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Abstract

We compare the cyclical fluctuations exhibited by a stochastic growth
model under various stochastic processes governing technical change, all of
which are highly persistent. We find that the results obtained are quite
sensitive to the precise form of this stochastic process. In particular,
the results depend on whether growth is deterministic or stochastic and, in
each case, are quite sensitive to the persistence of an innovation. The
model does a relatively poor job of accounting for features of observed
business cycles when technical change is difference-stationary and does a

better job when technical change is trend-stationary but highly persistent.



1. Introduction
Beginning with the seminal work of Long and Plosser (1983) and Kydland

and Prescott (1982), a great deal of research effort has been devoted to
modeling the business cycle as an equilibrium outcome of optimizing agents
responding to highly persistent shocks to technology.1 The various con-
tributions to this "real business cycles" research program have argued,
using a variety of empirical methodologies, that fluctuations in technical
progress can account for a large fraction of observed fluctuations in
aggregate economic time series.

Although it is general practice in this literature to assume a highly
persistent stochastic process for technical change, individual contributions
differ in the precise specification of this process. This paper inves-
tigates, using a version of the stochastic growth model originally studied
in Hansen (1985), how the results obtained from the model are sensitive to
the exact form of this stochastic process. We find that the fluctuations
exhibited by the model differ significantly depending on how technical
progress is modeled, even though innovations to the process are long lived
in all cases considered. In particular, the results depend crucially on
whether growth is deterministic or stochastic (whether technical progress is
trend-stationary or difference-stationary) and, in gach case, are quite.
sensitive to the persistance of an innovation.

The assumption that the underlying shocks are highly persistent is

A source of examples of research along these lines is the special

issue of the Journal of Monetary Economics on real business cycles,
March/May 1988.



necessary for simple versions of the stochastic growth model to display
fluctuations similar to those observed in U.S. data (see King, Plosser and
Rebelo (1988)). In addition, the work of Nelson and Plosser (1982) and
others, where it is argued that many macroeconomic time series are likely to
contain unit roots, provides empirical evidence in favor of persistent
underlying shocks. These two facts have motivated much of the recent
emphasis on relatively permanent technology shocks over transitory monetary
shocks in accounting for the business cycle. Further evidence is provided
by Prescott (1986) who shows that when technical change is identified with
the Solow residuals computed from U.S. time series, technology shocks are
both large and highly persistenc.2

In this paper, we consider many of the stochastic processes governing
technical progress that have been assumed in previous contributions to this
literature. One specification, which is perhaps the most common, is to
abstract entirely from per capita growth and assume that technical change
follows a stationary (but highly persistent) AR(1l) process (e.g. Kydland and
Prescott (1982, 1988), Hansen (1985), Hansen and Sargent (1988) and Prescott
(1986)).3 Others, such as Altug (1984) and Hansen, Sargent and McGrattan
(1988), have added to this specification a deterministic geometric trend.
Still others, motivated by the work of Nelson and Plosser (1982) and others,
have postulated that technical progress follows a random walk with drift

(see, for example, King, Plosser, Stock and Watson (1987)). Christiano

2 Solow residuals are computed by taking first differences of log
output and subtracting first differences of log inputs (capital and hours
worked), weighted by constant factor shares.

Actually, Kydland and Prescott (1982, 1988) assume that the shock to

technology is the sum of a persistent and transitory component. The
persistent component follows an AR(1l) while the transitory component is iid.
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(1987b, 1988) also assumes a stochastic trend but allows for a moving
average component as well. We find that our model does a relatively poor
job of accounting for features of observed business cycles when unit roots
are present in the model. Much better results are obtained when innovations
to technical change are assumed to be temporary but highly persistent.

An additional issue raised in this paper is whether the properties of
the fluctuations displayed by the model depend crucially on whether growth
is explicitly included in the model. That is, is it reasonable to separate
the study of short run business cycles from the study of long run growth as
so many have done in the past? This issue is an important one given that
available evidence, as argued by Lucas (1977) and Prescott (1983), suggests
that all market economies exhibit aggregate fluctuations with roughly the
same properties, in spite of the fact that the growth rates of these
economies differ greatly. We find that our model displays similar fluctua-
tions in both a growing and nongrowing economy for all specifications of
technical progress we consider.

The model studied in this paper is the "indivisible labor economy" of
Hansen (1985) modified to include the various stochastic processes for
technical progress considered. In any given period, individuals either work
some positive number of hours or not at all. This feature introduces
unemployment into the model; in each period some individuals work and others
do not. Another feature of the model, as originally demonstrated by
. Rogerson (1988), is thaﬁ, independent of the willingness of individuals to
substitute leisure over time, the elgsticity of substitution between leisure
in any two periods is infinite for the social planner that rationalizes the

competitive allocation. For this reason, the model is consistent with large



amounts of intertemporal substitution at the aggregate level and relatively
little intertemporal substitution at the individual level.4 As a result,
simulations of this model presented in Hansen (1985) show that hours worked
are over twice as volatile as productivity. This is an encouraging result
given that hours are significantly more volatile than productivity in U.S.
time series. Previous real business cycle models without the indivisible
labor assumption had been unable to account for this fact. An issue to be
considered in this paper is whether this result continues to hold under
alternative specifications of technical progress.

The remainder of the paper is organized into three additional sections.
In the next section, the economy is described including the stochastic
processes governing technical progress that will be considered. The
competitive equilibrium for the model is obtained by solving a social
planner’'s problem. Since this problem can not be solved analytically, we
obtain a solution by approximating the problem with one that has a quadratic
objective and linear constraints, following Kydland and Prescott (1982).
This method, and how it is implemented in the presence of nonstationary
technical progress, is discussed in the third section. In section 4,
results obtained from simulating the model under the various specifications
of technical change are presented. In addition, further insights on the
sensitivity of the results to these specifications are obtained by studying
impulse response functions derived from the model. Some concluding remarks

are given in section 5.

4 Therefore, the theory presented here is consistent with the low
estimates of this elasticity found when studying panel data (see Altonji
(1986) or MaCurdy (1981)).



2. A Real Business Cycle Model with Growth

The economy to be studied is a version of the indivisible labor model
of Hansen (1985) assuming alternative stochastic processes for exogenous
technological change. The economy is populated by a continuum of identical
infinitely lived households and a single competitive firm. Each household

wishes to maximize expected discounted lifetime utility,

-]
(2.1) EOZ ﬂt{logc+Alogl}0<ﬂ<1,
=0 t t

where c, and 1t are consumption and leisure at time t, respectively.5
Households have a time endowment equal to one, so 0 < 1t <1,

Following Rogerson (1988) and Hansen (1985), we assume that labor is
indivisible. That is, in each period households are allowed to supply ho
units of labor or none at all, where ho is a constant between zero and one.6
This implies that lt can only take on the values of 1-h0 or 1, so the
consumption set for this economy is nonconvex. Since we wish to exploit the
connection between the competitive equilibrium for this economy and the

solution of a concave dynamic programming problem, we convexify the economy

by allowing agents to sell employment lotteries, following Rogerson (1988).

3 Here we have restricted attention to a constant relative risk
aversion utility function with a coefficient of relative risk aversion equal
to one. In Hansen (1986) it is shown that our results would be the same if
we had assumed other reasonable values for this coefficient.

6 The motivation for assuming indivisible labor is discussed in Hansen
(1985). The motivation is partly based on the fact that over half of the
variance in total hours worked in the U.S. is unambiguously due to fluctua-
tion in employment as opposed to fluctuation in average hours per worker.
The indivisible labor assumption implies that gll changes in total hours
worked reflect changes in employment. This, however, is inconsistent with
the fact that there is still a significant percentage that is due to
fluctuation in average hours. Models that allow for adjustment along both
margins include Cho and Cooley (1988) and Hansen and Sargent (1988).



Thus, agents choose a probability of working in a given period, L rather
than a number of hours. A random drawing determines whether the agent will
be employed or unemployed. Since all agents are identical, they all choose

the same L It follows that per capita hours worked in period t is given

by
(2.2) h, =x_h

The period utility function of the representative agent as a function
of consumption and hours worked can be derived from (2.1) using the assump-
tion that individual households choose lotteries to maximize expected

utility. That is,7

U(ct,ht) = log . + L A 1og(1-ho) + (l-ﬁt)A log(l)

- log ¢, + h_A (log(l-hy)/hy) , or

(2.3) U(ct’ht) = log c, - Bh where B = -A(log(l-ho)/ho)

t ’
The household receives income, Yer in period t from selling labor and

capital services. This income can be used to purchase output that can

either be consumed (ct) or invested (xt), so that
(2.4) c, +x =< Ye

Investment is undertaken to augment the capital stock (kt) owned by the
household. The capital stock, which depreciates at the rate § each period,

obeys the following law of motion:

7 This derivation uses the fact that, in equilibrium, consumption is
the same whether or not the household is employed. This result follows from
the separability of (2.1) in consumption and leisure and is shown formally
in Hansen (1985).



(2.5) k 1= (1-6) kt + x

t+ t’

The firm produces output using the constant returns to scale technology

given by

t'a, 0<8=<1 |,

]
(2.6) Ve = exp((1l-9)(ut + zt))kth

where kt is the per capita capital stock in period t, ht is hours of labor
employed, and exp((l-a)(pt+zt)) is technical progress. The parameter u = 0
is (approximately) equal to the growth rate of output in a certainty version
of the model. We will experiment with various specifications for the
stochastic process governing z,. Agents are assumed to observe z,_ at the
beginning of period t, so all period t decisions are made knowing the value
of the technology shock.

Before describing the various specifications for the stochastic process
governing z., it is useful to summarize the model by stating the social
planning problem for the economy. Since the conditions for the second
welfare theorem (see Debreu (1954)) are satisfied, the solution to this

problem can be supported as a competitive equilibrium.

-]
t
2.7 Maximize Eo }:t-oﬂ {log e, - B ht}

subject to (2.4)-(2.6), a given stochastic process for z,

and ko, z, given. -

We now describe three stochastic laws of motion for z, that will be
considered in this paper. As explained in the introduction, these all
correspond to specifications that have been assumed in the real business

cycle literature.



Example 1 Stationary AR(1)
This process, which is assumed in Kydland and Prescott (1982, 1988) and

Hansen (1985), is given by

(2.8) z -9z, + € 0<y<1l,

t+l t t+l ’

where € is an independent and identically distributed random variable drawn
from a normal distribution with mean 0 and standard deviation o, This
implies that the unconditional mean of z, is zero and that the unconditional
mean of exp(zt), which appears in (2.6), is approximately equal to one.

In this example technical change evolves as serially correlated
deviations from a geometric steady state growth path.8 The innovations to
the growth process, €., are temporary, but in the examples we consider they

are assumed to be quite persistent (that is, y is assumed to be close to

one).

Example 2 Random Walk

This process is simply a special case of (2.8) with vy set equal to one.
In addition, we assume that the initial shock, zy is equal to zero so that
the unconditional mean of z, is also equal to zero as in example 1. In this
example, technical change follows a random walk with drift. That is, if we

let 8. = Bt + z, then

8 Although this process for z, is the same as the one assumed in
Hansen (1985) and Kydland and Prescott (1982, 1988) (for the persistent
component of technical change), those studies assume an economy that does
not display long run growth (u = 0).



(2.9) Beyp P T Bt ey o

where € is drawn from the same distribution as in example 1. We treat this
as a separate example because a different solution method is employed in
this case.

We study this example since it has been argued in Nelson and Plosser
(1982), as well as elsewhere, that econometric tests fail to reject the
hypothesis that many U.S. aggregate time series contain unit roots.

Assuming that technical change has a unit root will induce a unit root in
the artificial time series for output, consumption, investment and capital.
In addition, Prescott (1986) argues that, to a first approximation, the

Solow residuals computed from U.S. data imply that the empirical counterpart

to our technology shock behaves like a random walk with drift.

Example 3 Random walk with autocorrelation in €

When the technology shock follows a random walk, the Solow residual
studied in Prescott (1986) corresponds to €, Prescott reports the follow-
ing serial autocorrelations of the Solow.residuals: Py = -0.21, Py = -0.06,

Py = 0.04, Py = 0.01 and Pg = -0.05.9 These autocorrelations reveal
significant negative first order serial correlation in ¢

£ To capture this,

we consider the following specification of the z, process (again assuming

that zy = 0):

(2.10) Z1 " % + €erl where .

€ € -l<p<0.

e+l ~ P et

9 Christiano (1988) reports autocorrelations of the Solow residuals
that are similar to these using a different measure of capital.

9



In this example ft is assumed to be independently and identically dis-
tributed from a normal distribution with mean zero and standard deviation

o In this specification, which is similar to the specification assumed in

¢
Christiano (1987b, 1988), an innovation to the z, process is not purely
temporary (as in example 1) nor is it purely permanent (as in example 2).
Instead, a fraction 1/(l-p) of an innovation to the z, process is permanent
while the remainder is temporary.

For all of our examples, we are able to solve problem (2.7) analytical-
ly only if we set §, the depreciation rate of the capital stock, equal to 1.
In this case, it turns out that the equilibrium law of motion for the
capital stock depends only on the current value of z and does not depend at
all on the serial correlation properties of z (see King, Plosser, and Rebelo
(1988)). We choose not to focus on this case, not only because it is
unrealistic, but also because it implies that employment remains constant
over time (is independent of fluctuations in z). In order to solve problem

(2.7) assuming a realistic value for the depreciation rate, we employ the

quadratic approximation methods described in the next section.

3. olut o
The solution method employed involves rewriting these problems in a

form that will make it possible to use the quadratic approximation technique

0

described in Kydland and Prescott (1982).l This entails substituting all

10 There are reasons for believing that a quadratic approximation is
quite accurate for this model. For example, Danthine, Donaldson and Mehra
(1988) compute an exact solution to the "divisible labor economy" in Hansen
(1985) by using value function iteration on a discrete state space. They
find that this solution is very close to the solution obtained using a quad-

10



nonlinear constraints into the return function (2.3) and taking a quadratic
approximation of this around the steady state of the certainty version of
the model formed by setting z, equal to its unconditional mean. The problem
then becomes one of maximizing a quadratic objective subject to linear con-
straints, one that can be solved using standard methods.

For the model studied in this paper, it is not possible to immediately
form a quadratic approximation. Since the economy grows at the rate u, the
certainty version of the model does not possess a constant steady state. A
change in variables is introduced to solve this problem. A different change
in variables is introduced in the different examples depending on whether
the example displays geometric growth (is trend-stationary) or stochastic
growth (is difference-stationary).

After substituting the nonlinear technology constraint ((2.4) and

(2.6)) into the objective function of problem (2.7), the objective becomes

3.1)  E, Ztioﬁt{log[exp((l-ﬂ)(pt+zt)}kzht-9- xt] - B ht}

The problem is to maximize this objective subject to (2.5) and either (2.8)
or (2.10). 1In the steady state, kt and X, grow at the rate p while ht is a
constant. We now describe the change of variables introduced in the various

examples.

Method 1 For Economies with Deterministic Growth

Consider the following change of variables:

ratic approximation. Christiano (1986) has performed a similar exercise
assuming 100% depreciation of the capital stock, so that the model can be
solved analytically, and arrived to a similar conclusion.

11



(3.2) ﬁt - kt/exp(pt) ;t - xt/exp(pt)

A stationary version of problem (2.7) is obtained by substituting (3.2)
into (3.1), thereby eliminating kt and’xt. That is, the variables kt and
X, which are growing over time in the solution to the certainty version of
(2.7), are replaced by variables that are stationary. For example 1, the
solution to the uncertainty version of this problem is obtained by solving

the following functional equation (where primes denote next period

values):11

A Ao 1-0 A A
(3.3) v(z,k) = Max {log(exp{(l-o)z}k h - xX) -B ht + B E v(z',k')}
(3.4) subject to z' =yz+e€' , € ~ N(O,ai)
(3.5) and k' = [(1-8)/exp(p)] k + [1/exp(p)] x
Method 2 For Economies with Stochastic Growth

When the technology shock follows a random walk it is possible to
continue using the transformation described above, setting y equal to one.
However, the solution obtained from a quadratic approximation of problem
(3.3) under the random walk assumption might be relatively inaccurate given
that the quadratic approximation is only accurate when the variables take on
values close to the steady state. When z, follows a random walle the
variables may wander far from their steady state values.

An alternative solution procedure that avoids this problem is to use

11 When implementing this change in variables, a constant term will
appear in the objective function (3.1). This constant is ignored since it
does not affect the solution to the optimization problem.

12



the following transformation instead of (3.2):12

(3.6) kt- kt/exp(pt+zt_1) X - xt/exp(pt+zt)

When this change of variables is implemented, the problem no longer
contains the variable z, . Instead, €. replace z_as a state variable. In
addition, using (3.6) rather than (3.2) in the random walk case reduces the
number of iterations needed to solve the dynamic programming problem by a

factor of seven. The following functional equation is solved in this case:

(3.7 v(e,k) = Max {1og(exp(-oe)fc9h1‘”- X) - B h, + B E v(e’ ,1;')}
(3.8) subject to ;' = [(1-6)/exp(ute)] i + [1/exp(u)] ;
(3.9) and ¢’ ~ N(O,af)

To solve example 3, where ¢ follows a first order Markov process, we
use the same transformation (3.6) and obtain the same functional equation

except that (3.9) is replaced with
2
(3.10) €' =p e+ €', £ ~ N(O,aé)

Except for the change of variables, (3.2) or (3.6), the solution
procedure is the same for all three examples. Since (3.8) is nonlinear in
the state variables, before forming the quadratic approximation we sub-
stitute this into the objective by eliminating ;. So that our procedure is
the same for all of the examples, we do the same when solving problem (3.3).

- Thus k’ (or k') becomes a decision variable in the dynamic programming

problem being solved.

12 Christiano (1988) makes use of a transformation similar to this one
in his model of inventory accumulation where technical change also follows a
random walk.

13



Before forming the quadratic approximation, still another transforma-
tion is introduced. For the cases where z, follows a random walk, Chris-
tiano (1987a) has shown, using a model that is very similar to the one
studied here, that a much better approximation can be obtained by ap-
proximating around the logs of capital and hours rather than the levels.
This procedure will yield decision rules that are log-linear in the state
variables rather than linear.13 Thus, the following additional change in

variables is made (the same transformation is made when Method 2 is used

except that the "hats" should be replaced with "tildes").
(3.11) lk = log k, 1k’ = log k', lh =1logh

After introducing these change of variables, we take the first three
terms of a Taylor series expansion of the return function at the steady
state to obtain a quadratic return function. The problem can then be solved
using standard methods (see Sargent (1987)) to obtain linear decision rules
for lﬁ' and lh as a function of the state variables. If we are using Method

1, we obtain the following linear functions of z and lk:14

13 Our simulation results are unaffected by approximating around logs
rather than levels when y < 1. However, this choice makes a significant
difference when z follows a random walk, especially when Method 2 is used.
In particular, approximating around levels leads to much more variability in
consumption than if the log approximation is used. The explanation given by
Christiano for this fact is that the decision rules obtained from the level
approximation are not monotone in ¢ while the decision rules from the log
approximation are monotone. In the interest of using a consistent solytion
procedure, we approximate around logs in all of the examples we consider.

14 The rest of this discussion assumes that we are using Method 1.

The simulation procedure is the same under Method 2 except that e replaces z
as a state variable and we use transformation (3.6) rather than (3.2).

14



A

(3.12) lkt+1 - d11 + dlZZt + d13lkt and

(3.13) 1hc'd +d zt+d lkt

21 22 23

Next, given values for z_ and kt for t = 0, we can compute simulations

t

using a pseudo random number generator to draw realizations of e Equation

e
(3.4) is used to simulate values for z., t > 0. From these values we can
calculate kt for t > 0 and ht for t = 0 using the decision rules (3.12) and

(3.13). Values are obtained for X, from (3.5), and the change of variables

(3.2) is used to compute kt and x Finally, Ye is obtained using the

e

production function (2.6), and c¢,_ is obtained by subtracting investment from

t
output. Productivity is computed by dividing output by hours worked.
Results from simulating the economy using this procedure are discussed in

the next section.

4. Results

In this section, the above solution procedure is used to compute linear
decision rules for capital and hours and simulate artificial time series for
output, consumption, investment, capital stock, hours worked and produc-
tivity. The decision rules obtained for each example are reported in table
6. For each example considered, fifty simulations of 115 periods are
formed.15 Given that our interest is in the cyclical properties of this

time series, the data from the simulations are logged and detrended using

15 We compute simulations for 115 periods since this is the number of
quarters in the postwar U.S. sample reported on in Table 1. For each
simulation, we use the steady state values of the state variables as initial
conditions and actually compute numbers for 215 periods. Before filtering
and computing summary statistics, we throw out the first 100 of these. The
same set of random numbers are used as innovations to the z,_ process in each
example considered.
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the filter described in Hodrick and Prescott (1980).16

Statistics (standard deviations and correlations) summarizing the
behavior of the cyclical component are computed for each simulation and the
average of these over the fifty simulations are reported in tables 2 through
5. The sample standard deviations of these statistics are also reported.
In table 1, statistics describing fhe cyclical component of quarterly U.S.
data from 1955,3 to 1984,1 are given. Although this paper does not attempt
to fit the model to the data, these statistics provide a benchmark for
comparing the statistics computed from the various simulations.

Before solving the model and computing the simulations, we must choose
values for the parameters. Since the basic model is the same as the one
studied in Hansen (1985), we begin with the parameterization employed
there.17 We begin with an economy without growth, so u is equal to zero.
The discount factor, B, is set equal to .99 and the depreciation rate of
capital, §, is set equal to .025. These values were chosen so that, in the

economy without growth, the real interest rate is 4% and the annual depreci-

16 We follow Kydland and Prescott (1982 and 1988), Hansen (1985), and
Prescott (1983 and 1986) (among others) in using this filter as an opera-
tional definition of the cyclical component of a time series. Although this
definition, like any definition, is inherently arbitrary, we adopt it since
it has been used so often in the literature ang is easy to implement.T The
filter involves choosing smoothed values {st}t_1 for the series {xt}t_1

which solve the following problem:

2+ /DE (5,50 (5075, 100,

T
min {(1/T)Zt_1(xt-st) n

where A > 0 is the penalty on variation (variation 'is measured by the
average squared second difference). A larger value of A implies that the
resulting {st) series is smoother. As in all of the papers referenced
above, we chéose A=1600. The cyclical component is obtained by taking
dt-xt-st.
17 Most of these values were originally taken from Kydland and
Prescott (1982). Prescott (1986) defends the choice of these values by
appealing to growth observations and studies using micro data.
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ation rate is 10%. Capital’'s share in production, §, was set equal to .36.
The parameter multiplying hours in the utility function (2.3), B, was set \
equal to 2.86 following Hansen (1985). Finally, we parameterize the law of
motion for z£ as in Hansen (1985) by setting vy equal to .95 and setting o,
so that the standard deviation of output from the simulations is equal to
the standard deviation of actual GNP reported in table 1. This implies a
value for o, equal to .00715/(1-0).18 Prescott (1986) measures this
parameter using postwar U.S. time series and arrives at a value close to
this one.

These parameter values imply that consumption is 74% of GNP in the
steady state, which is on average the same percentage found in the data used
to construct table 1. In addition, these parameter values imply that hours
worked in the steady state is equal to .3, which is consistent with house-
holds spending roughly one third of their time engaged in market activities
(this provides the criteria for assigning a value to the parameter B).

These steady states are computed assuming that the growth rate (p) is
equal to zero. For most of the results discussed in this paper, an average
annual growth rate of output equal to two percent is assumed. The implied
value for p is .005. Assuming this value for p, the steady state values are
slightly changed- -consumption becomes 73% of output and hours worked
increases to .31. The reason these values are affected is clear from

equations (3.5) and (3.8). Once a positive growth rate is assumed, the

18 The value .00715 is the standard deviation of an innovation to the
technical change process. This is the number that should be compared with
measurements given in Prescott (1986). Since z is multiplied by (1-4) in
the production function (2.6), it is necessary to divide this number by (1-
#) to get o . This value for the standard deviation of an innovation to
this procesg is maintained throughout all examples studied. Thus, 05, in
example 3, is set equal to this same value.
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depreciation rate of the "effective" capital stock is no longer 10% per
year. Ten percent of the current period capital stock will disappear, but
the remaining capital will be more productive. To maintain the depreciation
rate of the "effective" capital stock equal to 10% per year, we must set §
so that (1-.025) = (1-6)/exp(p). This implies a value of § equal to .02.
In addition, when these parameter values are used (p = .005 and § = .02) the
steady states turn out to equal those obtained in the no growth case with §
equal to .025.°

We now discuss findings obtained by simulating the model to determine
how the various specifications of technical progress described in section 2
affect the cyclical properties of the model. We begin by studying how
increasing the growth rate from zero to two percent per year affects this
behavior. We then consider other examples where technical change is trend-
stationary (example 1 in section 2). Following that we consider examples
where technical change is difference-stationary (examples 2 and 3 in section
2). We finish the section with a discussion of impulse responses computed
from the model that illustrate the general intuition underlying our simula-

tion results.

Deter tic Growt

In panel A of table 2 summary statistics are given for our initial
parameterization without growth. An important feature of this example is
~ that the standard deviation of hours worked is significantly larger than the
standard deviation of productivity. fhis is a feature also observed in
actual data (see table 1) that is difficult to account for without the in-

divisible labor assumption (see Hansen (1985)). We will find that many of
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the examples we consider are also unable to account for this feature, even
though we assume indivisible labor throughout. Other features of the
business cycle accounted for by this model are the relatively large fluctua-
tions in investment compared to output, the relatively small fluctuations in
consumption and capital compared to output, and the slightly smaller
fluctuations in hours relative to output. In addition, the model displays
contemporaneous correlations among the various variables that, with a few
exceptions, compare favorably to the correlations reported in table 1.

When growth is added to the model by setting p equal to .005 (leaving §
unchanged), our results are changed slightly (see panel B of table 2).
However, all of the features of the business cycle referredvto in the
previous paragraph continue to be displayed by the model. Therefore, it
appears that abstracting from growth does not affect the properties of the
fluctuations displayed by real business cycle models with exogenous techni-
cal progress.19 In addition, this model implies that economies with
different growth rates will display similar fluctuations, at least when the
growth rates are close to the ones assumed here.

If the depreciation rate is adjusted as described above so that the
steady states are the same as in the zero growth case (that is, set § =
.02), the cyclical results are essentially identical to the ones given for
the zero growth case (see panel C of table 2). This is to be expected given

that the decision rules reported in table 6 for these two cases are not very

19 It is an open question whether this conclusion would carry over to
models with endogenous growth, such as those studied by Lucas (1988) and
Romer (1986).
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different.zo In fact, this conclusion turns out to hold for all of the
examples studied in this paper, although we report evidence for only this
case. All of our subsequent examples assume the positive growth rate (u =
.005) and a depreciation rate equal to .02.

The next issue to be addressed is how the cyclical component is
affected when the amount of serial correlation in the technology shock is
increased or decreased by changing the value of y. In table 3 we present
summary statistics obtained by simulating the model using the same parameter
values as in panel C of table 2 except that y is set equal to .90 (in panel
A) and .99 (in panel B). We find that as the serial correlation is in-
creased, the cyclical variability of output, investment, capital and hours
is reduced, while the variability of consumption and productivity is
increased. In table 5, it is shown how the relative volatility of consump-
tion to output is increased when vy is increased while the relative volatil-
ity of investment and hours compared to output is reduced. In addition, the
volatility of hours relative to productivity is significantly reduced.
These results follow from the fact that increasing the persistence of the
technology shock reduces the coefficient on z, in both decision rules
reported in table 6 and leaves all other coefficients the same,

In addition to the effect on volatility, the correlations of the
various variables with consumption and productivity are significantly
affected by changing the value of y. Consumption and productivity become.
more highly cortelatéd with output, investment and hours, and less corre-

lated with the capital stock as the amount of serial correlation is in-

20 Christiano and Eichenbaum (1988) demonstrate in a footnote that
these decision rules would be exactly the same if the production function is
multiplied by a constant determined by the growth rate.
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creased. The other correlations are not affected much.

Stochastic Growth

As explained in section 3, when technical progress follows a random
walk it is possible to solve the model using Method 1, by setting vy equal to
one, or by using Method 2. We solved the model both ways and found that the
same summary statistics were obtained.21 This we interpret as evidence for
the quality of the quadratic approximation given that the two methods
involve approximating quite different objective functions.

The summary statistics for this example are presented in panel A of
table 4. These results are not surprising given the effect, discussed
above, of increasing the serial correlation in the z, process. The standard
deviations and correlations are affected in the same general way as when 7y
was increased from .90 to .99. The same applies to the relative volatili-
ties reported in table 5.

Clearly, when technical progress is assumed to follow a random walk
with drift, this growth model does a less satisfactory job of accounting for
the properties of aggregate fluctuations observed in U.S. data. An excep-
tion to this is that consumption fluctuates significantly less than output
even when innovations are permanent (see also Christiano (1987b)). However,
the statistics given in table 5 indicate that the volatility of investment
relative to output is much smaller than in the datg. In addition, the ;atio

of the standard deviation of hours to the standard deviation of productivity

21 The decision rules obtained from using both methods are given in
the table 5. Note that the decision rules obtained using Method 1 continue
to display the same pattern discussed above as v is increased: The coeffi-
cients on z are closer to zero while the other coefficients are unaffected.
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is 1.6 in U.S. time series while this ratio is about 2.7 when v = .95 as in
Hansen (1985). Once technical progress is assumed to follow a random walk,
productivity actually fluctuates more than hours worked!

These results lead to the conclusion that an innovation to technical
progress must not be completely permanent if the model is to account for
important features of aggregate fluctuations observed in U.S. data. A way
to introduce a temporary component to the technology shock and still have a
stochastic trend is to introduce some negative serial correlation in €. as
in example 3 of section 2. This is consistent with the empirical findings
in Prescott (1986) and Christiano (1988). Prescott finds that the first
order autocorrelation of the Solow residuals (et) computed from U.S. time
series is equal to -0.2 and Christiano, using different data, finds it to be
-0.1. We experiment with both of these values for this statistic, which
corresponds to the parameter p in our model (see equation (2.10)). With
this specification, a small part of a given innovation is temporary while
the rest is permanent. Most of the temporary effect dies off after one
period (see Figure 2B). Just as for the examples with a deterministic
trend, the decision rules given in table 6 reveal that as p is increased (in
absolute value) from zero to -.0l, and than to -.02, the coefficient on €
is affected, but the other coefficients remain the same.

Summary statistics for these cases are given in panels B and C of table
4. Comparing panel A with panels B and C we find that adding tﬂe temporary
component to the technology shock reduces the variability of all of the
variables except hours workéd. ‘However, the variability of investment and
the capital stock is affected very little. This result differs from the

results for the deterministic growth examples where reducing the persistence
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of the technology shock (reducing y) increased the volatility of all
variables except consumption and productivity. The correlations are
affected in the same way as in the deterministic growth case: by reducing
the amount of persistence in the technology shock, we observe that consump-
tion and productivity are less correlated with output, investment and hours
and slightly more correlated with the capital stock. Hdwever, the correla-
tions are affected by a smaller amount in this case.

Adding first order autocorrelation in e does reverse the counterfac-
tual implication of the original random walk example that productivity
fluctuates more than hours worked. However, the ratio of the standard
deviation of hours to the standard deviation of productivity is still
significantly less than what is found in the data, 1.22 compared to 1.58
with p equal to -0.2. Thus, the model with stochastic growth is unable to
account for the large observed fluctuations in hours wofked relative to
productivity, even when a reasonable amount of negative serial correlation
in € is allowed for. In addition, this negative serial correlation does

not increase the volatility of investment relative to output very much (see

table 5).

Analysis of Impulse Response Functions

It is perhaps surprising that the results reported above are so
sensitive to how technical progress is modeled. This is especially true
given that simulations of technical progress from our various examples look

quite similar, as illustrated in figure 1.22 However, figures 2A and 2B

22 Figure 1 shows a plot of simulated "technical progress" for each of
the examples considered. Each simulation uses the same initial condition
and the same set of realizations of the random variables. The simulations
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show that the response of z_ to an innovation is very different in the
examples considered. For example, when y = .90, it takes about fifty
periods for a shock to die out, while it takes twice that long when y = .95.
When a stochastic trend is assumed, as in figure 2B, the temporary effect of
a shock is relatively small and lasts only two periods, leaving only the
permanent effect.

In figures 3 and 4 the responses of log ﬂ and log ; are plotted.23
When innovations are temporary, as in figures 3A and 4A, the capital stock
increases relatively quickly in response to a positive innovation. This is
most pronounced when vy = .90. In this case, the response of investment in
the first period after the shock is larger and dies off more quickly than in
the cases where the shock is more persistent. This leads to the higher
variability of investment in this case. When an innovation is mostly
permanent, as in figures 3B and 4B, there is very little temporary effect on
investment or the capital stock. These responses mostly reflect gradual
transition to the higher steady state--even when p = -0.2. This explains
the very slight affect on the volatility of these series when p is increased
in absolute value (see table 4).

Hours, however, show a significant temporary response even in the cases
where a stochastic trend is assumed (see Figures 5A and 5B). This response

becomes stronger as p is increased in absolute value, explaining the

were actually run for 215 periods and the last 115 periods are plotted.
Technical progress is given by exp{(l-ﬂ)(pt+zt)).

23 In Figure 3B, where Method 2 was used to solve for the decision
rules, we obtained impulse responses for log K using the fact that log K, is
equal to log k_ + z . An analogous transformation enables us to compute
impulse responses for log &, log & and log §. In addition, in order to
compute the consumption and investment responses, a linear approximation was
used. See Hansen and Sargent (1988) for details.
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behavior of the volatility of hours in table 4. This also accounts for the
response of output shown in figure 6B. However, it is still the case that
the response of hours is significantly stronger when an innovation is com-
pletely temporary (see figure 5A). This leads one to expect hours (and
output) to be more volatile in these cases (see tables 2 and 3).

The relatively small response of consumption to a temporary shock, as
preaicted by the permanent income hypothesis, is illustrated in figure 7A.
The response of consumption to a permanent shock is shown in figure 7B.
This plot confirms Christiano’s (1987b) finding that in a model like this
one, consumption rises only gradually in response to a permanent shock in
contrast to the predictions implied by simple versions of the permanent
income hypothesis. In fact, for all values of p considered, when z, is
difference-stationary there is no temporary spike in the response of
consumption at all. This explains why the volatility of consumption is sig-

nificantly less than output even when a shock is entirely permanent.

5. Conclusion

The results presented in this paper indicate that temporary shocks to
technical progress are crucial for this model to display important features
of observed aggregate fluctuations. In an economy with essentially per-
manent shocks there is not enough incentive to increase the capital stock
quickly in response to a positive innovation to produce the.relative
volatility of time éeries that is observed in the U.S. economy. These
results bode poorly for real business cycle models which assume difference-
stationary technical change. However, in an economy where technical

progress is a stationary process fluctuating around a geometric trend,
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fluctuations are exhibited that have more in common with those observed in
U.S. time series. In addition, the properties of these fluctuations are the
same for any reasonable growth rate.

It is striking how different the implications of the model are under
these alternative assumptions concerning technical progress. The conclusion
one draws from these results depends on how seriously one believes that
macroeconomic time series contain unit roots. If one has very strong priors
in favor of unit roots, one must interpret these results as evidence against
real business cycle models. Of course, the econometric tests carried out in
work by Nelson and Plosser (1982), King, Plosser, Stock and Watson (1987)
and others can not reject a highly persistent AR(1l) process any more than
they can reject difference-stationarity. In addition, recent work by
Cochrane (1988) and DeJong and Whiteman (1988), using alternative methods,
present evidence in favor of trend-stationarity over difference-station-
arity. Thus, another interpretation of these results, if one takes the
model studied in this paper seriously, is that the observation of large
volatility of investment relative to output and large volatility of hours
relative to productivity (or real wages) in the real world is additional
evidence that the underlying shocks, and hence aggregate time series, are

trend-stationary rather than difference-stationary.
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Table 1 Summary Statistics from Quarterly U.S. Data (55,3-84,1)24

Standard
Series Deviation Correlation Matrix

Y c X K H Pr
Output (Y) 1.74 1.00
Consumption (C) .81 .65 1.00
Investment (X) 8.45 .91 .42 1.00
Capital Stock (K) .63 .05 .17 - .10 1.00
Hours (H) 1.41 .86 .50 .79 .15 1.00
P?qductivity (Pr) .89 .59 A7 .54 - 14 .10 1.00

24 The U.S. time series reported on are real GNP, consumption of
nondurables and services plus the flow of services from durables, and gross
private domestic investment (all in 1982 dollars). The capital stock series
includes nonresidential equipment and structures. The hours series is total
hours for persons at work as derived from the Current Population Survey.
Productivity is output divided by hours. All series are seasonally ad-
justed, logged and detrended. The standard deviations have been multiplied
by 100. The output, investment, capital stock and hours series were taken
from the Citibase database. The consumption series was provided by Larry
Christiano.
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Table 2 Summary Statistics Assuming Deterministic Growth25

A, No growth (p =0, § = .025)

Standard
Series Deviation
Y
Output (Y) 1.74 1.00
(0.22)
Consumption (C) .50 .86
(0.08) (0.03)
Investment (X) 5.68 .99
(0.73) (0.00)
Capital Stock (K) .48 .07
(0.09) (0.06)
Hours (H) 1.32 .98
(0.17) (0.00)
Productivity (Pr) .50 .87
(0.07) (0.02)
B. Growth (u =
Standard
Series Deviation
Y
Output (Y) 1.70 1.00
(0.22)
Consumption (C) .54 .87
(0.08) (0.02)
Investment (X) 5.18 .99
(0.67) (0.00)
Capital Stock (K) .52 .10
(0.10) (0.07)
Hours (H) 1.26 .98
(0.16) (0.01)
Productivity (Pr) .54 .88
(0.08) (0.02)
25

been multiplied by 100.
are reported in parentheses.

Correlation Matrix

C X K H Pr
1.00

.78 1.00
(0.04)

.55 - .06 1.00
(0.07) (0.06)

.76 1.00 - .12 1.00
(0.05) (0.00) (0.05)

.99 .80 .54 .77 1.00
(0.00) (0.03) (0.07) (0.04)
.005, § = .025)

Correlation Matrix

C X K H Pr
1.00

.78 1.00
(0.04)

.57 - .05 1.00
(0.07) (0.06)

.75 1.00 - .11 1.00
(0.05) (0.00) (0.05) .
1.00 .80 .56 .75 1.00

(0.00) (0.03) (0.07) (0.04)

The statistics reported are the sample means of statistics computed
for each of fifty simulations of 115 periods.
The sample standard deviations of these statistics
Each simulated time series was logged and

The standard deviations have

detrended using the same procedure that was applied to the U.S. sample

reported on in Table 1.
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Series

Output (Y)
Consumption (C)
Investment (X)
Capital Stock (K)
Hours (H)

Productivity (Pr)

Standard
Deviation

1.
(0.

C.

74
22)

.50

(0.

5.
(0.

08)

69
74)

.48

(0.

1.
(0.

09)

33
17)

.50

(0

.07)

Growth (g = .005, § = .02)

1.

00

.86 1.
(0.

.99
(0.

.07
(0.

.98
(0.

.87
(0.

03)

00) (O.

06) (0.

00) (0.

02) (0.

32

Correlation Matrix

X K H
00
.78 1.00
04)
.55 - .06 1.00
07) (0.06)
.76 1.00 - .12 1.00

05) (0.00) (0.05)

.99 .80 .54 .77

00) (0.03) (0.07) (0.04)

Pr

1.00



Table 3 Effect of Serial Correlation in Technological Change26

A. Reduced Serial Correlation (y = .90)

Standard
Series Deviation Correlation Matrix
Y C X K H Pr
OQutput (Y) 1.89 1.00
(0.24)
Consumption (C) .43 .76 1.00
(0.07) (0.04)
Investment (X) 6.58 .99 .67 1.00
(0.85) (0.00) (0.05)
Capital Stock (K) .52 .05 .67 - .07 1.00
(0.10) (0.06) (0.07) (0.05)
Hours (H) 1.58 .99 .64 1.00 - .12 1.00
(0.20) (0.00) (0.06) (0.00) (0.05)
Productivity (Pr) .43 .78 .99 .69 .66 .66 1.00
(0.07) (0.03) (0.00) (0.04) (0.06) (0.05)

B. Increased Serial Correlation (y = .99)

Standard
Series Deviation Correlation Matrix
Y C X K H Pr
Output (Y) 1.44 1.00
(0.19)
Consumption (C) .62 .96 1.00
(0.09) (0.01)
Investment (X) 3.98 .99 .90 1.00
(0.52) (0.00) (0.02)
Capital Stock (K) .35 .07 .35 - .06 1.00
(0.07) (0.07) (0.08) (0.06)
Hours (H) .86 .98 .88 1.00 - .13 1.00
: (0.11) (0.01) (0.03) (0.00) (0.06)
Productivity (Pr) .62 .96 1.00 .91 .35 .88 1.00
(0.08) (0.01) (0.00) (0.02) (0.08) (0.03)

26 See footnote for Table 2.
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Table 4 Summary Statistics Assuming Stochastic Growd§7

A. Random Walk

Standard
Series Deviation Correlation Matrix
Y C X K H
Output (Y) 1.31 1.00
(0.17)
Consumption (C) .68 .98 1.00
(0.09) (0.01)
Investment (X) 3.25 .99 .94 1.00
(0.42) (0.00) (0.02)
Capital Stock (K) .28 .07 .28 - .06 1.00
(0.06) (0.07) (0.08) (0.06)
Hours (H) .67 .98 .91 .99 - .14 1.00
(0.09) (0.01) (0.02) (0.00) (0.06)
Productivity (Pr) .68 .98 1.00 .94 .28 .91
(0.09) (0.01) (0.00) (0.01) (0.08) (0.02)

B. First Order Autocorrelation in e (p = -0.1)

Standard
Series Deviation Correlation Matrix
Y o] X K H
Output (Y) 1.26 1.00
(0.15)
Consumption (C) .62 .96 1.00
(0.09) (0.01)
Investment (X) 3.22 .99 .91 1.00
(0.37) (0.00) (0.01)
Capital Stock (K) .26 .07 .32 - .08 1.00
(0.05) (0.07) (0.07) (0.06)
Hours (H) .68 .97 .86 .99 - .17 1.00
(0.08) (0.01) (0.02) (0.00) (0.05)
Productivity (Pr) .62 .96 1.00 .91 .32 .86
(0.08) (0.01) (0.00) (0.01) (0.07) (0.02)

27 See footnote for Table 2.
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C. Increased First Order Autocorrelation in € (p = -0.2)

Series
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Table 5 Relative Volatilities28

Statistic Data =90 y=,95 y=.99 y=1.0 g@=-.1 @=-.2
9./9, 47 .23 .29 .43 .52 .49 .48
o,/ 4.86 3.48 3.27 2.76 2.48 2.56 2.67
o /9, .36 .28 .28 .24 .21 .21 .20
on/o, .81 .84 .76 .60 .51 .54 .58
/%y 1.58 3.67 2.66 1.39 .99 1.10 1.22

28

The relative volatilities reported in this table are the ratios of
standard deviations reported in tables 1 through 4. In particular the
numbers in the seven columns correspond to statistics reported in tables 1,
3A, 2C, 3B, 4A, 4B and 4C, respectively.
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Table 6 Decision Rules

Deterministic Growth
No growth (4 = 0, § = ,025)
log Ht = -0.03978 + 0.94181 z, + -0.47654 log K

log K = 0.14174 + 0.09935 z + 0.94182 log K

t+l

Growth (u = .005, § = .02)

log Ht = -0.04105 + 0.94297 z, + -0.47684 log Kt
log Kt+1 = 0.14113 + 0.09913 z, + 0.94200 log Kt
Reduced Serial Correlation (y = .90)
log Ht = -0.04105 + 1.13848 z, + -0.47684 log Kt
log Kt+1 = 0.14113 + 0.11638 z, + 0.94200 log Kt
Increased Serial Correlation (y = .99)
log Ht = -0.04105 + 0.61551 z + -0.47684 log Kt
log Kt+1 = 0.14113 + 0.07024 z, + 0.94200 log Kt
Stochastic Growth
Random Walk (Using Solution Method 1)
log Ht = -0.04105 + 0.47702 z, + -0.47684 log Kt
log Kt+1 = 0.14113 + 0.05802 z, + 0.94200 log Kt

Random Walk (Using Solution Method 2)

-

log Ht = -0.04103 + 0.47685 €+ -0.47685 log Kt

log K = 0.14113 + -0.94200 €.t 0.94200 log Kt

t+l
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Serial Correlation in €. (p = -0.1)
log Ht = -0.04103 + 0.57408 €+ -0.47685 log Kt

log K = 0.14113 + -0.93342 €.t 0.94200 log Kt

t+l

Increased Serial Correlation in € (p = -0.2)
log Ht = -0.04103 + 0.65603 € + -0.47685 log Kt

log Kt+1 = 0.14113 + -0.92619 €.+ 0.94200 log Kt
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SIMULATED TECHNICAL PROGRESS

N TARAA 85 ———e ]
GAMMA .99 —e—-. RANDWALK ———
l AHO =0.2 --mee-e- A
.6 — AN
,l' lﬁ\/"’l Y-
~\ r/{"'
Y /\' ll
. 5 - / ™ \ \' N 2,
/"' ,I ‘\/"M’ -\J\N \.
[ /
Pv,' /~-\~ /
Y — SN NS
/ LT
s~ !
r - ‘u_l 'r‘/
3 — / ‘l'hl -’ '/"\I'\\/
o I
\\/{.’" l'/ St
.2 —
1 —

] I I | l { l l | | i { | 1 l I
7 14 21 28 35 42 49 S8 63 70 77 84 91 98 105 112

FIGURE 1




0.

RESPONSE OF Z TO INNOVATION IN Z

GAMMA .9S
GAMMA .99

.6 — ~.
\\\\\\
M- \~\~\‘\-\
.2 —
0.0 T T T T —T T T T T
6 12 18 24 30 38 42 48 S4 60 68 72 78 84 30 36
FIGURE 2R
RESPONSE OF Z TO INNOVATION IN Z
1.0 - ;
A
I+
| ~
.8 — 14
8 —
Y —
.2 —
'l"l"I"I"l"l"l"I"l"I"l"l"I"I"I"l"—l-"l"l"l
3 6

$ 12 15 18 21 24 27 30 33 38 33 42 4ys 48 S1 S4 S7 80
FIGUAE 2B



RESPONSE OF LOG K TO INNOVATION IN Z
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RESPONSE OF LOG K TO INNOVATION IN Z
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RESPONSE OF LOG X TO INNOVATION IN Z
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RESPONSE OF LOG H TO INNOVATION IN Z
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RESPONSE OF LOG Y TO INNOVATION IN Z
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RESPONSE OF LOG Y TO INNOVATION IN Z
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RESPONSE OF LOG C TO INNOVATION IN Z
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