability and the outcome of the risk are

independent of the consumers’ actions.



is ¢ for each insured unit,4 and the decisionmaker chooses the optimal
number of units he wants to insure. It follows immediately from Proposition
1 that if the decisionmaker attitudes towards risk is of order 2, he will
not buy full insurance (i.e., he will insures less than X units), unless

¢ < p. Suppose that he already insured all but t wunits of the possible
loss. If he insures these last t units, his certain wealth level will be
W - cX. 1If he does not insure these last units, his wealth will be W -
c(X-t), and he will face the lottery (-t,p,0,1-p). Let € = (c-1,p;c,1-
p). Not insuring the last t units can be written as W - cX + te. E[¢] =
c-p, hence, by Proposition 1, if the decisionmaker'’'s attitude towards risk
is of order 2, and if ¢ > p, then he will leave some t units uﬁinsured.
On the other hand, if his attitude towards risk is of order 1 and negative,
and c, although greater than p, is not too large, then the decisionmaker
will buy full insurance.

This discussion is illustrated in the two panels of Figure 2. 1In this
Yaari (1969)-type diagrams, a point (x,y) represents outcome X if the
damage occurs, and y if not. That is, it stands for the lottery
(x,p;¥,1-p). No insurance is represented by A = (W-X,W), while full
insurance is represented by B = (W-cX,W-cX). The chord AB is the

decisionmaker’s budget line, and its slope is -c/(1l-c).
[Insert Figure 2 Here]

We now derive the slope of the indifference curve at B. Let € =

(-1,p;p/(1-p),1-p) (note that E[Z] = 0). The degenerate lottery sx-n(t)

is represented by the point (x-n(t),x-n(t)), and the lottery x + te is

For convenience, assume that c¢ does not depend on the number of

units already insured.
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represented by the point (x-t,x + tp/(1-p)). The slope from the left of

the indifference curve at (x,x) 1is given by

e an

P 4 a(t) T-p = 3t| _g*
11m+ t-7 () . on
-0 3t| ot

1f the decisionmaker’s attitude towards risk is of order 2, then this
expression equals -p/(l-p). If his attitude is of order 1 and negative,

i.e., d=/0t . + > 0, then the slope of the indifference curve at (x,Xx)

0
is steeper than -p/(l-p). Therefore, if ¢ > p and the attitude is of
order 2 the optimal point is strictly between A and B, but if the
attitude is of order 1 and negative, B may be the optimal point. In other
words, there exists a range of values of c¢ for which the marginal loading
is positive, but the optimal insurance is complete and there is no
deductible.

It is worthwhile to note that first order risk aversion implies a kink

in the indifference curve along the certainty line. To see that, note first

that the right-hand side slope of the indifference curve is

LS

1-p at £=0"
) an
1+ 5

at =0

This expression is smaller in its absolute value than the absolute value of
the left-hand side slope. The set of possible supporting slopes at the
certainty line includes the slope -p/(l-p). This is always true by risk
aversion, as moving from point B on a line with a slope of -p/(l-p) 1is a
mean preserving spread, and hence is worse than B. It follows that if the

indifference curve is differentiable at B, the only supporting slope is
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-p/(1-p). In other words, first order attitude towards risk is equivalent
to nondifferentiability of the indifference curve on the 45° line.

One of Arrow’s (1974) famous results is that when a risk averse
decisionmaker can invest in a riskless, profitless; asset (say money) and in
a risky asset, then he will invest in the latter one iff it has a positive
mean. Our analysis shows that this is true whenever the decisionmaker
attitude towards risk is of order 2, but fails when it is of order 1 (and
negative). In that case we get the much more plausiﬁle result, that if the
expected yield is positive but sufficiently small, a risk averse
decisionmaker will not invest in the risky asset. The proof of this claim

is essentially the same as that of the case of partial insurance.

4. Some Functional Forms

The discussion so far analyzed properties of preference relations that
exhibit different orders of attitudes towards risk. The discussion is void
if such preference relations do not exist. It is our aim in this section to
compute the order of attitude of several well-known representation func-
tionals, all of which fall into one of the two categories of Definition 2.

We start the discussion with the case of expected utility, i.e, V(i) -
fu(x)dF;. Pratt (1964) pro§ed that in that case, if 6x-x ~ X + te, where

E[¢] = 0, then
n(t) = - £ 42

Hence aw/atlt_o = 0, and azn/at2 = -a% u"(x)/u’(x) » 0 (unless, of
course, u"(x) = 0). As emphasized by Samuelson (1963), this analysis
strongly depends on u being (twice) differentiable. Suppose that u is

not differentiable at x, but has right and left (different) derivatives at
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that point. The risk premium =« 1is defined by

u(x-n(t)) = fu(x+te)dF~ = [ u(x+te)dF~ + [ u(x+te)dF~
€ € €
€<0 >0

. +
Differentiate both sides with respect to t and obtain that at t =0,

-u’ (x) %% =u'(x) [ edP- +ul(x) [ edF;

e<0 >0

£=0"
E[€] = 0, hence

on

uy (%)
T . [1 . u:(x)] I «dFg
t=0 >0

and the decisionmaker’s attitude towards risk is of order 1. 1If the
decisionmaker is risk averse u;(x) < u’(x) and his attitude is negative,
and if he is risk loving, his attitude is positive.

If u is differentiable, the risk premium = 1is proportional to the
variance of ¢, a%. It would be wrong to conclude that when u is nondif-
ferentiable, =n 1is proportional to the standard deviation 0. Consider
the random variables ?a = (-a/(ax-1), (a-1)/a;a,l/a), o > 1. For every a,
esz = 1, but or = a/Ja-1, which changes with a.

o
The above discussion is summarized by the following Proposition.

fe>0

Proposition 2: Let the decisionmaker be an expected utility maximizer. At
the points where his utility function is differentiable and u" = 0 his
attitude towards risk is of order 2, and at the points where the utility
function is not differentiable but has (different) side derivatives, his

attitude is of order 1.

We next discuss some nonexpected utility theories. Machina (1982)

showed that if V: D + R is Fréchet differentiable, then for every
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distribution function F there is a local utility function U(+;F) such

that
(1) V(G) - V(F) = JU(x;F)dG - [U(x;F)dF + ofG-F|.

If the decisionmaker is risk averse, then U(-+;F) 1is concave (Machina,
Theorem 2), hence Ull(-;F) exists almost everywhere. We will assume here
that Ull(-;F) exists everywhere and moreover, Ul(-;F) and Ull(-;F) are
continuous in F. That is, HFn-FH - 0> Ul(-;Fn) -+ Ul(-;F), and

Ull(-;Fn) -+ Ull(-;F) pointwise.5 Assume further that for every x,

Ull(x;sx) = 0,

Proposition 3: If the decisionmaker’'s preference relation can be
represented by a Frechet Differentiable functional, with the .above-mentioned
smoothness assumptions, then at every =x his attitude towards risk is of

6 2 2 . 2 .
order 2, where 4§ n/dt =0 "~ 'Ull(x’sx)aZ/Ul(x’sx)’

A weaker version of this proposition, with respect to smooth
preferences over finite lotteries was given by Samuelson (1961) (see also

Machina (1982) footnote 44). The above proposition gives a behavioral

5Let r be represented by Machina’s (1982) quadratic form V(F) =
JRAF + % [deF]z. The local utility U(x;F) = R(x) + S(x)[SdF satisfies
these assumptions for twice differentiable R and S. If & can be
represented by Chew's (1983) weighted utility functional V(F) = [udF/[wdF,
then the local utility U(x;F) = {u(x)fwdF - w(x)fudF}/[fwdF]2 satisfies
our assumptions for twice differentiable u and w.

6-U11(x;F)/U1(x;F) is Machina's (1982) "Arrow-Pratt" term. See the
proof of this proposition for a comment on the necessary assumptions for the

analysis of this expression.
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interpretation to Machina's smooth preferences axiom. It follows from
Proposition 1 that for sufficiently small risk, decisionmakers with Frechet
differentiable representation functionals will behave as though they are
risk neutral. The discussion of full insurance with marginal loading in the
previous section indicates that this approach implies some doubtful result.
First order attitude towards risk is obtained with expected utility at
points of nondifferentiability, but the set of these points may be empty,
and is always of measure zero. It turns out, however, that there is an
alternative to expected utility, called anticipated utility (or expected
utility with rank dependent probabilities), such that the decisionmaker
attitude towards risk is always of order 1. According to this theéry, first
presented by Quiggin (1982), there is a strictly increasing, onto, continu-

ous function £: [0,1]) - [0,1], such that |
V(x) = Ju(x)df(Fy)

Note that when f is the identity function, V reduces to the expected
utility representation. Otherwise, this functional is not Fréchet
differentiable (see Chew, Karni, and Safra (1987)); We will assume that u
and f are differentiable, and moreover, that their derivative are always
strictly positive.

Due to Chew, Karni, and Safra (1987), Yaari (1987) and Segal (1987) we
now know that in this model risk aversion (in the sense of aversion to a’
mean preserving increase in risk) implies that u and f are both concave.

Risk loving implies that they are both convex.

Proposition 4: If the decisionmaker’'s preference relation can be
represented by the anticipated utility functional with either concave or

convex f, then his attitude towards risk is of order 1. If f 1is concave
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his attitude is negative (ax/atlt_0+ > 0), and if f is convex his atti-

tude is positive (81/8t|t_o+ < 0). Furthermore, aw/8t|t_0+ - -fedf(Fz).

This proposition asserts that if the risk is sufficiently small, then
within the anticipated utility model the attitude towards risk (order and
direction) is determined by the distribution transformation function £. Of
course, if f 1is neither concave nor convex, it may happen that fedf(F?)
= 0 even when f is not linear, and Proposition 4 will not hold.

It follows immediately from Definition 2 that if the decisionmaker is
risk averse and his attitude towards risk is of order 1, then = as a
function of t is nondifferentiable at t = O (see Figure 1). Similarly,
his indifference curves are nondifferentiable around the certainty line
(Figure 2). to obtain such nondifferentiability, Bewley (1986) removed the
completeness assumption. Proposition 4 shows that this nondifferentiability
can be obtained in a model where the preference relation is complete,
transitive, and continuous.

In the case of anticipated utility =« is not differentiable at t = 0,
and moreover, it is not symmetric. For example, let u(x) = J§, fp) = p3,

€= (-1,2/3;2,1/3), and x =9. For t >0 we obtain

2 0ire L
Sg.mcey = (9°Ei3i9426,3)
(9-x(t)) " = 809-0" + 12 9420y 5
27 77
x|  _ .10
at|, o+ 9

However, when t < 0 it follows that

(9-m(t)) " = %7 (9+2t) % + %g (9-t)% >
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an

at t=0"

ol

Proposition 1 implies that if the decisionmaker is a risk averse
anticipated utility maximizer, then for small positive marginal loading he
will still prefer to buy a full insurance. This remains true even if his
(differentiable) utility function u 1is convex. Of course, the marginal
loading he is willing to tolerate depends on u (and £), but his attitude

towards risk depends only on f£.

5. Transformations of Random Variables

There are situations in which the decisionmaker does not receive the
random variable itself, but a transformation ¢ of it. For example, the
random variable may be his income I while ¢(I) is his net income. The
random variable may be the price p of a certain good, and ¢(p) 1is the
quantity demanded of that good. We will assume that ¢ is twice differ-

entiable with ¢’ > 0. The risk premium «, is paid out of the random

¢

variable itself, and the basic relationship between w¢ and t 1is given by

5¢(x_w¢(t)) ~ ¢(x + te). As before, 74 (0) = 0.

Assume that for t >0, =« is differentiable, and obtain that

¢
¢(x-w¢(t)) =- $(x) - t¢'(x)3w¢/6t|0+ + o(t), while ¢(x+te) = $(x) + t¢'(X)e

+ o(t). It thus follows that

6¢(x)-t¢'(x)8w¢/6t|0+ Fo(ry ~ #00) +o(0) + et (0.
In other words, both the random variable ¢ and the risk premium = are
multiplied by ¢'(x). Therefore, if the decisionmaker’s attitude towards
risk at ¢(x) 1is of order 1, then aw¢/8t|o+ » 0. Moreover, its sign is
opposite to that of his attitude at ¢(x). In other words, the sign of the

derivative with respect to t of the risk premium ﬁ¢ out of x is
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determined by the decisionmaker’s attitude at ¢(x). In particular, if the
first order attitude does not depend on x (e.g., expected utility with
differentiable u, anticipated utility with concave or convex f, etc.),
then this attitude will not change when the decisionmaker receives ¢(x)
rather than x. This is true regardless of the shape of ¢, provided it is
differentiable. If ¢ is not differentiable his attitude may change. For
example, when the decisionmaker is an expected utility maximizer with a
differentiable utility function, and there is an x for which ¢;(x) »
¢’ (x).

Consider now the case of Frechet differentiability. Following the same
technique used in the proof of Proposition 3, and with the same smoothness

assumptions, it follows that an¢/8t|t_o =0 and

a 7r¢ _ ag [U11(¢(X);6¢(x))¢'(X) N ¢"(X)] 2 0 <=>
2 ¢ TG,y T <
t=0
é" (%) < ) U11(¢ (x) ;6¢(x))
16012 > D100 8y)

This last inequality implies that although a transformation ¢ cannot
change the decisionmaker’s order of attitude towards risk (provided V and
¢ are smooth), it can nevertheless change the direction of his attitude
towards risk, and transform him from risk aversion to risk loving and vice
versa. For this, ¢"/¢'2 has to be sufficiently large. Similar results
hold for expected utility. It is well known that a risk-averse decision-
maker may act as though he loves risk in prices, provided he is not too risk
averse (see Turnovsky, Shalit, and Schmitz (1980) and Segal and Spivak
(1988)). This result is described in the upper panel of Figure 3 (we assume

that the underlying preference relation exhibits risk aversion).
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[Insert Figure 3 Here.]

1f the decisionmaker's attitude towards risk is always of order 1, then
a differentiable transformation ¢ will not change the sign of his first
order attitude. This implies that at least for sufficiently small ¢t
(which may depend on ¢ and €), 6¢(x) > ¢(x+te). In the case of

anticipated utility we obtain, using the proof of Proposition 4, that

an

_9¢ - 5
5l ot Jedf(F-)

i& u" ($(x))' (%) , $"(x) 2

362 "[u%Mw> +¢%m]““€”ﬂ%>
t t-0+

1f the decisionmaker is risk averse, f and u are concave. In that case

f(e-ez)df(Fz) <0, and

2
°x > 0 o " (x) < _ u'(é(x))
;i <0<>w%wf> w ($(x))
n +

t=0

Note the similarity between these conditions and the conditions for the case
of Fréchet differentiability. These results are depicted in the lower panel

of Figure 3.
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ﬂ¢(t)
¢"/¢' < - Ull/Ul
\
N
N
/ ’ ¢~'"/¢' = -Ull/U].
/
/ .¢"/¢' > 'Ull/Ul

Fréchet Differentiability

ﬂ¢(t)

I $"/¢" < - um/u’

/ 4"/¢' = -u"/u’

¢n/¢: > -u"/u'

Anticipated Utility

FIGURE 3
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APPENDIX

Proof of Proposition 1: Let €' =€ - E[¢]. Define ﬂt(s) implieitly by

~ X + tE[¢] + se¢', and define a*(t) by § ~ X + te.

5x+tE[€]-nt(s> X% ()

Obviously, dn*/3t = E{e] - ant/as|s_t. By the continuity of 8xt/8s in s
and t it follows that llmt*0+ a«t/asls_t - ano/at|t_o+ hence

an*/atlt_o+ = E[€] - ano/at|t_o+. If the decisionmaker's attitude towards
risk is of order 2, then 6wo/8t|t_o+ =0, and ax*/atlt_o+ = E[e] > 0. If

his attitude is of order 1 and negative, then 3w0/6t|t_0+ > 0. For E[e] <

6ﬁ0/6t|t_0+, 6ﬂ*/6t|t=o+ < 0. Q.E.D.

Proof of Proposition 3: We first find the first and second order derivatives
of V(x+te) with respect to t.

%Y (x+t7) = lim L [V(x+(t+a)?) - V(x+te)] =
t a=0 a

1
iiﬁ - [{U(x+(t+a)e,FX+tZ)dF; - { U(x+te;F  ~)dF~ + |P=-85lloCe)] -

{ Ul(x+te;FX+t?)esz

For t = 0 we obtain

av

3t (x+te)

- U, (x;6_) [ edF~ = 0
£=0 1 X7 €

We now turn to the second order derivative at t = 0.

2
é—% (x+E7)
at

1
- lim = [ U, (x+te;F_ _~)edPF~.
t=0 t0 T e 1 x+t§ €

let G = Fx+t?' Take a Taylor's Expansion of Ul(x+te;G) with respect to

t at t =0 to obtain
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lim 1

' 2
T Ul(x;G) I edF- + cull(x;c) G dF- + o(t)] -
t-0 - € €

. 2 ) 2
Uy (3F 2057 o8 U (3809

This last step required the assumption that Ull(-;F) is continuous in
F. We believe that this is a necessary assumption in Machina’'s (1982) analy-
sis of the expression -Ull(-;F)/Ul(-;F), although it is not mentioned there.

Consider the equation V(§ )) = V(x+t?). Differentiate both sides

x-n(t

with respect to t to obtain

lim 1 [U(x-1r(t+a);6X )) - U(x-w(t);Sx_”(t)) + o(a)] =

a0 -m(t
{ Ul(x+t€;Fx+t?)€sz =
an(t) _ . X - _ N .
T { Uy (x+te;F =) edF; / Up(x w(t),&x_“(t))

Hence 6n/6t|t_0 = 0. Differentiate once more to obtain

2
P Upp (%36 )07

2 =T TUL(x;6)
at =0 1 X

Q.E.D.

Proof of Proposition 4: Let t > 0 and differentiate both sides of
u(x-n(t)) = Ju(x+te)df (F5)
with respect to t to obtain

“uf (xen()) TE = fur (wrte) edE(F) 2

ar

Tt = -[edf(Fy)

t=0"

We assumed fesz - 0, hence if f is concave dn/dt| _ + > 0, and if £

is convex, Bw/atlt_o+ < 0. Q.E.D.
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