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ABSTRACT

This paper presents a class of preferences that yield closed form solutions to dynamic
stochastic choice problems. These preferences are based on a set of axioms that were
proposed by Kreps and Porteus. The Kreps Porteus axioms allow one to separate
an agent’s attitudes to risk from his or her intertemporal elasticity of substitution.
RINCE preferences have the properties of RIsk Neutrality and Constant Elasticity
of substitution.



I INTRODUCTION

There are many instances of stochastic intertemporal choice problems that one
would like to be able to solve in closed form. But it is generally recognized that, if
one maintains the axioms of Von Neumann and Morgenstern (VNM), such problems
quickly become intractable. In this paper, I show that a slight weakening of the
VNM axioms that was originally explored by Kreps and Porteus [1978, 1979:1,
1979:2}, henceforth (KP), allows one to find a convenient parameterization of utility
that may be explicitly solved to yield closed form decision rules. These decision
rules determine optimal actions as functions of current state variables and of the
expected values of certain functions of future state variables.

The parametric structure that I propose exploits the fact that KP preferences are
able to separate an agent’s attitudes to risk from his or her intertemporal elasticity
of substitution. This separation allows one to make the simplifying assumption that
agents are indifferent to income risk whilst maintaining a non-trivial preference for
the time at which consumption occurs. A decision maker with the preferences that
I describe is risk neutral, in the above sense, but he or she displays a constant elas-
ticity of intertemporal substitution in environments where there is no uncertainty.
For this reason I refer to these preferences as Risk Neutral Constant Elasticity,
abbreviated as RINCE.

The KP axioms take the basic space over which preferences are defined to be a
space of temporal lotteries. This space is more complex than the space of lotteries
over consumption sequences since elements of the space are distinguished not only
by probability distributions over possible payoff sequences but also by the time at
which uncertainty resolves. This more complicated structure implies that individ-
uals may express a preference or aversion for the resolution of uncertainty even if
knowledge of the future does not yield a planning advantage. This structure may
be contrasted to the VNM approach under which the time at which uncertainty

resolves does not directly influence one’s choices.



II A GUIDE TO THE LITERATURE

This section is intended to place my own work in the context of some recent lit-
erature that uses a non Von Neumann-Morgenstern approach to address problems
of intertemporal choice under uncertainty. This literature is related to the non
VNM approaches discussed by Machina [1982] but it is more directly concerned
with choice through time.

Until recently almost all work that deals with intertemporal choice under un-
certainty has maintained the complete set of VNM axioms defined on the space of
lotteries over intertemporal consumption sequences. The seminal papers that drop
this approach are by Kreps and Porteus [1978, 1979:1, 1979:2]. Kreps and Porteus
maintain all but one of the VNM axioms, including the independence of irrelevant
alternatives, although the space over which these axioms is formulated is more com-
plicated than the space of lotteries over consumption sequences. The axiom that
KP relax is a temporal analogue of the reduction of compound lotteries. They do
not permit compound gambles to be reduced to simple gambles if such a reduction
involves changing the time at which uncertainty is resolved. In the absence of the
reduction axiom, one cannot reduce gambles over sequences of lotteries to gambles

over sequences of consumption bundles.

An independent series of papers that is related to the KP approach is due to
Selden [1978,1979]. Selden’s approach deals only with two period decision problems
and it is essentially equivalent to the two period version of Kreps and Porteus. The
Selden approach, however, cannot easily be generalized to a multi-period context
since the most straightforward generalization does not impose the requirement that

an agent’s plans should be temporally consistent.

A number of extensions of Kreps and Porteus have appeared in work by Chew
and Epstein [1987:1, 1987:2], Epstein [1986] and Epstein and Zin [1987:1]. Chew
and Epstein have explored the implications of dropping the independence axiom
for intertemporal choice problems and Epstein [1986] has formulated an alternative
axiomatization of the KP approach and an extension to an important class of



infinite horizon problems. The closest work to my own paper is contained in the
two pieces by Epstein and Zin [1987:1, 1987:2] and a related, but independent,
paper by Weil [1987]. In the first of the Epstein-Zin papers the authors present a
parametric class of intertemporal preferences that is based on a generalization of
the Kreps-Porteus approach. RINCE preferences are members of this class and, to
my knowledge, they are the only members that permit one to obtain closed form
solutions to the intertemporal stochastic choice problem that I describe below.

A limited number of papers have applied the KP approach to specific problems.
These papers fall into two categories and they all exploit the idea that Kreps-
Porteus preferences allow one to disentangle an agent’s degree of risk aversion from
the intertemporal elasticity of substitution. If one imposes the VNM axioms, and
in addition one restricts attention to time separable preferences, these two concepts
are inseparable. For example, the preferences given by U = Y 1_, Btc/p are often '
referred to as constant relative risk aversion although they could equally well be
called constant elasticity of substitution since one concept is the reciprocal of the

other.

Papers by Weil [1987] and Kotcherlakota [1987:1] have examined the possibility
that one may explain the equity premium puzzle of Mehra and Prescott [1985] by
making use of the flexibility provided by the ability of KP preferences to separate
risk from intertemporal substitution. The applied work of Epstein and Zin [1987:2)
and the papers by Hall [1985], Attanasio and Weber [1987] and Kotcherlakota
[1987:2] address the related issue of whether representative agent models that make
use of this separation are able to more accurately model time series data.

III THE STANDARD APPROACH TO INTERTEMPORAL
STOCHASTIC CHOICE

Consider the problem faced by a mortal consumer who must make a finite sequence
of savings decisions when the future is uncertain. In the standard representation of
this problem one assumes that rational choice is characterized by the solution to a



dynamic programming problem of the following type:

T
(1) Dax u(co) + ED_ Bu(e:) such that;
t=1

(L t=0
(2) a1 = Roao+ wo — co;
(3) a1 = Ria+ @ — ey t=1,2,...,T;
(4) Roay = Rody;
(5) ary1 2 0.

The function U = ¥°F, B*u(c.) may be interpreted as a von Neumann-Morgenstern
utility function defined over the space of consumption sequences {¢;}T_, where the
consumption set is taken to be R}_‘“. The tildes over the variables R, and w; are used
to denote the assumption that they are random variables and the interpretation of
the sequence of constraints (3) is that the individual receives endowments {&}L,
which may be invested in a single risky asset. The asset a; is assumed to pay a gross
return &, and in general I shall allow for the possibility that the sequences {@}L,,
and {R,}L, are jointly distributed random variables that may take values in RIT,
The expectation operator that appears in equation (1) has the interpretation of an
expectation taken over the joint probability distribution of {&,, R,}T,,, conditional
on the realizations of (&,, R,) for all s < t.

A solution to equation (1) is represented by a number, é,, and a sequence of
functions & : R — Ry, t =1,..., T, where é is interpreted as a contingent plan.
It represents a list of actions, one for every possible realization of past values of w
and R, that the consumer proposes to undertake in period t.

Stated in this way, this problem is a direct application of expected utility the-
ory which has a distinguished history dating back at least to Bernouilli. But the
application of expected utility theory to the choice of intertemporal consumption
sequences makes no reference to the temporal nature of the consumer’s problem.
The axioms of atemporal expected utility theory are typically justified by an appeal
to simple thought experiments in which it is suggested that a violation of one or
other of the von Neumann-Morgenstern axioms would be irrational; the discussion



of the Allais paradox in Raiffa [1970; page 80 ff] is a good example of this approach.
But temporal versions of such arguments are not as compelling as their atemporal
counterparts. The Kreps-Porteus framework provides a rationalization of a viola-
tion of the VNM axioms that can be directly traced to the sequential nature of

decisions.

IV THE RELATIONSHIP OF THE KREPS-PORTEUS AXIOMS
TO THOSE OF VON NEUMANN AND MORGENSTERN

Kreps and Porteus provide two alternative axiomatizations of their approach. One
set of axioms views choice as a sequence of decisions. At each stage in the sequence,
the agent ranks alternative pairs of payoffs; each such pair consists of a current
consumption bundle and a ticket to a lottery which will take place in the following
stage. The prizes in the lottery represent the maximum possible utilities that the
agent could hope to achieve in different states of nature. In this formulation of the
problem, preferences for one-step-ahead lotteries obey the complete set of VNM
axioms. The sequence of one-step decision problems is knitted together with a time
consistency axiom. KP also provide a second formulation of the agent’s preference
ordering in which axioms are formulated directly over a space of temporal lotteries.
For the sake of completeness, a description of this second approach is provided
below.

To describe the KP axioms it is necessary to introduce some notation. Let dr be
a probability distribution over et and let Dy be the set of all such distributions. One
may think of the individual, at the beginning of period T, expressing preferences
over lotteries for period T consumption; these lotteries are the elements of Dr.
Now imagine the individual who stands at the beginning of period T-1. This
person must express preferénces over uncertain gambles which may resolve partly
in T-1 and partly in period T. In the VNM approach these preferences are defined
by formulating axioms over the set of lotteries that yield a compound prize of
consumption commodities part of which is paid in period T-1 and part of which is



paid in period T. In the Kreps-Porteus approach preferences are defined over a more
complicated object; that is, the set of lotteries that yield an uncertain consumption
payoff in period T-1 and a ticket to another lottery that takes place in period T.
In the absence of the reduction of compound lotteries axiom these approaches are

not identical.

To formalize this idea one defines recursively the sets, {D,}?_;_,, of probability
distributions over R, X D.,;. For example, an element of Dr_, is a probability
distribution, dr_, which represents the probability of receiving consumption er_;
in conjunction with the lottery ticket dy. The payoff to the lottery dr_, is the pair
(er-2,dr-1) which is an element of Ry x Dr_;. Carrying this recursion backwards
one arrives at the set of temporal lotteries, Dy, which is the basic space over which
the KP axioms are defined.

An additional piece of notation is required in order to characterize those subsets
of Dy which describe the possible positions at which a decision maker may find
him or herself at a given point in time. Let hy = {co,¢1,...,¢:} be a consumption
history. Now define the set P.(h:) to consist of those lotteries in D, for which
the decision maker will recieve the history h, with probability one. An element of
P;(h¢), denoted p;(h), will give the decision maker a non-stochastic consumption
sequence, h;, and a ticket to a lottery dy+; € D;,;. Notice that if one denotes the
first k elements of h; by hy(hi) then Pi(hy(hs)) 2 P.(h¢). This follows since one of
the possible sequences of lotteries that leads from k to t is the sequence in which
the decision maker receives the realizations {ex41,...,¢:} with probability one. It
follows that P,_; D P; and, by induction, that the sets { P;}{, are all contained in
Dy.

The key difference between the KP and VNM representations of choice hinges
on an agent’s attitude towards the timing of the resolution of uncertainty. Imagine
standing at the beginning of period zero and choosing between two elements of
P;(h) for some t > 0. Each of these lotteries contains the same non-stochastic con-
sumption sequence up to date t but possibly different distributions over uncertain
events that resolve beyond date t. Now think of mixing two of these lotteries by flip-



ping a coin that comes up heads with probability « and tails with probability 1 -«
but flip the coin at date k < t. This new mixture is an element of P (hy), where
hy = hi(hi). Let the mixed distribution be represented by the quadruple (k, a; p, p')
where p and p' are elements of P,(h;). A decision maker whose preferences admit
an expected utility representation over consumption sequences must be indifferent
to the timing of the coin flip in the experiment described above. A KP individual
may, on the other hand, prefer either early or late resolution of uncertainty. The

following three axioms characterize KP choice.

A: 1 There exists a complete transitive ordering, >, over the elements of D,.

A: 2 The relation, >, s continuous on D,.

A: 3 If p,p' € P.(h:) satisfy p > p' then (t,0;p,9") > (t,a;p',p") for all a € [0,1)
and p" € Pg(ht).

The key axiom, A:3, is a temporal version of the independence of irrelevant alterna-
tives. Kreps and Porteus [1978, page 195] present a representation theorem based
on axioms Al, A2 and A3. This theorem asserts that one may represent choice by a
sequence of utility functions, {w;}?_1_,, each of which maps R* X R — R. The first
argument of each function is consumption in period t and the second argument,
denoted v,,,, represents the solution to a programming problem that takes place
in period t+1; that is:

Uiy1 = maxw(eis1, Bivees).

The value of consumption that may be chosen in each of these programming prob-
lems is constrained by the sequence of budget sets:

ag+1=R¢ag+wt‘—ct; t=T—1,...,O-

-

In period T the consumer maximizes a function wr which is defined over terminal
consumption alone. Given the maximal value of utility in period T, vr, one can
construct the sequence of value functions, {v;}2_4_,, which represents the sequence

of maximal utilities attainable in each period. In contrast to the VNM approach



these value functions will not generally be linear in probabilities. The relation-
ship with von Neumann-Morgenstern choice is given by the following axiom which,
in conjunction with the other three axioms, implies the existence of a single von
Neumann-Morgenstern utility function over the space of intertemporal consumption

sequences.
A: 4 For dll t, hy;a € [0,1] and p,p' € P,(h:), (t,a;p,9') ~ (t — 1,5, 7).

If axiom A:4 holds then agents are indifferent to the timing of the resolution of
uncertainty. In this case their preferences may be reduced to lotteries over in-
tertemporal consumption sequences and KP preferences are identical to VNM. On
the other hand — if axiom A:4 does not hold — KP preferences define a much
broader class of intertemporal stochastic decision rules. In this sense, axiom A:4
implies that the difference between KP and VNM choice hinges solely on the issue
of preference for, or aversion to, the timing of the resolution of uncertainty.

V THE VALUE FUNCTION

Stochastic intertemporal choice problems are usually solved recursively by con-
structing a sequence of value functions. Beginning with the last period of the
problem, one finds the optimal decision rule of a planner who enters period T with
a given level of wealth. Given this decision rule, one can proceed to find the op-
timal allocative decision in period T-1 and, working backwards, one constructs a
sequence of decision rules and an associated sequence of value functions. In the
case of the expected utility example, equation (1), the sequence of value functions
{ve(as)}, is defined by the formulae:

(6) vr = w(Rrer +wr);
(7) w(a) = max{w(c) + BE:[Br1(ai)]};
such that,



(8) a4 = Rtat+w¢—c¢; t=0,1...,T—1.

A great deal is known about the properties of the functions {v;} and for spe-
cial cases one may obtain closed form solutions for the optimal decision rules. By
restricting attention to the case of multiplicative uncertainty (random interest but
deterministic endowments) one may obtain closed form solutions to the class of
preferences w(e;) = cf/p. On the other hand, with only additive uncertainty (ran-
dom endowment but deterministic interest rates) one can solve the quadratic case.
But the general case of random interest and random endowments does not admit
a closed form solution except in the trivial situation when w is an affine function.
In this case the agent’s preferences are linear, not only across states of nature, but
also through time.

If one is willing to drop the assumption of timing indifference then the weaker
axiom set A:1 — A:3 implies that the choice of intertemporal consumption sequences

admits a value function representation where the value functions are defined as

follows: !
(9) vr(ar) = wr(Rrer + wr);
(10) v(a) = maxw(cy, Bi[fes1(ac)]);
such that,
(11) a1 = Rag+wi—c; t=0,1,...,T—1.

Equation (10) differs from the VNM approach (equation (7)) in that v, is non-
linear in the expectation operator E,. This generalization would appear to com-
plicate the problem and make things more, rather than less, difficult. However, by
choosing the function w correctly one can find a class of decision problems that
yield closed form solutions in a wide variety of situations.

I will return to the value function approach in section X in which I define a class
of preferences that admit closed form representations for the sequence of functions

{v}. Before taking up this issue, however, I will explore an alternative representa-
tion of choice that permits a more direct comparison of the Kreps-Porteus approach

10



with the expected utility framework. This representation is the KP analogue of the
expected utility index.

V1l THE UTILITY INDEX

In this section I introduce the appropriate notion of the utility index for KP choice.
In the case of VNM preferences the utility index is a function which takes, as
its domain, the cartesian product of the real line with the space of probability
distributions over R]. Current consumption is an element of R, and lotteries over
future consumption sequences are elements of the set of probability distributions
over R;f. Decision making under uncertainty is frequently represented as the choice
of a set of contingent plans that maximizes such an index subject to a sequence of
constraints; that is, in the form of equation (1).

From the perspective of a decision maker at date zero, the utility index for this

problem is given by the function;
T

(12) Uo = u(co) + Eo D_ Btu(cy).
t=1

Because this function is both separable through time and linear in probabilities,
one can ignore past choices if plans are reformulated at a later date. That is to say;
a decision maker at date 7 who uses the index;

(13) U, =ule,) + E Y. Bule);

t=r+1
will make decisions that are consistent with the plans that were formed at date
zero to maximize the index Uj. Linearity in probabilities and separability through
time are sufficient but not necessary conditions to guarentee consistent planning.
Kreps-Porteus preferences are also time consistent but the KP utility index is not
linear in probabilities; it is constructed recursively.

Recall the definition of the sequence of sets {D;}L, that was introduced in
section (IV). One may define a utility index Ur : R, — R and a sequence of indices

11



{U:}?_r_,, using the following recursion:

(14) Ur = wr(er);
(15) Ug = W(Ct, Egﬁt+1); t = 0, 1, ee ,T - 1.

The index U; maps from the space R, x Dy, to the real line and it is the KP
analogue of the VNM index defined in equation (12). The structure of this index
is closely related to a class of preferences over non-stochastic sequences that Lucas
and Stokey [1984] refer to as recursive. Koopmans [1960] was the first to study
preferences in this class and in view of the similarity of equation (15) to the Koop-
mans class I shall refer to w : R, x R — R as an aggregator function. Recursive
preferences are easy to study because they allow one to construct a solution to a
programming problem in stéps using Bellman’s principle of optimality.

The utility index is a convenient tool for analysing the properties of KP prefer-
ences. In the following section I will make use of this concept to discuss some of
the implications of the KP axioms and to focus in on those areas in which a KP
decision maker will behave in unfamiliar ways. The discussion is centered around
two concepts — recursivity and risk aversion.

VII SOME PROPERTIES OF KP PREFERENCES

1. Recursivity

One is entitled to ask why we should complicate the theory of choice under uncer-
tainty by introducing the concept of temporal lotteries. Why not stick to the more
basic choice objects; that is, to lotteries over consumption sequences? The answer is
that the concept of temporal lotteries allows us to separate risk from intertemporal
preferences whilst retaining the very useful property of recursivity.

What would happen if we decided to give up on recursivity? A natural way
of generating a change in an agent’s attitude to risk without affecting his or her
ordinal ranking of non-stochastic sequences would be to apply the multi-commodity

12



analysis discussed in Kihlstrom and Mirman [1974] to the space of distributions
over intertemporal consumption sequences. The Kihlstrom-Mirman approach is to
define a family of utility functions U by taking increasing, concave transformations
Hpy of a basic utility function U. In the intertemporal context the decision maker

would solve the problem:

(16) {m}g.x EoHp|U(co, €1 - ., ¢1)]-

Ctle=o0

By varying the curvature of Hy one could make the individual more or less risk
averse without changing his or her preferences over non-random sequences. But
the cost of this approach is that an agent’s relative ranking of choices at date t
necessarily depends on the entire history of past consumptions and on all of the
possible choices that might be made in the future. Kreps-Porteus preferences allow
one to break the link between risk and intertemporal substitution without giving
up on recursivity.

Recursive preferences are defined in the non-stochastic environment by the as-
sumption that the decision maker’s ranking over future consumption sequences is
independent of his or her ranking over current consumption bundles. The natural
extension of this property to choice over temporal lotteries leads to the sequence
of recursive indices defined by equations (14) and (15). It is the property of inde-
pendence of future decisions from events that have occurred in the past that allows
one to apply the maximum principle of dynamic programming to choice problems
with a recursive structure.

2. A Definition of Risk Aversion

The natural extension — to intertemporal stochastic problems — of the static con-
cept of risk aversion is not so obvious. Pratt’s [1964] concept of the risk premium,
p, for an expected utility function over wealth, is defined implicitly by:

(17) U(z - p) = BU(2);

where Z is the mean of the uncertain wealth gamble Z. For an intertemporal stochas-
tic choice problem, income risk is not the same as consumption risk. For any given

13



preference ordering over temporal lotteries, the way in which the agent assesses
income risk will depend not only on the properties of the preference ordering but
also on the market structure. This dependence follows from the way in which the
functions {v,} are constructed; the market structure enters through the definitions
of the budget sets that constrain the sequence of one period decision problems. It
follows that any extension of the concept of risk aversion to temporal lotteries must
describe either aversion to consumption risk or aversion to income risk; the two
concepts will not generally co-incide.

It also follows from the properties of KP preferences that any useful measure
of risk aversion should take into account the date at which uncertainty resolves.
The following definition extends the Pratt measure of risk aversion to intertemporal
consumption sequences. It is a measure of consumption risk that takes into account

the issue of temporal resolution.

Let ¢, represent the stochastic consumption sequence {&,...,é,...,&r} where
the element ¢; is random with mean ¢, and variance o? and all other members of
the sequence ¢, are known with probability one. Let all uncertainty be resolved at

date 7, and let ¢}, represent the non-stochastic consumption sequence {2, ...,& —

pft’ s )ET}'

Definition: The risk premium for the temporal lottery ¢yt is that value of p,
for which U,(é,t) = U,(ch;), where s < 7. That is, the decision maker is indifferent
between the lotteries é,; and cP,, when these lotteries are evaluated using the utility

index U,.

Notice that the definition of p, is independent of the date at which utility
is evaluated providing that this evaluation takes place before the date at which
uncertainty resolves. This property follows directly from recursivity. It does not
follow, however, that p,; will be independent of 7, the date at which uncertainty is
resolved. The risk premia p,; and py; will not generally be equal when s # k since
the Kreps-Porteus decision maker will be willing to pay an additional premium to
resolve uncertainty either at an earlier or later date. One may capture this idea

14



with the following definition:

Definition: The tsming premsum for early resolution of uncertainty, uy, is equal
to the difference between the risk premia py41t and py: that is, ux = pry1e — Pxey
where k < t.

In the discussion that follows, bear in mind that t refers to the date at which
uncertainty occurs — all other elements of the consumption sequence {c,}L, are
non-stochastic. The idea behind the definition of the timing premium is to compare
two lotteries which differ only in the date at which uncertainty resolves. One of
these lotteries resolves at date k and the other resolves at date k+1. The timing
premium uy is the difference in the risk premia associated with these two lotteries
where the risk premium of a lottery is the amount of certain period t consumption
that the individual would forego in order to avoid the period t consumption risk.
If uy is positive then the individual would be willing to pay a higher premium to
avoid a risk that resolves late than to avoid a risk that resolves early. An individual
with preferences of this kind would prefer to avoid the suspense associated with not
knowing what will happen. On the other hand, if the timing premium is negative,
then the individual would prefer not to know the result of the uncertainty until the
very last minute. It is not difficult to come up with anecdotes which suggest that
either type of behaviour is reasonable.

The case of preference for early resolution fits more easily with the intuition that
we have developed from working with VNM preferences since it usual to think of
situations in which there is some planning advantage to be gained from finding out
early about the future. This is not what is being described by the above concept.
An individual could prefer late resolution of consumption uncertainty but early
resolution of income uncertainty in situations where the planning advantage from
knowing early outweighs a basic preference for suspense. On the other hand —
situations in which individuals express a desire to find out late — are inconsistent
with von Neumann-Morgenstern choice. As examples of such situations — think of
an individual who plans to watch a football game that will be televised after the

15



match has taken place or a couple who are having a baby but profess a desire not
to know the sex of the child until the moment of birth.

VIII COMPUTING RISK AND RESOLUTION PREMIA

In this section of the paper I provide a sketch of a method that may be used to
calculate risk premia and timing premia for the class of utility indices given in
equations (14) and (15). For this class, the risk premia and the temporal premia
are related to each other by the following approximation which is valid for small

values of 02, the variance of the underlying disturbance.?

(18) pe = (-wh/wi)e?/2;

(19) o1 = (wiy'/wywie?/2;

(20) Ps-1t = Dat — Hs-1s s=t,t-1,...,0;
(21) o1 = p(why /w3t (w])? wis;

where the terms w} and wf, i,j € {1,2} represent the first and second partial

derivatives of the aggregator function, w, evaluated at the certain consumption

sequence {¢,}1_,. The superscript, s, in these expressions refers to the date at

which marginal utilities are evaluated; for example:

oUu, _ow
dc, ~ O, (6 Usra)-

wy

Equation (21) is a difference equation which gives the value of the timing pre-
mium at date s-1 in terms of the timing premium at date s. For the finite horizon
economy the marginal utility terms wf and w; are time dependent constants, that is
they do not depend on the value of the timing premium, at least for small values of
o?. The boundary condition for the difference equation is equation (19) which gives
the value of the initial timing premium; that is, the difference in the risk premia
— for consumption risk that occurs in period t — between a risk that resolves at
date t and a risk that resolves at date t-1.

16



A simplification of these relationships is available for the case in which the time
horizon of the decision maker becomes very long; that is, as T — oo. An axioma-
tization of the infinite horizon problem is available in Epstein and Zin [1987:1]. In
this case things become notationally less cumbersome since the partial derivatives
of the function w become time independent, at least for constant sequences of the
form {&, = €}2,. The timing premia are given by the formulae:

(22) Ri-1 = (wzz/wz)wla’/Z.
(23) el = Walks; s=t—-1,t-2,...,1.

Kreps and Porteus point out that it is the concavity or convexity of w in its
second argument that determines whether the individual prefers late or early reso-
lution of uncertainty. Preference for resolution is reflected in the sign of the timing
premium. Equation (22) implies that if the aggregator function w is concave in
its second argument — if wy; < 0 — then the decision maker would prefer to find
out about period t uncertainty in period t rather than in period t-1. The reverse
implication holds if w is convex. From equation (23) it follows that the timing
premium will be negative (positive) at all dates s < t if wy2 < 0, (wg2 > 0).

In the infinite horizon problem, it is interesting to ask how the timing premium
behaves as the date, t, at which uncertainty occurs becomes further and further
removed from the date, s, at which the uncertainty is resolved; that is, as (s —t) —
o0o. It follows from equation (23) that, in this situation, provided w; < 1, the timing
premia will converge to zero; u, — 0, as (s — t) — oco. But the term w, is just the
marginal rate of intertemporal substitution since in the infinite horizon problem:

(24) Uz/Ul = szl/Ul = ws.

In the case of von Neumann-Morgenstern preferences the aggregator function is
linear in its second argument; that is ws, is identically zero and w, is equal to
the rate of time preference, 8. It follows that, for VNM preferences the timing
premium is zero at all time horizons. In the Kreps-Porteus case, the timing premia
may be positive or negative and the rate at which the sequence decays, as (s-t)
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increases, depends on the endogenous rate of time preference w;. A positive rate of
time preference, w; < 1, is a necessary and sufficient condition for the sequence of
timing premia defined by equations (22) and (23) to converge to zero.

The relationship between the risk premia for different resolution dates is given
by equation (20) and the risk premium for a risk that resolves at the same date
as the underlying uncertainty is given by equation (18) which is equivalent to the
familiar Arrow-Pratt measure of absolute risk aversion in the case of atemporal
choice.

IX A HOMOGENEOUS CLASS OF PREFERENCES

In this section I introduce a class of preferences for which the utility index U,
is homogeneous of degree v in current consumption and in the value of future
state dependent consumption. This class, which has been proposed by Epstein and
Zin [1987:1] and independently by Weil [1987], has the convenient property of allow-
ing the intertemporal elasticity of substitution and the co-efficient of relative risk
aversion to be represented by two separate parameters. It is capable of capturing
the behavior either of an individual who prefers early resolution of uncertainty or
of one who prefers late resolution. These preferences are defined by choosing the
functions wr and w in equations (14) and (15) to be given by:

(25) wr = 27
(26) w(z,y) = (z*+ ﬁyp/'r)v/p.

The case in which v =1 is the case that defines RINCE preferences and it is the
only member of this class® for which one can obtain closed form solutions to
intertemporal stochastic choice problems when there is both rate of return and
endowment uncertainty. For the special case in which there is no uncertainty, the
KP utility index that is induced by equations (25) and (26) takes the degenerate
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form;

T
(27) Uo = [3 Bel].

t=0
The parameter ~ defines a family of utility functions each of which have the same
ordinal properties. The parameter p, on the other hand, captures the intertem-
poral curvature of these functions; p is related to the intertemporal elasticity of
substitution n by the relationship;

2 108(Ct/ ct+l) — 1
dlog R, (p—-1)

In situations for which uncertainty is non-trivial, the parameter 4 captures the

1l

(28) n

decision maker’s attitude towards risk. It’s effect follows from the presence of

terms of the form;
(E, 2/ ?) (74

in the recursive equations that are used to construct the utility index Uy. If there is
no uncertainty then these terms collapse. The special case of v = 1 corresponds to
a type of risk neutrality and it is this property that enables one to generate closed
form solutions.

One may also show that, for this class of preferences, the decision maker will
prefer early resolution of uncertainty if and only if p > 4. Since p is bounded above

by 1 it follows that the risk neutral decision maker must prefer late resolution. This
property is discussed in more depth in section (XI).

X THE PARAMETERIZATION OF RINCE PREFERENCES

In this section I describe the class of preferences that I call RINCE and I derive an
exact solution for the sequence of consumption decisions that would be taken by a
decision maker whose preferences were of this type. RINCE preferences are mem-
bers of the homogeneous class described in section IX for which the homogeneity
parameter « is equal to one. The decision rule that describes optimal behavior in
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any period is constructed by solving the sequence of value functions described in
equations (9) (10) and (11) when the functions wr and w are given by:

(29) wr(z) =2

1
zf + By*)e; ifp #0;
(30) w(z,y) = (1-p s )i ] !
Py if p=0;
where 0 < # < 1 and p < 1. Before providing explicit functional forms for the
decision rules that determine {¢,} L, it helps to introduce some additional notation.

Define the functions F and G : R, — R, as follows:

(1+ 875 275) %" if p #0;
(1-p8)-%8P2"; ifp=0;

(31) F(z) = {

(32) 1-8; if p=0.

The decision rule for consumption is most conveniently expressed in terms of two
variables that resemble a compounded interest rate and a human wealth term.
However, this analogy is not exact since these variables involve the parameters
of the utility index. More precisely, the sequences of interest terms {Q,}L, and
human wealth terms {h}L., are defined recursively as follows:

(33) F(Qr) = 1;

(34) Q: = Et[ﬁt+1F(ét+l)]; t=0,...,T-1;

(35) hr = wr;

(36) hy = w + Ey [7&:+1F(ég+1)/Qg]; .t=0,. ..,I-1.

The variable Q; depends on the moments of the distribution of all future interest
rates and on the preference parameters 8 and p. Notice from equation (36) that the
terms F(Q,)/Q. act as stochastic discount rates on the future endowment sequence
{w:}. The term h, may be thought of as “perceived human wealth” in view of the
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analogous role that it plays to human wealth in the non-stochastic case. One may
then define total wealth W, as:

(37) Wi = Ria: + hy; t=o0,1,...,T.

W, consists of the market value of physical assets, plus the subjectively discounted
value of future endowments. Given these definitions, the sequences of decision rules
{e:}L, and value functions {v,}\, are given by the following equations;

(38) & = G(Q)W; t=0,1,...,T—1;
(39) cr = Wry
(40) v = F(Qg)Wt; t=0,1,. .o ,T-

The system of equations (33) - (37) gives explicit rules for determining the
values of the variables Q. and W, in terms of the conditional moments of the
joint endowment-return process {&,,ﬁ,}fﬂﬂ. One may therefore summarize the
behavior of an individual with preferences of this type by keeping track of two
rather simple functional equations.

Some special cases of this model may prove helpful in establishing the rela-
tionship of these preferences to more familiar examples of non-stochastic utility
functions. Over non-stochastic choice problems the RINCE decision maker will
behave very much like a von Neumann-Morgenstern individual whose preferences
are described by the additively separable function:

(41) U=) —.

t=0 p

For problems of this kind the utility index of RINCE preferences reduces to the
function given in equation (27) when the parameter v is set equal to one. In
situations of risky choice, however, it follows from equations (38), (37) and (36) that
the decision rule of the RINCE agent is linear in probabilities and that it is only the
first moment of the one-step-ahead endowment that affects his or her consumption
choice. It is in this sense that RINCE preferences display risk neutrality.
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A second case that is of interest is that in which the sequences {R:}T, and
{éx}E., are independent of each other and in which each of these sequences is
independently distributed through time. In this case the variable A, is given by the
expression: \

Ei[@44] Ey[@g44) Ei[&r)
E[R]  ERn)BiRya) NS E(Rew]

If w; and R, are non-stochastic then this expression reduces to the familiar definition

(42) ht = w +

of human wealth. The expression for consumption given by equation (38) is, in this
case, identical to the expression that is given by the ‘constant relative risk aversion’
preferences described in equation (41). In the case of p = 0 and stochastic but
independent endowment-return processes the consumption function takes the form:

(43) Cy = (1 - ﬂ)Wt;

where W, is the sum of human and non-human wealth terms and human wealth is
obtained by discounting the first moments of the endowment process by the first
moments of the return process — equation (42). In the case where interest rates
are serially correlated, the discount factor will no longer be equal to the mean of the
return process because interest rates contain information about the future. Serial
correlation will carry a ‘resolution premium’ which reflects the agent’s basic pref-
erences over the timing of the revelation of information. The limiting case of these
preferences, as T — 00, is of special interest since it provides an exact represen-
tation of Friedman’s permanent income hypothesis. By exploiting the separation
between risk aversion and intertemporal elasticity of substitution that is provided
by the Kreps-Porteus structure, RINCE preferences are able to incorporate the sim-
plifying assumption that agents are risk neutral without trivializing intertemporal
choice.

XI SOME PROPERTIES OF RINCE PREFERENCES

In section VII I introduced the concepts of the risk premium and the timing
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premium and I showed that an agent will prefer early (late) resolution of uncertainty
if the aggregator function w is convex (concave) in its second argument. Since
the aggregator function that defines RINCE preferences — equation (30) — is
concave it follows that a RINCE decision maker will necessarily prefer late over
early resolution. Some insight into this issue can be gained from thinking about
the sequence of risk premia defined by equations (18) and (20). Suppose that we
want to model an individual who is risk neutral in the sense that he or she is
indifferent between a period t consumption risk which resolves at date t, and its
mean, for all periods t=1,...,T. This means that the risk premium prr must be
zero. How will this individual respond to period T risks that resolve earlier than
date T? It follows from equation (20) that, if he or she is to be risk averse, or at
least risk neutral, in the sense that p,, > 0 for all s < t then the timing premium
must be non-positive; that is, the individual must weakly prefer late resolution.

What is going on here? A priori — it seems plausible that a risk neutral agent
could also prefer early resolution of uncertainty. But our concept of risk neutrality,
in which the value function is linear in the appropriate measure of expected human
wealth, excludes this possibility. What seems to be happening is that the curvature
of the period utility function, when preferences are von Neumann-Morgenstern,
provides a natural planning advantage to early resolution. That is; von Neumann-
Morgenstern preferences generate value functions in which an agent has a natural
preference for early resolution of income lotteries. In order to counteract this natu-
ral tendency for prefering early resolution; the agent’s preferences over consumption
lotteries must incorporate a basic desire for late resolution.

Although a preference for late resolution of uncertainty is not necessarily un-
reasonable, it does have some counter-intuitive implications in the present context.
For example, in the case in which T=1 (2 periods), all wealth is non-human and
p > 1/2, it can be shown that an agent would strictly prefer not to be told the
realization of the rate of interest before making his or her consumption decision
for the first period, even though that information would be used to alter his or her
decision if it were available. Suppose, first, that the agent will not find out the
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realization of the interest rate until period 1. In this case the value of expected
utility at date 0 would be given by:

vo = F(Eo[R:])Roao

Now suppose that the agent is able to find out the realization of R, before deciding
how much to consume in period 0. In this situation the realized value of utility

from the standpoint of period 0 would be given by:
vo! = F(R,) Roao;

and so expected utility at date 0 would be:

Eo[vyl] = Eo|F(Ry)|Rogo < F(Eo[R:))Roao = vo.

The inequality follows from the concavity of F, which in turn follows from p > 1/ 2.4

This example illustrates that one should be careful when applying RINCE prefer-
ences to concrete problems. There will be some situations in which the assumption
of risk neutrality and the associated assumption of a preference for late resolution is
a relatively harmless simplifying assumption. There will be other situations when
it makes no sense. Let the buyer beware!
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APPENDIX 1

This appendix provides a sketch of the proof that the closed form solution to the
value function described in the text is valid. The proposed solution for v, is given
by: /

(44) v = F(Q)W..

Taking expectations of v; at t-1 using the identity (37) and the asset accumulation
rule one obtains:

(45)  Ei—qi(te) = Et—l[ﬁtF(ét)][Rt—lat-l + we-1 — 1] + Et—l[iltF(ét)];
which simplifies, using definitions (34) and (36), to
(46) Ei_1(¥) = Qi-1(Wi—1 — ¢i—1).

By substituting (46) into equation (10) and using the functional form (30) for w
one obtains the first order conditions:

(47) ef7t — Qi-1PB(Qi-1(Wioy — ce-1) 1 = 0

which may be rearranged to give the functional form (38) using the definition of
G given in equation (32). By substituting the solution for ¢;—; at a maximum
(equation(38)), into the function w one obtains the expression:

(48) Vo1 = F(Q—1)We-1.

This establishes that if (44) is a correct representation of the value function at
t, then it is also correct at t-1. One completes the proof by establishing that vr_,
is described by (44) given the definition of vy in equation (40).
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APPENDIX 2

This appendix describes a method for computing approximate risk premia when
preferences are in the KP class. These approximations are computed in the fol-
lowing way. Consider a temporal lottery é,; = {%o,...,C,...,ér} which resolves at
date 7 < t and let & be the mean of &. For s < 7 < t, let U, represent the value of
the index U, evaluated at the reference path & = {z,,...,&,...,&ér}. Similarly let
UP be the value of the risk compensated path c¢f, = {,...,6 — Prt,..., &} and let
U, be the value of {&,,...,é&,...,&r}. For all of these definitions, if a path {c,}7,
is evaluated at date s > 0, the first s-1 elements of the path are dropped. Since
preferences are recursive and history independent there is no loss of generality from
this convention. Now define:

(49) uP =UP -U;
(50) i, =U, -0,

The terms u} and i, represent the difference in utilities yielded by the risk com-
pensated path cf, and the uncertain path ¢,, from the reference path &;. The value
of uP for all s < t can be found by solving the following difference equation:

(51) uP = wiul,, + o(ud,,) s=t—1,...0;

with boundary condition;
(52) uf = —wipn + 0(pri)-

It is a little more complicated to compute the value of #, since one must retain the
first two terms in the Taylor series expansion of %, for dates 7 < s < t. Making use
of the definition, € = ¢, — &, one may keep track of i, and (#,)? with the following
pair of difference equations, which hold for r < s < t:

wi wj,/2 g1 ol(isra)?).
(53) [ u.),] [ (w)? ] [ (nn)? + 0((fs+1)")
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The boundary conditions for these difference equations are given by:

U, wy wil/ 2 2
54 = + o{€”).
0 BRI HES
Now define: _ .
. w; wyy/2
w3 = 02 zz'/ s
| (w2) ]
and let; ) )
Wt — UJ§ w:l/z
' 0 (wi)? |’
=3 wl -

Using this more compact notation one may solve the difference equation (53) to

obtain the value of i, and (%,)? as functions of ¢ and €? :
‘ + o(€?); r<s<t.
(ul)2 v=s 2

Similarly one may solve (51) to write uP as a function of p,. :

(55) [?]=ﬁww

t-1
(56) uf == H w‘z,wiprt + o(prt)-

v=s

At date 7, uncertainty is revealed. Hence the equation that describes the values of
i, and (&,)? takes the form:

(57) [ iy ]ztﬁwgwf[fz ]'+ o(€?).

(@) | =
Using the definition of p,:, that is, uP, = &, it follows that:
(58) Pre = Alg?;
where,

t-1 . . v, .t
— lly=y WaW;

Ao [ :;‘,Wz'Wf]
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and AY for i, j € {1,2} is the ijth element of A. Using the same notation, one may
write the risk premium for a risk that resolves at date 7 — 1 as:

wr-t 12
(59) Prowt = [wf_l A] o?;
H
which simplifies to;
| 12, Wit o s L wist | .
(60) Pr-nn = |A +—2—A 0" =pp + 2—'”;:{‘4 g
A similar calculation implies that:
(61) _ n Wil 42| o
Pr—2t = Pr—1t wz 2w,_2 .
2

Equation (21) follows directly from (60) and (61) together with the definition of
s—1 in equation (20). The boundary conditions (19) and (18) follow directly from
evaluating (58) and (60) at 7 = t.
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NOTES

. Throughout this paper I maintain the assumption of payoff history indepen-
dence. In general, KP preferences at a point in time may depend on the
entire consumption history of the consumer. I also assume that the aggregator

function, w, is time independent.

. Appendix 2 provides a description of the way in which these approximations

are constructed.

. This is a conjecture. I do not have a proof of the non-existence of some other
class that can be easily solved — but I have been unable to find a counter

example.

. This example was provide by an referee.
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