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Abstract: This paper analyzes preference relations over two-stage lotteries,
i.e., lotteries having as outcomes tickets for other, simple, lotteries.
Empirical evidence indicates that decision makers do not always behave in
accordance with the reduction of compound lotteries axiom, but it seems that
they satisfy a compound independ;nce axiom (also known as the certainty
equivalent mechanism). It turns out that although the reduction and the
compound independence axioms together with continuity imply expected utility
theory, each of them by itself is compatible with all possible preference
relations over simple lotteries. By using these axioms I analyze three
different versions of expected utility for two-stage lotteries.

The second part of the paper is devoted to possible replacements of the
reduction axiom. For this I suggest several different compound dominance
axioms. These axioms compare two-stage lotteries by the probability they
assign to the upper and lower sets of all simple lotteries X. (For a simple
lottery X, 1its upper (lower) set is the set of lotteries that dominate (are
dominated by) X by first order stochastic dominance.) It turns out that
these axioms are all strictly weaker than the reduction of compound lotteries
axiom. The main theoretical results of this part are: (1) an axiomatic
basis for expected utility theory that does not require the reduction axiom
and (2) a new axiomatization of the anticipated utility model (also known as
expected utility with rank-dependent probabilities). These representation
theorems indicate that to a certain extent the rank dependent probabilities
model is a natural extension of expected utility theory. Finally, I show that
some paradoxes in expected utility theory can be explained, provided one is

willing to use the compound independence rather than the reduction axiom.

Keywords: Two-stage lotteries, compound independence, reduction of compound

lotteries axiom, compound dominance, expected utility, anticipated utility,



1. INTRODUCTION

One of the common vindications of expected utility theory, besides its
usefulness, is that it is based upon normatively appealing assumptioms.
Special attention was given to the independence axiom, which became almost
synonymous with the theory itself. This axiom states that a lottery X =
(xl,pl;...;xn,pn) is preferred to a l?ttery Y - (yl,ql;...;ym,qm) if and
only if for every lottery Z = (zl,rl;...;zl,rz) and a € (0,1], the
mixture aX + (l-a)Z = (xl,apl;...;xn,apn;zl,(l-a)rl;...;zz,(l-a)rl) is
preferred to the mixture a¥Y + (l-a)Z = (yl,aql;...;ym,aqm;zl,(l-a)rl;...;

zz,(l-a)r Essentially, this is the key axiom in Marschak (1950) and
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Herstein and Milnor (1953). Almost all writers in recent years have
criticized and rejected this axiom. Some tried to weaken it (Quiggin, 1982;
Chew, 1983; Dekel, 1986; Chew, Epstein, and Segal, 1988), to replace it with
other axioms (Yaari, 1987; Roell, 1987), or to abandon it completely
(Machina, 1982).

In this paper I try to consider nonexpected utility theory while
keeping the spirit of the independence axiom. For this I use the richer
setting of two-stage lotteries, their outcomes being tickets for other,
simple, lotteries. When adapted to two-stage lotteries, the independence
axiom states that the two-stage lottery A, yielding with probability a a
ticket for lottery X and with probability 1l-a a ticket for lottery 2,
is preferred to the two-stage lottery B, which is the same as A with Y
instead of X, 1if and only if the one-stage lottery X is preferred to the
one-stage lottery Y. Call this axiom.compound independence, and call the
independence axiom for simple lotteries mixture independence.

The compound independence axiom by itself does not imply expected

utility theory, as it does not compare two-stage lotteries to one-stage



lotteries. For this, one has to add the reduction of compound lotteries
axiom, stating that a two-stage lottery is equally as attractive as the one-
stage lottery yielding the same prizes with the corresponding multiplied
probabilities (see Samuelson, 1952). The compound independence axiom and
the reduction of compound lotteries axiom together imply the mixture inde-
pendence axiom. However, these two axioms are mutually independent, and
each one of them by itself is compatible with all possible preference
relations over simple lotteries.

The key question is therefore this: Suppose that in a richer setting
one can distinguish between one- and two-stage lotteries, thus making it
possible to assume compound independence in a form that is distinct from
mixture independence. Will this richer setting and distinction imply a
better understanding of decision making under uncertainty? I believe that
the answer to this question is yes. This distinction can obtain more
normatively acceptable axiomatizations of expected utility theory (see
Section 3 below). It may also supply us with axiomatizations of alternative
theories (Section 4). On the other hand, the compound independence axiom is
sufficiently weak so that by itself it does not impose any restrictions on
preference relations over simple lotteries (Section 2).

The distinction between one- and two-stage lotteries has some
theoretical advantages. By assuming compound independence one can prove
that Nash equilibrium always exists (Safra and Segal, 1988) even in a non-
expected utility framework. However, if one assumes the reduction but not
the compound independence axiom, Nash equilibrium exists only if prefere;ces
are quasi-concave (Crawford, 1987). Also, Green's (1987) claim that
whenever his preferences fail to be quasi-convex, an individual can be mani-

pulated to replace a lottery X with a lottery Y which is stochastically



dominated by X, depends on the reduction axiom. So does Border’s (1987)
defence of expected utility theory.

The compound independence axiom has a strong normative appeal. Wakker
(1988) proved that violations of this axiom imply that decision makers may
be better off rejecting information. Finally, assuming the compound inde-
pendence but not the reduction axiom can explain some nonexpected utility
behavioral patterns, as demonstrated in Section 5 below. (See also Segal,
1987b.) Consider, for example, the following decision problem from Kahneman
and Tversky (1979):

Problem 1: Choose between Xl = (3000,1) and Y1 = (0,0.2;4000,0.8).
Problem 2: Choose between X2 = (0,0.75;3000,0.25) and Y2 = (0,0.8;4000,
0.2).

Problem 3: Choose between A = (0,0.75;X,,0.25) and B = (0,0.75;Y,,0.25).

1’ 1’
The lotteries in problems 1 and 2 are simple lotteries. The lotteries

in problem 3 are compound lotteries, depicted in Figure 1.
[Insert Figure 1 here.]

Kahneman and Tversky found that most subjects prefer X1 to Y1 but
Y2 to X2 (a clear violation of expected utility theory and of the mixture
independence axiom). Note that by the reduction axiom, A ~ X2 and B ~
Y2, hence Y2 > X2 implies B > A. By the compound independence axiom, on
the other hand, A = B if and only if Xl z Yl’ hence X1 > Y1 implies A
> B. Kahneman and Tversky found that most subjects prefer A “to B, in
agreement with the compound independence axiom, but in disagreement with the
reduction axiom.

In the next section I formally define one- and two-stage lotteries and

show the connection between the reduction of compound lotteries axiom,



compound independence, and mixture independence, as well as the connection
between these axioms and different forms of expected utility for two-stage
lotteries. As an alternative to the reduction axiom I suggest in Section 3 a
compound dominance axiom that iIs a stronger version of the stochastic domin-
ance axiom for two-stage lotteries but still weaker than the reduction axiom.
It turns out that this axiom, together with the axioms of compound independ-
ence and strict first-order stochastic dominance for one-stage lotteries,
implies the expected utility representation. In Section 4, I discuss the
connection between the concept of compound dominance and Quiggin’'s (1982)
anticipated utility theory (also known as expected utility with rank-
dependent probabilities) and prove a representation theorem for this theory.
Section 5 discusses some empirical evidence and shows that a rejection
of the reduction axiom while accepting the compound independence axiom may
solve some nonexpected utility paradoxes, as well as some phenomena that do
not contradict the expected utility hypothesis but seem to imply risk lov-

ing. Section 6 concludes with some remarks on the literature and some final

comments,
2. DEFINITIONS

Let L1 - {(xl,pl;...;xn,pn): Xy, X € (0,M], X < ... = X,
Pys---uP, 2 0, Epi = 1}. Elements of Ll’ denoted by X, Y, etc.,

represent simple lotteries, yielding X, dollars with probability P;- i -

l1,...,n. For X = (xl,pl;...;xnpn) € Ll' define the cumulative
distribution function Fx by Fx(x) = Pr(X<x).

On L1 there exists a complete and transitive preference relation -
X~ Y if and only if X 2, Y and Y=z, X, and X >, Y if and only if

1 1 1 1

X kl Y but not Y kl X. Assume that the relation kl satisfies the



following continuity axiom:

Continuity: 2 is continuous in the topology of weak convergence. That
is, if X’Y’Yl’YZ"" € L1 such that at each continuity point x of FY’
FY.(X) - FY(x), and if for all i, X .2 Yi’ then X £y Y. Similarly, if

1

for all 1, Yi z, X, then Y =, X.

1 1
v Ll - [R represents the preference relation £y if for every X,Y €
Ll’ X £, Y 1if and only if V(X) = V(Y). The most celebrated

representation is the expected utility functional

(@D V(X) = Zpiu(xi).

Preference relations represented by this functional satisfy the
continuity axiom whenever u 1is continuous (and hence bounded). Of course,
this axiom does not imply the expected utility functional. Further assump-
tions are required, either on kl itself or on its extension to two-stage
lotteries.

The outline of the space L1 assumes that all the events in all the
lotteries are ethically neutral in the sense that the decision maker cares
about an event’s probability, but not about the event itself (see Ramsey,
1931). This assumption is plausible when the prizes are measured in terms
of money and the probabilities are determined by an objective mechanism such
as roulette, coins, or dice. In particular, it implies that the ﬁecision
maker does not care whether the winning event at the lottery (0,0.75;
100,0.25) is two heads on two coins or two heads from the same coin being
tossed twice with no time passing between the two tosses. On the other
hand, it is not necessarily true that the decision maker is indifferent
between the lotteries Z* = "flip two coins at time ) win $100 if both

fall heads up, $0 otherwise" and W*, which is the same as Z* but with



the second coin to be tossed at time £, > ty, especially when a
sufficiently long time passes between t and t,, or when for other
reasons, the two stages are clearly distinct. This discussion leads to the

construction of two-stage lotteries.

Let L2 - {(Xl,ql;...;xm,qm): Xl,...,Xm € Ll’ S PR > 0, Zqi = 1}.
Elements of L2, called two-stage lotteries, are denoted by A, B, etc. A
lottery A € L2 yields a ticket to lottery Xi with probability q; i=
l,...,m. More specifically, at time tl the decision maker faces the
lottery (l,ql;...;m,qm). Upon winning the number i, he participates at
time t, >ty in the lottery Xi € Ll. Assume throughout this paper that
all prizes are delivered at time ¢t > s and all decisions are made at
time to < tl'

Natural isomorphisms exist between L1 and two subsets of L2. The

first subset, A, consists of degenerate lotteries in L2. The second
subset, TI', consists of lotteries in L2, outcomes of which are degenerate

in Ll' Formally, A = {((X,1): X e Ll), and T = ((xl,l),pl;...;(xn,l),

P): X = (xl,pl;...;xn,pn) € Ll). For X € Ll’ the elements of A and T

that correspond to X are denoted by Sx and Tx» respectively.

n

On L2 there exists at time t0 a complete and transitive preference

relation = Throughout this paper, U: L2 -+ R denotes a representation

2°

function of z,- This preference relation induces by restriction preference

relations E, and . on A and T, respectively. These two are 2"

type preferences in the sense that their domain is isomorphic to Ll'
The construction of the space L2 and the definition of two-stage

lotteries assumed that decision makers do not find themselves obliged to

multiply the probabilities of the two stages. If the above-mentioned two

* *
lotteries Z and W , which differ at the time at which the second coin



i1s tossed, ought to be considered equivalent by all decision makers regardless
of their preferences, then both should be written as (0,0.75:;100,0.25). In
other words, our setting assumes that decision makers do not find it necessary

to follow the reduction of compound lotteries axiom, given below.

. i 1 i i .
Re C ' e : Let Xi (xl,pl,...,xni,pni), i
1,...,m, let A = (Xl,ql;...;Xm,qm), and define
1 1 1 1 m m m m
R(A) = (xl,qlpl;...;xnl,qlpnl;...;xl,qmpl;...;xn ,qmpn )
m m

The decision maker is indifferent between the two-stage lottery A and the

one-stage lottery R(A). That is, A =2 7R(A)'

As mentioned in the Introduction, empirical experiments indicate that
decision makers do not always obey this axiom. Recently, Schoemaker (1987)
found new such evidence. Consider the lottery (0,l1-p;x,p). The decision
maker has to choose between the following two options: In A, p = 0.5,
and x has a uniform distribution over [0,1], while in B, x = 0.5, and
p has a uniform distribution over [0,1]. Certainly, one can interpret
these two options as two-stage lotteries (although this is not the only
possible interpretation -- see Schoemaker, 1987). Using the reduction of
compound lotteries axiom, A and B reduce to the lotteries X and Y in
Figure 2. The lottery X is obtained from Y by a mean preserving
increase in risk (note that a and S are congruent triangles), hence a
risk averse decision maker should prefer Y to X and B to A. As
discovered by Schoemaker, most subjects prefer A to B. Other violatidns
of the reduction axiom were found by Ronen (1971) and Snowball and Brown
(1979), although, as reported by Keller (1985), these violations may depend

on the way the problems are formed.



[Insert Figure 2 here.]

There may be several reasons why some decision makers do not use the
reduction of compound lotteries axiom as a guideline for evaluating two-stage
lotteries, even if one assumes that people accept the basic laws of probabil-
ity theory. (For example, at tl and t2 decision makers may use the rule
that for independent events S1 and 82’ P(Slnsz) - P(Sl)P(Sz).z) In this
model, the reason is that some events are realized at time tl while others
are realized at time t,. This may affect the desirability of a two-stage
lottery (as compared to a similar one-stage lottery) in at least two ways.
Firstly, the decision maker may have preferences for the number of lotteries
in which he participates. This argument holds whenever the two stages are
clearly distinct, even without the time element. Secondly, he may have
preferences for early or later resolutions of uncertainty. That is, he is not

indifferent between the lotteries and 6x, which are the same except for

Tx
their timing; the uncertainty of Tx is resolved at time tl, while the
uncertainty of Sx is resolved at time t2.3 This later reasoning is especi-
ally plausible if preferences are induced from more primitive decision
problems such as consumption-saving problems. (See Mossin, 1969; Spence and
Zeckhauser, 1972; Dreze and Modigliani, 1972; Kreps and Porteus, 1978, 1979;
Epstein, 1980; Machina, 1984; and Chew and Epstein, 1987a).

Of course, if the decision maker does not care when the uncertainty is:

resolved, that is, if for every X € L he is indifferent between Tx and

1,

Sx, then he will have the same preference relation over I' and A. Let

2De Finetti (1937, 1977) proved that violations of this rule expose the
decision maker to Dutch books. These arguments are relevant only when no
real time is involved. See also Marschak (1975).

3This nonindifference may persist even, as_assumed above, when the
prizes of all lotteries are delivered at time ¢t > t2.



X,Yel If §

1 X "2 'x and § then it follows from the

Yy T2 Ty

transitivity assumption that § ) if and only if T} Ep Ty Less

X *a’y Y

evident is that the opposite holds true as well. That is, if the decision
maker has the same preference relation over A and T, then he is
indifferent to the timing of the resolution of the uncertainty. Let X €
Ll' By continuity, there exists a number x such that sx ~A 6(x'1).
Because the decision maker’s preferences over A and I are the same, it
is also true that T T 7(x,1)' The lotteries 6(x,1) € A and 7(x,1) erTl
represent the same lottery ((x,1),1), which is a sure gain of x dollars,
paid at time t (recall that all preferences are expressed at time ty <
This discussion is summarized in the

t It thus follows that §

1) X "2 'x-

following axiom and lemma:
Iime Neytrality Axiom: For every lottery X € L,, 6y ~, vy.

ILemma 1: The preference relations zr and ;A are the same zl-type
relation (i.e., 6x E, SY <=> Tx *p 7Y) if and only if the decision maker

satisfies the time neutrality axiom.

The implication of the timing of the resolution of the uncertainty on
decision makers’ behavior is especially important when it may affect current
decisions such as consumption-saving problems (see references above). It is
usually believed that this is the reason that decision makers are not
indifferent between one- and two-stage lotteries. Although I believe that
in general people care for the resolution timing of the uncertainty, I want
to emphasize here the other factor, which is too often neglected. Consider
again the lotteries Z* and W* of the above example. (These two lotter-

ies differ in the time at which the second coin is flipped, t, or ¢t,.

1 2°)

* *
Lottery Z  involves just one lottery at time £, but W  involves two
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lotteries, one at t the other at ¢t It may well happen that, even

1’ 2’

with the same compound probabilities, the decision maker has preferences for
more or less lotteries. I adopt this aspect of two-stage lotteries and will
assume later on that the decision maker satisfies the time neutrality axiom,
hence his preference relations on I' and A are the same.

Let X,Y € L, be such that § §

1 X *a

are available, and once the decision maker announces his preferences, he

v Originally, both 6X and SY

participates in his preferred lottery. As mentioned above, his participation
in X (or Y) may be uncertain, because X and Y may themselves be
possible outcomes of another, non-trivial, lottery. Formally, let A =
(X,9;Z,1-q) and B = (Y,q;Z,1-q). With probability 1l-q, both A and B
yield a ticket for Z. The lotteries A and B yield different outcomes
only if the q-probability event happens. In that case, A yields a ticket
for X while B yields a ticket for Y. As the unconditional lottery 6x
is preferred to the unconditional lottery SY (the uncertainty of these two

lotteries is resolved at time ¢t it is reasonable to assume that A >2 B.

2)1

Of course, this assumption does not follow from the assumptions made so far.

Compound Independence Axiom: Let X,Yel,, and let A = (Z,,q;;...iX,q;;

.;Zm,qm) and B = (Z .;Y,qi;...;Z ,qm) be two lotteries in L2. A

liql;" m
s B if and only if SX =, SY'

Let CEl(X) be the certainty equivalent of X, given implicitly by
(CEl(X),l) -1 X. Let CEP(X) and CEA(X) be the certainty equivalents of

X with respect to = and *,, respectively. That is, ((CEr(x),l),l) ~9

r A

and ((CEA(x),l),l) -~ If = satisfies the compound independence

% 2 Sy 2

axiom, then

(xloql; LI ;xqum) ""2 ((CEA(XI) ,1) ’ql; ey (CEA(xm) ,1) ;qm)
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The left-hand side of this last equivalénce is a general two-stage lottery.

The right-hand side is an element of T, the set of lotteries in L2 where

all the uncertainty is resolved at time € -
The compound independence axiom and the reduction of compound lotteries

axiom are compatible with all preference relations on L Let the pre-

1°
ference relation ¥, on L1 be represented by V and define two

preference relations on L2 as follows:

(a) Given A,B e L let A x, B if and only if R(A) ¥y R(B). This

2 ’
preference relation on L2 is the only one to satisfy the reduction of

compound lotteries axiom such that x = x, = »

r A 1 It can be repre-

sented by U(A) = V(R(A)).

(b) Given A = (Xl,ql;...;xm,qm) and B = (Yl’rl;"';Yl’rl)’ let A 22 B

if and only if (CEl(Xl),ql;...;CEl(Xm),qm) 2 (CE(YI)’rl;"';CEl(Yl)’
rz). This preference relation on L2 is the only one to satisfy the

compound independence and time neutrality axioms such that i

4
®q- It can be represented by U(A) = V(CEl(Xl),ql,...,CEl(Xm),qm).

Without the time neutrality axiom, the compound independence axiom is

compatible with any two preference relations on Ll' Let zi and ki be

two such preferences and let CE%(X) be the certainty equivalent of X

2

1

(c) Given A and B as in (b), let A 22 B if and only if (CEi(Xl),ql;

with respect to =

o apl 1 2 . L ap2 1
...,CEl(Xm),qm) 21 (CEI(Yl)’rl""’CEl(Yz)’rz)' In this case, Ep = £1
2

and Ey =By If V1 represents _zi, then ®, can be represented by

1,2 2
U(A) -V (CE1(x1)1q1n°--vCEl(xm)’qm)'

4
This structure proves that time neutrality does not implly the
reduction axiom.
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To illustrate, consider the extensions of Quiggin’s (1982) anticipated
utility functional to two-stage lotteries via the reduction axiom and via
the compound independence and the time neutrality axioms. Let X = (xl,pl;

..;xn,pn) where X S ... = X - The anticipated utility of this lottery

is given by

| n-1 n n
(2) V(X) = E: u(xi)[f[ }: pj] - f[ }E pj]] + u(x )f(p )
i=1 j=i j=i+l

where u and f are continuous and strictly increasing, u(0) = 0, £(0) =

0, and £(1) = 1. Let g(p) =1 - £(1-p) and obtain from (2) that

- 1-1
V(X) = u(x)glpy) + 3: u(x,) [8[ E: Pj] ) g[ }: pj]].
1=2 j=1 i=1

Some writers use this version of the anticipated utility functional. How-
ever, for the discussion in Section 4, the expression in (2) is the more
natural. The reader is left the straightforward but tedious task of extend-
ing (2) to two-stage lotteries as in cases (a) and (b) above (see Segal,
1987b). The reader can also easily verify that these two extensions
coincide if and only if f is linear. Later on, I use a special case of
these extensions. Let x >0 and let A = ((0,1-p;x,p),q;(0;1),l-q). By

the reduction axiom,
(3) V(A) = u(x)f(pq)
while by the compound independence and the time neutrality axioms,

(4) V(A) = w(x)£(p)£(q)."

5The expression 3t (3) and (4) equal each other for all p and q if
and only if f£(p) = p (Aczel, 1966).



13

Let u(x) = x and f(p) = (ep-l)/(e-l) and get u(3000)f(1) >
u(4000)£(0.8), but u(4000)£(0.2) > u(3000)f(0.25) = u(3000)£(1)£(0.25) >
u(4000)£(0.8)£(0.25). These inequalities are in agreement with the reported
common response to problems 1-3 of the Introduction.6

The reduction and the compound independence axioms, both on %9

together imply the following mixture independence axiom on 2K

Mixture Independence: Let X = (xl,pl;..-;xn.pn), Y = (yl,ql;--.;ym,qm),
1'%~ 1’ and let a € (0,1]. X =y Y 1if and only if oX

+ (l-a)Z = (xl,apl;...;xn,apn;zl,(l-a)rl;...;zz,(l-a)rz) ¥, aY + (l-a)Z =

Z = (2 .;zz,rl) €L
(yl,aql;...;ym,aqm;zl,(l-a)rl;...;zz,(l-a)rl). We say that x, satisfies

this axiom if both =5 and x, satisfy it.

This is a slightly stronger version of Marschak’s (1950) Postulate IV2.
It is well known that this axiom, together with continuity, completeness,
and transitivity, implies the expected utility representation (1). I now

turn to a discussion of the connection between the mixture independence,

compound independence, and reduction of compound lotteries axioms.

Theorem 2:

(a) The three axioms, compound independence, reduction of compound
lotteries, and mixture independence are pairwise independent -- no one
implies another. Moreover, no one of them in conjunction with the time
neutrality axiom implies any other.

(b) The reduction axiom implies time neutrality, but mixture independence

and compound independence, even together, do not.

6For an explanation of this phenomenon, using disappointment theory
with a similar compound lotteries analysis, see Loomes and Sugden (1986).
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(c¢) The reduction and the compound independence axioms imply mixture
independence, and the reduction and the mixture independence axioms
imply compound independence. Mixture independence, compound
independence, and time neutrality imply the reduction axiom, but no

proper subset of these three axioms has this implication.

A natural question is, what preference relations are implied by these
different axioms. For the next theorem consider the following three
versions of expected utility for two-stage lotteries. In all cases and in
Examples 1 and 2, X1 - (xl,pi;...;xn,pi) with Xy <...%< X and A =
(Xl,ql;...;xm,qm).

EU]l - Expected Utiljty With Reduction: A preference relation that can be

represented by

m n
. . - i
(5) UCA) = UCRy,qq5. - %, qp) Z Z 9P (x)
f=1 j=1

EU2 - Expected Utility With Time Neutrality: A preference relation that

induces the same expected utility representation (1) of 2N and z,

EU3 - Expected Utility Without Time Neutrality: A preference relation that

induces expected utility representations (1) of =, and =,, but these two

r A
representations are not necessarily the same.

Obviously, EULl > EU2 » EU3. To illustrate these definitions, consider
the following two examples. The first demonstrates a preference relation
which is EU2 but not EUl. The second provides an example for an EU3

preference relation that is not EU2.

Example 1: For X,Y e Ll’ X»Y, let oa(X,Y) = min(x: Fx(x) » FY(x)}.

Define a relation R on L

1 such that for X » Y, XRY if and only if
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either E(X) > E(Y) (E(X) 1is the expected value of X), or E(X) = E(Y) .
and Fx(a(X,Y)) < FY(a(X,Y)). let A= (Xl,ql;...;Xm,qm), and assume,
without loss of generality, that XmR cen Rxl. In the following example the
representation functional depends on the order of the Xi's, and the
relation R 1s used to ensure that the lottery A has a unique exposition.

Let f: [0,1] - [0,1] be onto, strictly increasing, but not linear.

-1 n i n i . .
Let pj = f(Zk_j pk) - f(Ek_j+1 pk), j=1,...,n-1, i=1,...,m, and let
-i i . -
P - f(pn), i=1,...,m. Let 9; = f(z’:_i qz) - f(2$_1+1 qz), i=1,...,
- - -1 .
m-1, and let q, = f(qm). Let rj - 2?_1 qipj, j=1,...,n, and let X =
(xl,rl;...;xn,rn). In other words, X 1is obtained from A by transforming

the original distributions of X .,Xn and of A by f and by using the

10"
reduction of compound lotteries axiom for the transformed distributions. We
now transform this new distribution by using the inverse of f. Define
recursively s = f'l(rn), and sy = f-l[rj + f(ZE_J+1 s )] - 2:_j+1 Si
J=n-1,...,1. Let u: [0,M] = R, and define U(A) = Zsju(xj). One can
easily verify that this preference relation induces the same expected
utility relation on I' and A (with the utility funection u), hence it
satisfies the mixture independence and time neutrality axioms. It does not
satisfy the reduction of compound lotteries or the compound independence
axioms (hence, by Theorem 3-a, it is not EUl). For example, let £(p) =
(ep-l)/(e-l) and u(x) = x. U((0,1),0.5;(0,0.5;1,0.5),0.5) = .
ln[(/g-l)z/(e-l) + 1] = 0.219 » 0.25 = U((0,0.75;1,0.25),1), while by the
reduction axiom these two lotteries are equally attractive. To obtain a
violation of the compound independence axiom note that U((0,0.5;1,0.5),1) =

U((0,0.75;2,0.25),1) = 0.5, but U((0,1),0.5;(0,0.5;1,0.5),0.5) = 0.219 =

0.102 = U((0,1),0.5;(0,0.75;2,0.25),0.5).
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Example 2: For continuous and increasing functions u and v, let %, be
represented by U(A) = Ei qiu(v°1(2j p}v(xj))). This preference relation
induces expected utility relations on ' and 4, with u at T and v at
A (see Kreps and Porteus, 1978; and Selden, 1978). ‘It satisfies mixture
independence and compound independence, but not time neutrality or the
reduction axiom unless v = au + b. For example, lét u(x) = x2 and v(x) =
x. U((0,1),0.5);(0,0.5;1,0.5),0.5) = 0.125 = 0.25 = U((0,1),0.75;(1,1),0.25),

while by the reduction axiom these two lotteries are equally attractive.

Theorem 3: Let £, induce continuous preferences En and ,.

(a) It is EUl if and only if it satisfies the mixture independence, time
neutrality, and compound independence axioms (if and only if it
satisfies the reduction of compound lotteries and the compound
independence axioms).

(b) It is EU2 if and only if it satisfies the mixture independence and the

time neutrality axioms.

(c) It is EU3 if and only if it satisfies the mixture independence axiom.

Of course, further results follow by combining Theorems 2 and 3.

Recently, Yaari (1987) suggested the following "dual independence" axiom
for decision making under uncer;ainty: let X = (xl,pl;...;xn,pn), Y =
(yl,pl;...;yn,pn), and Z = (zl,pl;...;zn,pn). Of course, there is no loss
of generality in assuming the same probability vectors in all three lotteries.

Yaari assumed that X zl Y if and only if for every a € (0,1}, (ax, + (1-

1
a)zl,pl;...;axn + (l-a)zn,pn) 2y (ay1 + (l-a)zl,pl;...;ayn + (1-a)zn,pn).
(See also Roell, 1987.) The above discussion makes it evident that, in our
richer setting, Yaari’s dual theory concerns a duality with mixture independ-

ence. In fact, because his functional is a special case of (2), his dual
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(mixture) independence theory can be consistent with compound independence.

3. COMPOUND DOMINANCE

This section discusses several possible extensions of the concept of
stochastic dominance to two-stage lotteries. Let X and Y be two one-
stage lotteries. We say that X stochastically dominates Y if for every
X, Fx(x) < FY(x). X strictly stochastically dominates Y if X stoch-
astically dominates Y and for some x, Fx(x) < FY(x). These definitions

lead to the following two axioms.

One-Stage (Strict) Stochastic Dominance Axiom: If X (strictly)

stochastically dominates Y, then X kl Y X >1 Y).

We say that the relation x, satisfies the one-stage stochastic
dominance and the strict one-stage stochastic dominance axioms if the
induced relations 2N and E, satisfy them. It is well known that X
stochastically dominates Y if and only if for every increasing function
u: [0,M] - R, E[u(X)] = E[u(Y)] (Hanoch and Levy, 1969). The one-stage
stochastic dominance axiom can thus be interpreted in two different ways.
Firstly, if for every possible outcome x, the lottery X gives more than
x with higher probability than the lottery Y, then X is preferred to
Y. Secondly, if all expected utility maximizers with increasing utility
functions prefer X to Y, then X is preferred to Y.

Each of these two interpretations has its own drawbacks. The first
does not naturally extend to more general lotteries where there is no
natural complete order over the prizes, for example, lotteries with prizes
in Rz (see Levhari, Paroush and Peleg, 1975). The second has little
normative appeal in a nonexpected utility world. In this section I examine

these two interpretations of stochastic dominance for L together with

2'
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some possible extensions of this concept.

Let D be a set of outcomes with (possibly partial) order 2 and

let L(D) be the space of lotteries with outcomes in D. The function u:

D+ R is increasing (with respect to = if whenever a z_ b, u(a) =

D) D

u(b). Let u*(D,zD) be the set of all the increasing (with respect to zD)

functions wu: D - R.

Definition: Let A = (a,,pyi---5a,p ), B = (by.qy:...:by,q,) € L(D). The

lottery A stochastically dominates the lottery B with respect to £ if

and only if for every u € u*(D,zD), Epiu(ai) > Eqiu(bi). A preference

relation on L(D) 1is said to satisfy the zD-stochastic dominance axiom if

A 1is preferred to B whenever A stochastically dominates B with

7

respect to x,.

lemma 4: Let A,B € L(D). The lottery A stochastically dominates the

lottery B with respect to = if and only if A = (al,ql;...;am,qm) and

B = (bl,ql;...;bm,qm), where a, xp bi’ i=1,...,m (Kamae, Krengel, and

0'Brien, 1977).8

Consider now the case D = L with X =, Y 1if and only if X

1’ L
1
stochastically dominates Y. To simplify terminology, I adopt the term two-
stage stochastic dominance. Let A = (Xl,pl;...;xm,pm) and B = (Yl,ql;
..;Yz,ql) be two two-stage lotteries. The lottery A dominates the

lottery B by two-stage stochastic dominance if and only if for every V:

7See Levhari, Paroush, and Peleg (1975), Fishburnnand Vickson (1978),
and Hansen, Holt, and Peled (1978) for the case D =R .

8
. It is of course assumed that (al,ql,al,qz,a3,q3,...) “D (al,q1+q2,
30935+



19

L1 + R which is increasing with respect to one-stage stochastic dominance,9

Ein(Xi) > Equ(Yi).

Iwo-Stage Stochastic Dominance Axiom: If the lottery A dominates the

lottery B by two-stage stochastic dominance, then A L2 B.

Let A,B e L such that A dominates B by two-stage stochastic

2
dominance. It follows from Lemma 4 that R(A) stochastically dominates
R(B). (The one-stage lottery R(A) 1is obtained from A by the reduction
of compound lotteries axiom.) Assume, by Lemma 4, that A = (Xl,ql;...;
Xm,qm) and B = (Yl,ql;...;Ym,qm) with Xi stochastically dominating Yi’
i=1,...,m. For every x, the probability that R(A) yields x or less
is Ztix.(x) < ZtiYi(x), which is the corresponding probability for
R(B). Th: opposite, however, is not true. That is, it may happen that
R(A) stochastically dominates R(B), but A does not dominate B by two-
stage stochastic dominance. Let A = ((0,0.8;1,0.2),0.5;(0,0.1;1,0.9),0.5)
and let B = (¢(0,0.6;1,0.4),0.5;(0,0.4;1,0.6),0.5), and obtain R(A) =
(0,0.45;1,0.55) and R(B) = (0,0.5;1,0.5). Obviously, R(A) stochastical-
ly dominates R(B), but it follows immediately from Lemma 4 that A does
not dominate B by two-stage stochastic dominance.

Stronger results hold for the one-stage and the two-stage stochastic

dominance axioms, provided = satisfies the reduction axiom or the

2

compound independence and the time neutrality axioms. Formally:

Theorem 5: If the relation ) satisfies the reduction of compound

lotteries axiom, or if it satisfies the compound independence and the time

neutrality axioms, then it satisfies the two-stage stochastic dominance

9The functional V 1is not necessarily an expected utility functional.



20

axiom if and only if it satisfies the one-stage stochastic dominance axiom.

Consider again the one-stage stochastic dominance axiom. This axiom
implies that if for every outcome x the probability of winning more than
x under the lottery X 1is at least as large as the corresponding
probability under the lottery Y, then X should be preferred to Y. The
major problem in adapting this idea to two-stage lotteries is the lack of an

objective complete order on L Instead, one can try to use an objective

1°
partial order on this space, namely, the partial one-stage stochastic
dominance order. Formally, for X € Ll’ let X* = {Y: Y stochastically
dominates X)}. For each A = (Xl,ql;...;xm,qm) and Q ¢ Ll’ let PA(Q) -
Ei:XieQ 9y be the probability that A yields an element of Q. The above
discussion suggests that if for every X, PA(X*) > PB(X*), then A ¥, B.

I call this axiom upper compound dominance. This is, however, not the only
possible extension. The one-stage stochastic dominance axiom for simple
lotteries also says that if for every x the probability of winning less
than x under X 1is less than the corresponding probability under Y,

then X 1is preferred to Y. Let X, = (¥: X stochastically dominates Y}.
This last observation leads to the assumption that if for all X, PA(X*) <

o B. I call this axiom lower compound dominance.

These two interpretations of dominance coincide on R, but not on Ll'

PB(X*), then A :

(See the proof of Theorem 6 for counterexamples.) The following axiom

therefore seems a possible combination of those two axioms:

Weak Compound Dominance Axjom: If for every X, PA(X*) = PB(X*). and if

for every X, PA(X*) < PB(X*), then A zz B.

Alternatively, one could suggest the following axiom:
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*
Strong Compound Dominance Axiom: If for every X, Py(X) = PB(X*), or if

for every X, PA(X*) < PB(X*)’ then A %, B.

The following theorem discusses the connection between these axioms, the

reduction of compound lotteries axiom, and the compound independence axiom:

eorem 6: Let the preference relation o satisfy the one-stage
stochastic dominance axiom.

(a) The reduction of compound lotteries axiom implies the strong compound
dominance axiom, but the strong compound dominance axiom does not imply
the reduction axiom.

(b) The strong compound dominance axiom implies both the upper and the
lower compound dominance axioms, but none of these two implies the
strong compound dominance axiom.

(c) Each of the upper and the lower compound dominance axioms implies the
weak compound dominance axiom, but it implies neither of them.

(d) The weak compound dominance axiom implies, but is not implied by, the

two-stage stochastic dominance axiom.

Let the monotonic (with respect to one-stage stochastic dominance)

preference relation = induce continuous preferences = and z,. We know

2 r A

that if = satisfies the reduction and the compound independence axioms,

2
then it can be represented by the expected utility functional (5). However,
as argued above, in an intertemporal framework the reduction axiom may not be
supportable on normative grounds, and, descriptively, some decision makers
violate it. On the other hand, it follgws from Theorem 5 that if £y satis-
fies the compound independence and the time neutrality axioms, then it also

satisfies the two-stage stochastic dominance axiom, hence all continuous and

monotonic preference relations on L1 can be extended to L2 through



22

compound independence and time neutrality to satisfy the two-stage stochastic
dominance axiom. As the strong, the upper and lower, and the weak compound
dominance axioms are successive (strict) weakenings of the reduction axiom

and, moreover, as they all have some normative appeal over L the question

2 3
naturally arises as to what preference relations are consistent with compound
independence and these axioms. Partial answers to this question are given by
Theorems 7 and 9. For these we need the following definitions.

Let X € L, and define X° = C2((x,p) € [0,M] x [0,1]: p > Fe(x)}  to

be the epigraph of Fx. Let L; - (x°:

graphs. Let H = {[x,y] x [p,q] ¢ [0,M] x [0,1]: x <y, p<q) and let ¥

Xe Ll) be the set of these epi-

[o]

1
“+
S is the lottery in L

[o}

-(x°h el iy

xH: Int X° nInt h=-¢, X°Uhe L;). Finally, for S € L

1 such that § = (S+)°. In Figure 3, x° e Lg,

o o o
hl'hZ’h3 € H & ,h2) € ¥, but (X ’hl)’ X ,h2) g v,

[Insert Figure 3 here.]

Theorem 7: Let x, induce continuous preference relations 2N and z,-
It satisfies the one-stage strict stochastic dominance, compound independ-
ence, time neutrality, and strong compound dominance axioms if and only if
it can be represented by the expected utility functional (5) (that is, if
and only if it is an EUl relation) with a strictly increasing utilicy

function u.

Note that this theorem assumes the gtrict one-stage stochastic
dominance axiom. The following example shows that this is indeed a neces-
sary condition, as the one-stage stéchastic dominance, compound
independence, time neutrality, and strong compound independence axioms do

not imply expected utility.
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Example 3: The preference relation ®, can be represented by VX) =

sup{x: 1l-x = Fx(x)}. This relation is continuous and satisfies the one-stage
stochastic dominance axiom. Its extension to two-stage lotteries via compound
independence and time neutrality satisfies the strong compound dominance
axiom. (This occurs because the preference relation is isomorphic to a pre-
ference relation on lotteries over the [(0,1),(1,0)] segment.) Obviously,

¥, does not satisfy the one-stage strict stochastic dominance axiom. This

1
preference relation cannot be represented by an expected utility functional.
Indeed, by expected utility theory, X = 0,1/2;1/3,1/2) £y Y -
(0,3/4;1/2,1/4) 1if and only if Z = (0,1/4;1/3,3/4) 2, W= (0,1/2;

1/3,1/4;1/2,1/4). However, V(X) = 1/3 > 1/4 = V(Y), but V(Z) = 1/3 = v(W).

4. ANTICIPATED UTILITY™

In the last few years, several authors have suggested alternatives to
expected utility theory. One of the most promising of these new theories is
anticipated utility theory (also known as "expected utility with rank-depen-
dent probabilities"), first suggested by Quiggin (1982). It helps in
solving several paradoxes, including the Allais paradox (Quiggin, 1982;
Segal, 1987a; Allais, 1988), the preference reversal phenomenon (Karni and
Safra, 1987), and the Ellsberg paradox (Segal, 1987b).

According to this theory, the value of the lottery (xl,pl;...;xn,pn)
with x1 S ... S xn is given by (2), where £(0) = 0, f(1) =1, and u(0)
= 0. When f 1is linear, this functional reduces to the expecfed utility

representation (1). One can easily verify that for continuous u and f,

this functional satisfies the continuity axiom and for increasing u and

10
I am especially grateful to Bill Zame for extensive discussions of

this section.
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£, it satisfies the one-stage stochastic dominance axiom as well. From
Chew, Karni, and Safra (1987), Yaari (1986), Roell (1987), and Segal
(1987a), we know that in this theory risk aversion, in the sense of aversion
to a mean-preserving spread of the distribution, holds if and only if u is
concave and f 1is convex.

Several authors have axiomatized this theory. Quiggin himself
suggested weakening the mixture independence axiom, but an essential part of
his axiomatic basis leads to the conclusion that £(0.5) = 0.5. However, as
risk aversion is associated with a convex f, assuming that £(0.5) = 0.5
takes a lot of power out of this theory.

Yaari (1987) suggested another axiomatic basis, necessarily leading to
the conclusion that the utility function u is linear. An attempt to
obtain the general form of this theory is found in Segal (1984, 1987c), but
the approach taken there lacks normative appeal. Recently, Chew and Epstein
(1987b) gave a unifying axiomatic approach to anticipafed utility and Chew’s
(1983) weighted utility theory and Luce (1988) analyzed this model with
finite gambles and subjective, rather than objective probabilities. In this
section I suggest what I believe to be a normatively appealing set of axioms
implying (2) with a general utility function u (thus avoiding the linear-
ity of Yaari’s functional) that allows f to be either concave of convex
(thus letting in the concept of risk aversion). This axiomatic basis
includes the compound independence axiom and extended concepts of the
compound dominance axioms. One advantage of this set of axioms is that it
makes anticipated utility a natural extension of expected utility theory.

Consider again the one-stage stochastic dominance axiom. One possible
interpretation of it is that if for every Xx, Pr(¥x) =z Pr(Y>x) (or if for

every x, Pr(Xsx) =< Pr(Ys=x)), then X 2y Y. According to this
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interpretation, the decision maker is interested in the probability of
receiving more (or less) than every possible outcome x. It is therefore a
natural extension of this axiom to assume that whenever he compares X and

Y, the decision maker ignores similar tails. Formally:

Ordinal Independence Axiom (Green and Jullien, 1988): Let X,Y,X',Y' € Ll’

*
and let x* € (0,M). If for every x = x , Fx(x) - FY(x), Fx,(x) -
*
FY,(x), and for every x < x , FX(x) - Fx,(x), FY(x) - Fy,(x), then X Zl
Y 1if and only if X' 2 Y’ (see Figure 4).11 We say that ¥, on L2

satisfies this axiom if it is satisfied by 2 and z,

[Insert Figure 4 here.]

Lemma 8 (Green and Jullien, 1988. See also Segal, 1984, 1987c; and Chew and

Epstein, 1987b): The following two conditions are equivélent:

(a) The complete and transitive preference relation £ satisfies the
continuity, one-stage strict stochastic dominance, and ordinal
independence axioms.

(b) There is a finitely additive measure v on [0,M] x [0,1] such that

V(X)) = u(Xo) represents the preference relation -

Let h(x,p) = v([0,x] X (1-p,1]) = V(0,1-p;x,p). Obviously, v and V
can be reconstructed from h, as v([x,y] X [1-p,1-q]) = h(y,p) - h(x,p) -
h(y,q) + h(x,q), and Xo can be represented as the union of a ﬁinite set
of rectangles (Qi) where 1 » j = Int Qi N Int Qj = ¢. Different h
functions thus define different representation functions. Consider the

following four well-known examples:

11This axiom is similar to but slightly weaker than the cancellation
axiom in Segal (1984) where Lemma 8 is proved by assuming the later one.
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(a) Expected value: h(x,p) = px, V(X) = Zpixi, and v([x,y] x [1-p,1-q])
= [y-x][p-q].

(b) Expected utility: h(x,p) = pu(x), VX) = Epiu(xi), and v([x,y] X
(1-p.,1-q]) = [u(y)-u(x)](p-q].

(c) Dual theory (Yaari, 1987): h(x,p) = x£(p), V(X) = zri‘;i xi[f(z?_i P;)
- EE_p, Pl + % £, and w([x,y] X [1-p,1-q]) = [y-x][£(p)-
£(qQ)].

(d) Anticipated utility (Quiggin, 1982): h(x,p) = £(p)u(x), VEX) =
n-1 n n
[1-p,1-q]) = [uw(y)-u(x)][£(p)-£(q)].

In all four examples, h is multiplicatively separable, and the
corresponding » are product measures. Anticipated utility is the most

general form of a product measure and my next aim is to guarantee that v

is indeed such a measure.

. w00yt L0 O+ . -
let A = (Xl’pl" ( nxj) ,p,...,(xiuxj) ,p,...,Xm,pm) and B
(Xl,pl;...;Xi,p;...;Xj,p;...;xm,pm). As is clear from their definitions,

the upper compound dominance axion implies that A z, B while by the lower
compound dominance axiom, B z, A. I do not know whether these conditions
are equivalent to the upper and the lower compound dominance axioms, but
they are certainly not stronger. I will therefore replace the upper and the
lower compound dominance axioms by these weaker conditions.

. - . a o °+ - .
Weak Upper Compound Dominance Axiom: A (Xl.pl....,(xinxj) yPiees

o o+
(XiUXj) ,p,...,Xm,pm) z, B = (Xl,pl,..%,Xi,p,...,xj,p;...,Xm,pm)

12
(1988).

For a different approach to this separability issue see Rubinstein
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Weak Lowe ompo minance iom: B = (Xl,pl;...;Xi,p;...;xj,p;...;
Xm,pm) L2 A= (Xl,pl;...;(Xgnx;)+,p;...;(qux;)+,p;...;xm,pm).

The main result of this section is presented in the following theorem:
Theorem 9: Let %, induce continuous preference relations 2p and %,
and assume that it satisfies the one-stage strict stochastic dominance,
compound indepéndence, time neutrality, and ordinal independence axioms.

The relations n and ¥, can be represented by the anticipated utility
functional (2) with a strictly increasing utility function u and a strictly

increasing and concave (convex) distribution transformation function f if

and only if it satisfies the weak upper (lower) compound dominance axiom.

Given the ordinal independence axiom, Theorem 7 follows immediately from
Theorem 9. By theorem 6, the strong compound dominance axiom implies upper
compound dominance, which in turn implies weak upper compound dominance.
Similarly, the strong compound dominance axiom implies weak lower compound
dominance, hence, by Theorem 9, the strong compound dominance and the ordinal
independence axioms imply that f 1is both convex and concave, that is,
linear. Linear f means expected utility, which is the result of Theorem 7.
Theorem 7 is of course much stronger, because it does not assume ordinal inde-
pendence. I do not know whether Theorem 9 can be proved without this axiom.

In the anticipated utility model, risk aversion (loving), in the sense
of aversion to a mean-preserving spread of the distribution, implies that f
is convex (concave). Theorem 9 thus indicates a connection between the

concept of risk aversion and the compound dominance axioms.

5. SOME EMPIRICAL EVIDENCE
This section discusses some empirical evidence in a nonexpected utility

framework. For this, I use as an example the anticipated utility model. My



28

first aim here is to show that these experimental data support the claim
that decision makers tend to accept the compound independence axiom while
rejecting the reduction axiom. Secondly, I show that within the anticipated
utility model, these data agree with some other nonexpected utility behavior
patterns. Finally, I show that what seems to be a risk-loving attitude may
actually be compatible with risk aversion, provided one is willing to forgo
the reduction axiom.

Section 2 discussed the extensions of (2) to two-stage lotteries via
the reduction of compound lotteries axiom or via the compound independence
and the time neutrality axioms. Similarly to (4), it follows that if x,
satisfies the compound independence and the time neutrality axioms, then the
value of the two-stage lottery ((y,1),1-p;(y,1-q;%,q9),p) where y < x 1is
u(y) + [ux)-u(y)]£(p)f(q). It thus follows that ((y,1),1-p;(y,1-q;x,q),p)
¥y ((y,1),1-p";(y,1-q';x,q'),p’) 1if and only if £(p)/£(p') > £(q')/£(q).
Let p>p' 2q" >q such that pq = p'q’. Let a = p/P' = q'/q. A
sufficient condition for f£(p)/f(p’) > £(q')/f(q) 1is that for every o > 1,

f(ap)/£(p) 1is increasing with p. This occurs if and only if

af’ (ap)£(p) > f(ap)f’'(p) <=>

apf’ (ap) > Pf’ (p)
f(ap) f(p)

The elasticity of a function f is defined as xf' (x)/f(x). Thus, if
the elasticity of f 1is increasing, then the desirability of a two-stage
lottery decreases as the two stages become less degenerate. Given a com-
pound probability r, this last discussion asserts that the least-preferred
combination of p and q 1is when p = q = /r. These results agree with
the empirical findings of Ronen (1971), where most of his subjects preferred

((-50000,1),0.1;(-50000,0.5;70000,0.5),0.9) to ((-50000,1),0.4;



29

(-50000,0.25;70000,0.75),0.6). Moreover, this analysis shows that decision
makers’' attitude towards two-stage lotteries are highly correlated to their
responses to the common ratio effect. Let x >y and p < q such that
(0,1-p;x,p) -1 (0,1-q;y,q). Let a < 1. By the common ratio effect, (0,1-
ap;x,ap) >l (0,1-aq;y,aq). (See MacCrimmon and Larsson, 1979; and Kahneman
and Tversky, 1979.) Note that such a behavior violates the mixture
independence axiom, but not the compound independence axiom, because it does
not involve two-stage lotteries. It is proved in Segal (1987a) that antici-
pated utility can handle this phenomenon provided the elasticity of f is
increasing. (See also the numerical example in Section 2, dealing with
problems 1-3 of the Introduction.)

The extension of the anticipated utility model to two-stage lotteries
through compound independence and time neutrality helps in analyzing several
paradoxes in expected utility theory, where what seems to be consistent with
risk aversion violates the assumption that the utility function u is
concave. Elsewhere I showed that the extension of anticipated utility to
two-stage lotteries via the compound independence and the time neutrality
axioms can solve the probabilistic insurance phenomenon (Segal, 1988) and
the Ellsberg paradox (Segal, 1987b). I now show that it can also explain
Schoemaker’s (1987) findings, described above in Section 2.

The functionals at (1) and (2) can easily be extended to continuous,
rather than discrete, bounded random variables. Let. X be a random
variable with outcomes in [0,M]. Let Fx be its cumulative distribution
function, where Fx(x) = Pr(Xsx). The expected utility of X is given by

M

g u(x)de(x)

and the anticipated utility of X is
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M M

(6) - J u)AE(L-Fy(x)) = [ £(1-Fy(x))du(x).
0 0

Consider now the anticipated utility model with the compound independence
and the time neutrality axioms. . By (2), the certainty equivalent of (0,1-
p;X,p) is y = u'l[u(x)f(p)]. Consider the two-stage lottefy A where p =
0.5 and X 1is uniformly distributed over [0,1]. Define the random variable
Y = u-l[u(X)f(O.S)] with the distribution function Fy, given by FY(y) -
Pr(¥sy) = Pr(u”l [u(®)£(0.5)] < y) = Pr(X = u u(y)/£0.5)1) = u tu(y)/
£(0.5)]. The smallest possible value of Y is u'l[u(O)f(O.S)] - u-l(O) = 0,

its larger possible value is u'l[u(l)f(O.S)], and by (6) it follows that

u L u(1)£¢0.5)]
u@) = f u’ () £(1-Fy(y))dy.
0

Substitute y = u'l[u(x)f(O.S)] and obtain

1 1
(7) U(A) = £(0.5) [ u’'(x)E(1-x)dx = £(0.5) J u(x)f’(l-x)dx.
0 0

Consider now the two-stage lottery B where x = 0.5, and P is
uniformly distributed over [0,1]. Define the random variable Q=

u-l[u(O.S)f(P)] with the distribution function FQ, given by FQ(q) -

Pr(Q=q) = Pr(u-l[u(O.S)f(P)] =q) = Pr(P =< f-llu(q)/u(O-S)]) -

f'l[u(q)/u(O.S)]. The smallest and largest possible values of Q are O

and u'l[u(O.S)f(l)] = 0.5, respectively, hence

0.5
wm-guwwﬂb%m»m.

Substitute q = u-l[u(O.S)f(p)] and obtain

1
(8) U(B) = u(0.5) [ £'(p)£(1-p)dp.
0
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Note that when £(p) = p, that is, when (6) is reduced to the expected
utility functional, U(A) = 0.5 fé u(x)dx and U(B) = 0.5 u(0.5). These
are indeed the values of these lotteries when the reduction axiom is
employed together with the expected utility function;l.

There are concave utility functions u and convex distribution
transformation functions £ for which U(A) > U(B). For example, let u(x)
= In(x+l) and let f(p) = p3. It follows from (7) and (8) that U(A) =

0.026 > 0.020 = U(B).

The best known evidence against the expected utility hypothesis is the
Allais paradox. Allais (1953) found that most people prefer Xl - (0,0.9;5
million,0.1) to Y1 = (0,0.89;1 million,0.11), but Y2 = (1 million,l) to
X2 = (0,0.01;1 million,0.89;5 million,0.1), while by expected utility
theory, X1 £y Y1 if and only if X2 2 Y2. Such behavior certainly con-
tradicts the mixture independence axiom (see Machina, 1982, p. 287). Let
X =(0,1/11;5 million,10/11), Y = (1 million,l), and Z = (0,1). By the

mixture independence axiom, X1 = 0.11X + 0.89Z 2y Y1 = 0.11Y + 0.89Z if

and only if X, = 0.11X + 0.89Y = = 0.11Y + 0.89Y, while by the Allais

1 %2
1”1 Y1 but Y2 >, X2. Beyond doubt, however, this argument does

not prove a behavioral violation of the compound independence axiom unless

2

"paradox X

one assumes the reduction of compound lotteries axiom. Indeed, nonexpected
utility theories like Chew’'s (1983) weighted utility or Quiggin’s (1982)
anticipated utility, which may be consistent with the compound independence
axiom, are not contradicted by the Allais paradox.

Some might argue that the mixture and the compound independence axioms

have the same normative justification. This, in my view, is false. The
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rationale for the compound independence axiom is that if X if preferred to
Y, then it should be preferred to Y even when receiving X or Y becomes
uncertain and other prizes are possible. This argument cannot Justify the
mixture independence axiom, as there is no initial preference relation between
half lotteries like (0,0.01:5 million,0.1;-) and (1 million,0.11;-). Simi-
larly, we usuaily assume that (xl,xz,...,xn) z (Xi’XZ""'xn) if and only if
X, 2 xi, because there is a well-defined natural order on quantities of
commodities. Héwever, we do not necessarily assume that (xl,xz,x3,...,xn) x
(xi,xé,x3,...,xn) if and only if (xl,xz,y3,...,yn) z (xi,xé,y3,...,yn),
because there is no initial natural order on the half bundles (xl,xz,-).

In this paper I interpret the compound independence axiom as a mechanism
that transforms two-stage lotteries into one-stage lotteries. This results
from using the certainty equivalents of the possible outcomes in the compound
1otteries.13 According to this approach, the compound independence axiom and
the reduction of compound lotteries axiom should not be used together.

Indeed, if the decision maker uses the reduction axiom, then the compound
independence axiom becomes meaningless, because he never really considers two-
stage lotteries as such. However, using the compound dominance axioms does
not rule out the compound independence axiom, because they do not change the
structure of a compound lottery. (Recall that these compound dominance axioms
become redundant in the presence of the reduction axiom, as follows from
Theorem 6.) I therefore believe that Theorem 7 gives a better normative basis
for expected utility theory than the standard one. Moreover, the compound

dominance axioms prove, as demonstrated by Theorems 7 and 9, that anticipated

utility is a natural extension of expected utility theory.

3For a nonaxiomatic approach using this mechanism see Kahneman and
Tversky (1979) and Loomes and Sugden (1986).
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Proof of Theorem 2:

(a) The extension of the anticipated utility functional (2) to two-
stage lotteries via the reduction of compound lotteries axiom proves that
the reduction and time neutrality axioms together do not imply the compound
independence or the mixture independence axioms. The extension of (2) to
two-stage lotteries via the compound independence and the time neutrality
axioms proves that these axioms, even together, do not imply the reduction
axiom, nor do they imply the mixture independence axiom. Example 1 in
Section 2 proves that the mixture independence and the time neutrality
axioms do not imply the reduction or the compound independence axioms.

(b) Obviously, the reduction axiom implies time neutrality. Example 2
in Section 2 proves that mixture independence and compound independence
together do not imply time neutrality.

(¢) The reduction and the compound independence axioms obviously imply
the mixture independence axiom. To prove that the reduction and the mixture

independence axioms imply the compound independence axiom, let & )

X *a %y
and let A = (Zl,ql;...;x,qi;...;Zm,qm) and B = (Zl'ql;"';Y'qi;"’;zm’qm)
be two two-stage lotteries. By time neutrality, 6x =, SY <=> Tx r Ty By

the reduction and by the mixture independence axioms, A =, B <=> VR(A) 2
R¢B) < Tx *r "y
Assume next that x, satisfies the mixture independence, compound
independence, and the time neutrality axioms. Let A = (Xl,ql;...; Xm,qm) €
i, i .
1,pl,...,xn,pn), i 1l,...,m. There is no loss of gener-

ality in assuming the same prizes in all the lotteries Xi, as some of the

L2 where Xi - (x

probabilities may equal zero. A ~2 ((CEA(Xl),l),ql:...;(CEA(Xm),l),qm) ~5
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. . - 1 . 1 } m, .

((CEA(X].)’ql,.."CEA(Xm)’qm)’l) 2((Xl,qlpl,---,xn,qlpn,---,xl,qmpl,-u,
m i ) i i .

xn,qmpn),l) - ((xl.Zqipl,...,xn,Zqipn),l) ~9 ((xl,l),Eqipl,-..,(xn,l).

Zq.pi). It thus follows that = satisfies the reduction axiom.
i*n 2
Finally, Example 2 in Section 2 proves that the compound independence

and the mixture independence axioms do not imply the reduction axiom.

Q.E.D.

Proof of Theorem 3: For the proof that mixture independence implies the
expected utility representation (1) see, for example, Fisburn (1982). The

rest of the proof is trivial.

Proof of Theorem S5: Let s satisfy the compound independence and the one-

stage stochastic dominance axioms and let A,B € L2 such that A dominates

B Dby two-stage stochastic dominance. By Lemma 4, A = (Xl,ql;...;xm,qm)
and B = (Yl,ql;...;Ym,qm), such that for every {, X1 stochastically
dominates Y,. As = satisfies the one-stage stochastic dominance axiom,

i 2
it follows that for every 1, Xi =, Yi’ hence A az B.

Let k2

dominance axioms and let X,Y € L1 such that X stochastically dominates

satisfy the time neutrality and the two-stage stochastic

Y. The lottery A = (X,1) dominates the lottery B = (Y,1) by two-stage

stochastic dominance, hence A =2 B. In other words, X :A Y, and by time

neutrality, X =n Y.
Let z, satisfy the reduction and the one-stage stochastic dominance

axioms. Obviously, if A dominates B by two-stage stochastic dominance,
then A £y B (see Section 3 in the text). Let D) satisfy the reduction
and the two-stage stochastic dominance axioms. Since it satisfies the time

neutrality axiom (Theorem 2), it also satisfies the one-stage stochastic

dominance axiom. Q.E.D.
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Proof o ore
(a) The reduction of compound lotteries axiom implies the strong

compound dominance axiom: I will first prove that if xy satisfies the

*

one-stage stochastic dominance and the reduction axioms, then [VX PA(X ) =
*
PB(X )] > A zz B. Let A = (Xl,ql,...;xm,qm) and B = (Yl’ql""’Ym’qm)
(there is no loss of generality in assuming the same probability vectors),
* *

such that for all Z € Ll' PA(Z )y 2 PB(Z ). The preference relation z,
satisfies the reduction axiom, hence A and B can be replaced by % and
Ty where Fx - Etixi and FY - EtiYi. As L2 satisfies the one-stage
stochastic dominance axiom, it is sufficient to prove that for all x,

*

Ztixi(x) < EtiYi(x). Let Zp = (0,1-p;x,p). For every p, PA(Zp) 2
*

PB(ZP), hence

zi:Fx (x)sl-p 44 z:1:5‘Y (x)s1-pd 1

i i
Let Gx - (l-Fxl(X).qli...;l-Fxm(x),qm) and GY - (l-Fyl(x),ql;...;
l-FYm(x),qm). For every p,

Pr(Gy 2 p) = zizl-Fx (x)zp 11 zi:Fx (x)s1-p U =
i

i

b - Pr(GY = p).

1:F, (0sl-p U 7 ZL1E, (zp U
i i

In other words, Gx stochastically dominates GY' As stated in Section 3,

this happens if and only if for every increasing function u, E[u(Gx)] >

E[u(GY)]. In particular, for u(x) = x, it follows that Eqi(l-FX (x)) =
i

Zq, (1-F, (x)), hence ztix’(x) < 2q,F, (x).
i i i

The proof that if for every X, PA(X*) < PB(X*)’ then A ) B, is
similar. Let 2zP - (x,1-p;M,p). The proof follows from the assumption that

P P
for every p, PA(Z*) < PB(Z*).
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The strong compound dominance axiom does not imply the reduction axiom:

let Z = (0,0.5;1,0.5) and define V: L, - R by

1
*
1 Xel
v - { *
0 Xg 2
The preference relation ¥, on L1 is represented by V, and A = (Xl,pl;
.;Xm,pm) =, B = (Yl,ql;...;Yz,qz) if and only if V(V(Xl),Pl;...;
V(Xm),Pm) = V(V(Yl)’ql;"';V(Yz)'qz)' Obviously, x, satisfies the

compound independence and the one-stage stochastic dominance axioms. It
*
also satisfies the strong compound dominance axiom. Indeed, if VX PA(X ) 2
* * *
PB(X ), then in particular PA(Z ) = PB(Z ) and by the one-stage stoch-

astic dominance axiom, A =, B. Suppose that VX PA(X*) =< PB(X*) and let

2

F (%) = min(min{FXi(x): X, # 2%y, min{FYj(x): Y ¢ 21y,

It follows that

z,. *p, =-1-3, p, =21
i.XieZ i i.XieW* i

> - 3,

*
Y.ez' Y

3:Y. ew, [

]

hence A =, B.

2

The preference relation ) does not satisfy the reduction of compound
lotteries axiom. For example, V(V(0,1),1/3;V(0,1/3;1,2/3),2/3) = v(0,1/3;
1,2/3) =1, but V(V(0,5/9;1,4/9),1) = V(0,1) = 0, although these two
lotteries are equivalent by the reduction axiom.

(b)-(c) Obviously, the strong compound dominance axiom implies the
upper and the lower compound dominance axioms, and each of them implies the
weak compound dominance axiom. To prove that the opposite does not hold
true, construct counterexamples based on the observation that by the lower
compound dominance axiom, A = (€0,1/3;1,2/3),1/2;(0,2/3;2,1/3),1/2) ¥y B =

((0,2/3;1,1/3),1/2;(0,1/3;1,1/3;2,1/3),1/2), by the upper compound
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dominance axiom, B z2 A, by the strong compound dominance axiom, A ~2 B,
while the weak compound dominance axiom does not compare these two

lotteries.

(d) It is easy to verify, by Lemma 4, that the weak compound dominance
axiom implies the two-stage stochastic dominance axiom. To see that the
opposite is false, construct a counterexample based on the observation that

by weak compound dominance

1,2, 1 1.,1,1
A-((o’g’zf_)’s-, (0l3'1’3’3’3)’

W=
W=

.l Ll
? (1’3!2'313!

wir

),)z2

1,2, 1 1 ol,1,11
B = ((0’5,1’5)’3’ (lvl)o3, (0’3v293v313):3)

while the two-stage stochastic dominance axiom does not compare these

two lotteries. Q.E.D.

Proof of Theorem 7: Obviously, if z2 can be represented by the expected

utility functional (5) with a strictly increasing utility function u, then
it satisfies the one-stage strict stochastic dominance, compound independ-
ence, time neutrality and strong compound independence axioms. (Recall that
EUl satisfies the reduction of compound lotteries axiom, hence, by Theorem
6, it also satisfies the strong commpound independence axiom.) To prove the
"only if" part of the theorem, let ) = Ep = oE,. I first show that )

r A

can be represented by a measure of the epigraph of Fx and then, that this
measure is actually the expected utility functional. Because this implies

the mixture independence axiom, the theorem will follow from Theorem 3(a).

lemma 7.1: Llet X,YeLl such that X° c Y°, and let h € H such that
1

(x°,h),(Y°,h) € ¥. Then A = ((x°ub)*,0.5;Y,0.5) ~, B = (X,0.5:(Y°un)*,0.5).
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Proof: let ZeL,. If P,(Z) =0, then obviously P(Z) 2 P,(Z). If
PA(Z*) = 0.5, then either (Xouh)+ stochastically dominates Z, but Y
does not, or Y stochastically dominates Z, but (Xouh)+ does not. In
both bases, (Y°h)’ € 2", hence Py(z") z B,(z"). 1If P,(z") = 1, then
X = ((xouh)nY°)+ € Z*, and PB(Z*) - PA(Z*). By the strong compound
dominance axiom, B =

A. Similarly, for each Z € L PA(Z*) < PB(Z*),

2 1’

hence A z, B. It thus follows that A = B. |

Lemma 7.2: Let (X°,h),(Y°,h) € ¥. Then (x°uh)* x (¥°uh)*  if and only
if X 2, Y

Proof: By the compound independence and time neutrality axioms and by Lemma
7.1, @’ e °umt <> (x°0®)*,0.5;x°un)*,0.5) =, ((X°0r*)?

(¥°uh)*,0.5) <=> ((x°u¥®uh)*,0.5;%,0.5) = x°u¥°un)*,0.5:Y,0.5) <=>

g ¢
X ®q Y. ]
Define on H partial orders RX by thxh2 if and only if (Xo,hl),

(X°,h2) € ¥, and (x°uh1)+ =) (x°uh2)+

lemma 7.3: For every X and Y, Rx and RY do not contradict each

other. In other words, if h1 and h2 can be compared by both Rx and

RY' then thXh2 if and only if thYh2'

Proof: Llet X,Y €L, such that (x°,hi),(Y°,h1) €¥, 1i=1,2, and let

z° = x° n Y°. obviously, z° e L], and (z°,hi) €W¥, i=1,2. There
exist hi,...,hi, and h;,...,h; such that vj (z° u Ul lh ?,hJ) cw, 1i-
1,2, x°=2°0udf ht, and Y° = 2%y u£_1 hg. By Lemma 7.2, hRh, <=>
(z°hju. . .UnS St =, (2 Uhiu...uh:uh2)+ <> <> (2%t 2] (2%t
<> ... <> (z°hu...uh UM (Zouh;u. .Uhjuh,)* <=> R h, . I
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1772
L1 such that thXhZ' It can be proved that R is acyclic. That is,

Let R = UXeLl RX. That is, h.Rh, if and only if there exists X €

*
thth...RhtRh1 implies thhtR e haRh1 (see Segal, 1987c). Let =
be the transitive closure of R: h1 z* h2 if and only if there are
h3,...,ht such that thh3R...RhtRh2.

lepma 7.4: There exist V: L1 - R and W: H-+ R such that
(a) V represents the relation -
(b) W 1is finitely additive. That is, if hIUhZ € H, then w(h1Uh2) -
W(hl) + W(hz) - W(hlﬁhz).
() If x° = uf where vj (W lh h)ew, then v ==f . wn)
k=1 P k=1 P’ By ' Zm1 W)
Proof: Let [0,x] x [0,p] ~* [x,9;1 X [p,1] (see Figure 5) and let

W([0,x] x [0,p]) = W([x,yl] X (p,1]) = 1. By the continuity assumption
[Insert Figure 5 here.])

there exist z and w such that [x,w] x [p,1] ~* [0,z] X [0,p] ~ (v, y,] x
[p,1]. Define W([x,w] x [p,1]) = W([w,yl] X [p,1]) = 0.5. This can be
repeated again and again for the x as well as for the p axes. By the
one-stage strict stochastic dominance axiom, the areas of all these rectang-
les will become smaller and smaller. The function W can thus be defined
as an atomless, continuous, finitely additive measure on [0,x] X (0,p] and
[x,yl] x [p,1]. Similarly, it can be defined for the rectangles [yi’yi¥l]
x [p,1] = [0,x] x [0,p], 1 =1,.... By the one-stage strict stochastic
dominance and the continuity axioms, the strictly increasing sequence {yi}
is finite. 1Indeed, let 1lim yi =y s M. For all i, ([0,y] x [p,l])+ >1
(10,y;1 % (2,17 =) (10,3, 11 x [p,1]) U ([0,x] x [0,p]))*, 1in contradic-
tion to the continuity and the strict one-stage stochastic dominance axioms.

This process defines a finitely additive measure W on [x,M] x [p,1],
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which can be extended to [0,M] x [0,p] and to [0,x] x [p,1] and thus to
[0,M] x [0,1]). Define V as in part (c) of Lemma 7.4. Because W is

finitely additive, V does not depend on the choice of hl""’ht'

o t o s -1
Let X = U1 hk and Y ‘= Upal 8y where Vj (Ui-lhk'hj)’

(U%;%gz, gj) € ¥, such that X zl Y. We want to construct two sequences

Lt s’ o t' , o s’ , . j-1
{hk}k_1 and {gk}z_l such that X = Upm1 hk’ Y Upa1 8p vj (Ui_1
[ ' j-1 ’ ' ' ' __* ' :
hk’hj)’ (U'}_1 gz,gj) € ¥, and for every j = s', hj gj. We will do it
*
. M P ~ - 4 -
by finite induction. If h1 8> then let hi hl and g = 8- If

hy >" g, conmstruct hi,hy € H such that ki - g, hy = C(h\h!) € H,
(h',hé) € ¥, and let gi - 8- 1f 8, >* hl’ construct hi, gi, and gé
similarly. It thus follows that in each step we can reduce the number of
nonequivalent elements either in X of in Y (or in both) by one. The
desired representation will thus be constructed in a finite number of steps.
As X») Y, it follows that t' = s’. Obviously, V((u , hn)*) =

s’ '

V((u‘e_1 g2)+). As t' 2z s’, 1t follows that V(X) = V(Y), which completes

the proof of the lemma. ]

I now turn to the proof of the theorem. Let 0 < Xy <...<x, 0<p
<1, and 0 < e < p. Let ii - (O,p;xi,l-p), and Yi - (O,p-e;xl,e;
xi,l-p), i=1,...,n. It follows from the proof of Lemma 7.1 that for

every i and j,

. L. .x ly lg L o1 ]
Fpai- X g niXag %) =

L . l,lg 1. o1

(xlin) ’xj-l’n'Yj'nlxj+1’n’° ? nln)'

The compound independence and the time neutrality axioms together imply

that on L2, the relation k2

¢(V(X1).q1;...;V(Xm),qm). Assume, without loss of generality, that ¢(a,l)

can be represented by U(Xl,ql;...;xm,qm) -
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= a. We want to show that ¢ = Equ(Xi) is a possible representation. By
Lemma 7.4 there exists B > 0 such that V(Y) = V(X)) +8, i=1,....,n
Moreover, for every sufficiently small B there exists an appropriate e.
Let 0 < y* =y, <... < yn14 be in the interior of the range of V. Let

pe (0,1) and ii - (0,1-p;xi,p) such that V(Xi) =¥ i=1,...,n.

*
There is ﬂ* > 0 such that for every 0 < 8 <8 and for every i and j,

1 1 1 1 1
(A-l) ¢(y1,t—1;---;)’i_1,;;yi + ﬂ.;;yi+1,;;.--;yn:'ﬁ) -
1, 1. 1, i, .1
¢(ylyﬁr°°-)y1_lvn'yj+ﬂ1n,yj+1’n"'°’ynsn)'
Let M AERRENS > 0 be in the interior of the range of V. Let y* -
*
min{yl,...,yn) and let ﬂ* < y*/2 be appropriate for y /2. Let

Zsn2 be in the interior of the range of V such that Ezi - Eyi and

*
max|yi-zi| < B8 /n. By (A.l),

1oL L R S N
¢(Y1,B,---.Yn,n) ¢(Y1,n----,}’n_1 + Yn zn’nvzn:n)
) 1 1., 1, _
¢(y1’n""’ n-2+yn-1 zn-1+yn-zn'n’zn-1'n’zn’n
1 1
. = ¢(21,;;...;zn,;)

hence
1 ’n’...’ n 'n i ‘

Let x 2 0. V(x,1) = ¢(V(x,1),1) = ¢(V(x,1),1/n;...;V(x,1),1/n) =
f(nV(x,1)), hence f(a) = a/n. It thus follows that U(Xl,l/n;...;xn,l/n)

- ¢(V(X1),l/n;...;V(Xn),l/n) - ZV(Xi)/n, and by the continuity assumption

14
The assumption that y, < ... <y is not essential, because the
value of a lottery depends on its prizes and not on their order.
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it follows that ¢(V(X1),p1;...;V(Xn),pn) - Zin(Xi). Let u(x) = V(x,1).
It follows that on T, . can be represented by Epiu(xi). We assumed x)
- zr, hence the theorem. Q.E.D.

Proof of Theorem 9: Let ¥y = Ep =, By Lemma 8, ¥, can be represented
by a measure v. I first prove that if x, satisfies the weak upper
compound dominance axiom then zl can be represented by (2) with a concave
distribution transformation function f (Propositions 9.1-9.3). Then I
show that if x, can be represented by (2) with concave £, then 2y
satisfies the weak upper compound dominance axiom (Proposition 9.4). The

proof for the weak lower compound dominance axiom - convex f case is

similar.

Propogition 9.1: Assume the weak upper compound dominance axiom and let x
<y=x'<y' such that v([x,y] x [0,1]) = »([x',y’] X [0,1]). For every
P, 4, and f suchthat 0 <p<p+8<q<q+8s1 thereis ¢ >0

such that if y - x < ¢, then v([x,y] x [p,p+B]) = v([x',y'] X [q,q+8]).

Proof: Let X,Ye€L, and heH such that X°c¥’, x°h), (*°h) ev,
X ~1 (x,D), (Xouh)+ ~1 (y,1), and Y ~1 (x',lj. The existence of X,Y,
and h follows from the assumption that x and y are sufficiently close.
Since v 1is a measure, »([x',y’] X [0,1]), hence (Youh)+ ~1 (y',).

let Z,W e L1 such that W ) (y',1) >1 x',D) ¥y Z £y (y,1) and let
z and w be such that Z ~1 (z,1) and W -1 (w,1). By the weak upper
compound dominance axiom it follows that ((0,1),p; X,8; Z,q-p-8; (Youh)f,ﬂ;
W,1-q-8) =, ((0,1),p; (X°Un)*,8; 2,q-p-B; Y,B; W,1-q-8) = (0,p; x,;
z,9-p-B; y',B; w,1-q-p) =, (0,p; y.B; z,q9-p-B; x',B; w,1-q-8) > v([x’',y'] X

[q,9+8]) = v([x,y] x [p,p+B]). 1
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o) t 9.2: Let x, y, x', and y' be as in Proposition 9.1. For

every 0<p<gq=1, v([x,y] x [p.q]) = v([x',y'] x [p,q]).

Proof: By Proposition 9.1 it follows that if x and y are sufficiently
close to each other then for every n and 1 s n-2, v([x,y] x [p +
i(q-p)/n, p + (i+1)(q-p)/n]) < v([x',y'] x [p + (i+1)(q-p)/n, p +
(1+2)(q-p)/n]), hence for every n, wv([x,y] X [p,q - (q-p)/n]) < v([x',y"']

X [p + (q-p)/n, q]), and by the continuity of = it follows that v([x,y]

1
x [p,q]) = v([x',y'] x [p,q]).

Similarly, w([x,y] x [0,p]) = v([x',y'] x [0,p]) and v([x,y] X
[9.1]) = v([x',y'] x [q,1]). Since wv([x,y] x [0,1]) = »([x',y'] X [0,1]),
it follows that wv([x,y] X [p,q]) = v([x',y'] X [p,q]). The lemma now

follows by the additivity of the measure v. ]

Define wu(x) = v([0,x] x [0,1]). By the one-stage strict stochastic

dominance axiom, the function u is strictly increasing.

Proposition 9.3: There is strictly increasing and concave function f£:

[0,1] - [0,1] such that v({x,y] x [p,q]) = [u(y)-u(x) ] [£(1-p)-£(1-q)].

Proof: By the definition of u, v([x,y] x [0,1]) = u(y) - u(x). By Propo-
sition 9.2, if wu(y) - u(x) = m(u(y’)-u(x’')]/n, then v([x,y] x [p,q]) =
m/([x',y’] x [p,q])/n. Hence, by the continuity assumption, v([x,y] X
(P.q]) = 6(p,q)[u(y)-u(x)]. Define f£(p) = #(l-p,1). Because v is a
measure, v([x,y] X [p,q]) = [u(y)-u(x)][£(1-p)-£(1-)].

It follows from Propositions 9.1 and 9.2 that for every n, v([x,y] X
[P,p+l/n]) =< v([x,y] x [p+l/n,p+2/n]). Hence £(1-p) - £(1-p-1/n) <
£(1-p-1/n) - £(1-p-2/n), and f 1is concave. The one-stage strict

stochastic dominance axiom implies that f 1is strictly increasing. 1
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Proposition 9.4: 1If £y satisfies the compound independence and the time

neutrality axioms and the induced preference relations =N and =, can be

represented by the same anticipated utility functional (2) with concave f,

then z, also satisfies the weak upper compound dominance axiom.
Proof: Let A = (Xl,l/m;...;xm,l/m) and B = (Xl,l/m;. (X j) 1/m;
(X ij) 1/m; ..;Xm,l/m). Assume that the lotteries in A and B are

ordered from the worst one to the best one by 2K The explicit form of B

is
(L (s) (s+l) (s+2) (1) (1+1) (J-1)
B = (X, gieooni,, 5 &), 5 %g1 5 2RI ;xj-l'%;
() (e-1) (¢) (t+l) (m)
xj+1,;1.;;.. 2 x? uxJ) Xypozi X D).

By continuity, it is sufficient to prove that the value of B is not less
than that of A. From compound independence, time neutrality, and (2) it

follows that the value of A is given by

o v - ) v ] « o) - 2]
[V((x xH* - V(xt)] x [f[m_;i] ) f[aas]] )
i

L [0 - von o] < [ - [

k=sg+2
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[V(Xs+1) - V((inx?)"') x |f m_.s.] . f[m-s-l] S

J ] L m m

t L )
) v - ves ] x [ - of2=y)]
k=j+1 i i i
[V((x‘;ux;ﬁ) ; V(Xt)] x [f[—-i—'mﬂ'] ; f[anl]] .

i 9 3 r .

Z ["“‘k) - V(X )| X (f[“";"lj - f ml;l]
k=s+2 T
[ o_ 0.+, ] [ (m-1+1) (m- 1)
.V(xs+1) i V((xinxj) )J X .f[ m i fg m 4] -

atagys -]« [ - )]

0_ 0 + ] (m-i+1 m-i
TV(xi) - VKD | X [f T] ; f[—m—-] ] -

odpf[ee22) - () - et - )

\ m J

The proof for convex £ and the weak lower compound dominance axiom is

similar. Q.E.D.
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