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The subject of this paper is elicitation diagnostics that indicate
if a prior distribution has to be measured accurately. An elicitation
diagnostic forms a question that compares the information in the prior
distribution with the information in the given sample. One elicitation
diagnostic identifies a family of prior distributions that are so
diffuse that they are practically equivalent to the "completely" diffuse
prior. Another elicitation diagnostic identifies a family of prior
distributions that concentrate enough mass in the neighborhood of zero
that they are practically equivalent to the dogmatic prior which sets a
parameter exactly equal to zero.

Elicitation diagnostics for the normal linear regression model are
reported. The prior distribution is assumed to be normal with mean
zero, diffuse on one subset of parameters and with an unknown prior
covariance matrix V for the other parameters. The question is whether
one can act as if V = 0 or, alternatively, as if V = », One diagnostic
is a matrix V*© such that if the prior covariance matrix satisfies V < v
then one might as well act as if V = 0. Another diagnostic is a matrix

V4, such that if the prior covariance matrix satisfies V, < V, then one

might as well act as if V = «,
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1.0 Introduction

The subject of this paper is diagnostic statistics that indicate
if a prior distribution has to be measured accurately. If the sample
size is small, one might as well set certain parameters to their prior
means since the data will contain little information that would suggest
other estimates. If the sample size is large, one might as well use a
diffuse prior and "let the data speak". But which samples are "small"
and which are "large"? It depends on both the sample and the prior
distribution. Regardless of what the sample may be, there are prior
distributions that are practically equivalent to the diffuse prior and
there are also prior distributions that are practically equivalent to a
dogmatic prior. Thus to determine if a sample is small or large, we
must ask a question that compares the sample information with the prior
information.

An elicitation diagnostic forms a question that compares the
information in the prior distribution with the information in the given
sample. One elicitation diagnostic identifies a family of prior
distributions that are so diffuse that they are practically equivalent
to the "completely" diffuse prior. Another elicitation diagnostic
identifies a family of prior distributions that concentrate enough mass

in the neighborhood of zero that they are practically equivalent to the



dogmatic prior which sets a parameter exactly equal to zero. The
question that is asked is whether the subject’s prior distribution falls
in either of these two classes. If an affirmative answer can be given
to either of these two elicitation questions then there is no need to go
to the expense of a more accurate elicitation of the prior distribution.

Elicitation diagnostics for the normal linear regression model are
reported in this paper. The prior distribution is assumed to be normal
with mean zero, diffuse on one subset of parameters and with an unknown
prior covariance matrix V for the other parameters. The question is
whether one can act as if V = 0 or, alternatively, as if V = «», One
diagnostic is a matrix V¥ such that if the prior covariance matrix
satisfies V < V¥ then one might as well act as if V = 0. Another
diagnostic is a matrix V, such that if the prior covariance matrix
satisfies V., < V, then one might as well act as if V = =,

A plethora of "diagnostics™ are the latest addition to the
econometric tool kit. The Durbin-Watson statistic and the adjusted R?
have been used as "diagnostic statistics" for several decades. But
recently the list of diagnostics has expanded dramatically to include
among others: Godfrey's test of residual serial correlation, Ramsey's
RESET test of functional form, Jarque-Bera's test of the normality of
regression residuals, tests for heteroscedasticity, the Chow test of the
stability of the regression coefficients, Sargan’s misspecification
test, Sargan’'s test of serial correlation of instrumental variable
residuals, ARCH tests and leverage plots.

The use of diagnostic statistics presents a challenge to
statistical theory, classical or Bayesian, Traditional statistical

theory deals with the evaluation of planned responses to hypothetical



data sets. Indeed it is impossible to compute sampling properties

without a set of plans indicating the response to the data for every

conceivable data set. The use of a diagnostic statistic to criticize a

model seems to be an advance announcement that the planned response is

not fully committed and may be revised when the actual data are
observed. This seems to call for a major overhaul of our theories of
statistical inference.

But I would argue that there are three different kinds of
diagnostics and a different theory is appropriate for each. The three
kinds of diagnostics are:

1) Pre-test diagnostics which select between a pair of alternative
estimates.

2) Elicitation diagnostics which indicate if the inferences are
sensitive to the choice of prior distribution and which call for a
more accurate measurement of the state of mind.

3) Criticisms which suggest a "fundamental" change in the model and/or
prior distribution.

It is only criticisms that call for a major overhaul of our theories of

inference.

Many of the diagnostics that are traditionally employed in the
econometrics literature are not used as criticisms that might
precipitate an unplanned, unpredictable response to the data. These
"pre-test" diagnostics play a part in a complex multi-stage method of
estimation of a very general model. A statistic is a pretest diagnostic
if both the general model and the response to the data can be fully
defined (more-or-less) before the data are observed. The proper

evaluation of pretest diagnostics involves either the study of the



sampling properties of these complex procedures, or the search for a
prior distribution that could justify them. For example, Kennedy and
Simons(1989) have studied the estimation of a model with first-order
serial correlation with the first step using the Durbin-Watson statistic
to determine if adjustment for serial correlation is warranted. They
find this method of estimation to be substantially inferior in terms of
mean squared error to a Bayesian (one-step) method that integrates the
first-order autocorrelation parameter from the likelihood function.

Not all responses to data can or should be fully planned because a
complete set of plans applicable to every conceivable data set is
prohibitively costly to formulate. Plans accordingly will be formulated
only for data sets that are regarded to be probable, and responses to
improbable data sets will be formulated only if and when they are
observed. Contrast for example the scatter of observations in Figures 1
and 2. The R*’s and t-values are the same, but the plan of regressing y
on x seems not very good for the scatter in Figure 2 - the message seems
to be something else entirely. One would not sensibly have planned for
this possibility since it seems so remote, but once these data are
observed the original plan of regressing y on x seems highly
inappropriate, and cries out for revision.

The actual response to real data can differ from the planned
response to hypothetical data either because the initial parameter space
is inadequate (as in Figure 2) or because the initial (implicit or
explicit) prior distribution is judged inadequate. Diagnostic
statistics and data displays can help to stimulate revisions in either
the parameter space or the prior distribution. I will call a diagnostic

that is intended to suggest a "genuinely" new parameter space a



"criticism." A diagnostic that suggests a "revised" prior distribution
is also called a "criticism." A diagnostic that suggests that the prior
should be more accurately elicited, but which does not change the state
of mind of the observer, will be called an "elicitation" diagnostic.

The difference between a criticism and an elicitation diagnostic is that
a criticism presents a double-counting problem since the data are used
both to "formulate" the model and to "estimate" it. An elicitation
diagnostic in principle is not subject to this double counting problem
though in praétice it may be difficult to reveal an aspect of the data

set to an observer through the elicitation process without also altering

his/her state of mind.
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2.0 Elicitation Diagnostics: General Approach

The elicitation of a prior distribution can be done most
efficiently after the data are observed since there are many prior
distributions that are practically equivalent to the diffuse prior, and
there are many others that are practically equivalent to partially
dogmatic priors. An elicitation diagnostic is a statistic measuring the
worst-case estimation inaccuracy caused by the use of either the diffuse
prior or a partially dogmatic prior as an approximation to the true
prior distribution.

A general problem of elicitation can be described in the following
way. Suppose that the parameter vector can be divided into a subset 8
over which the prior distribution can be accurately and costlessly
elicited and a subset of "nuisance" parameters y over which the prior
can be elicited only at a cost. Suppose further that the decision
problem is to estimate § = G(B, vy) with quadratic loss. Then the
optimal estimator of § is the posterior mean for G(B8, 7). Given the
prior distribution £(8, v) = £(v]|B) p(B) and the data distribution

h(y| B8, v) the optimal estimator is

8(£) = ECGB, v) | y, £) =
J 68,v) h(y|B,v) £(v|BP(B) dBdy / [ h(y|B,v) £(v1B)P(B) dBdy ,

and the corresponding posterior loss is

BC (0 - 02 |y, £) = Var(s | y , £)
Note that the posterior loss and the choice of estimator are written
explicitly as functionals of f, the conditional prior distribution of
the nuisance parameter vy given 8. If it is costly to measure f

perfectly, one may be willing to use an approximation f* which has the



effect of increasing the expected loss because it alters the apparent
location of the posterior distribution. The loss if f* is used instead

of the true prior f is

A A

B - 607 |y, £) = Var(d |y, £) + (8 - g%)>
The percentage increase in expected loss due to approximating f by f* is

therefore

A A

D(f,f*) = % A Loss = (§ - 0*)2/ Var(6 | y , £).

Here D is a functional that measures the difference between the
functions f and f*,

An elicitation problem can then be described in the following way.
Suppose that although f is measured inaccurately, it is known that f €
F. From this class select an approximation f*. This approximation may
minimize the difference D(f,f*) for £ € F, or it may minimize the
difference D subject to some "simplicity constraint" C(f) = 0. The
worst-case cost of mismeasurement of the prior distribution is the
maximum percentage reduction in the loss if f is accurately measured:

d(F,f*) = max D(f, £*)
ferF

Let the "width" of the family F be

Width = W(F),
where W may be a vector function. Suppose further that one were
prepared to tolerate values of D that are below some tolerance level r.
Then an elicitation diagnostic is the maximum width of the prior
distribution that is consistent with tolerance level r:

Diagnostic(r) = Max W(F)
{F | 4a(F,f*)=<r)

If this diagnostic is large, there is little incentive to measure the

prior distribution accurately since the family of distributions that are
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"essentially" the same as f* is very wide. If this diagnostic is small,
the family of priors that are essentially the same as f* is very narrow,
and it may be worthwhile to measure the prior more accurately.

The elicitation question, expressed directly, is: Given your
tolerance level 7, are you confident that

f € (F | W(F) < Diagnostic(r)} ?
This query can admit a legitimate answer only if the question is
genuinely intelligible, which depends upon the function W that is used
to measure the width of the family. What seem like the most natural
measures of the width of a family of distributions can cause formidable
mathematical problems. The width of a family of distributions could be
measured by the couple W(F) = {¢ , c] where ¢ is the maximum chance that
v is more than an ¢ away from zero

c = max Probf( fv] > € )
ferF

The corresponding diagnostic is a combination of values for c and ¢
indicating the amount of mass that must be close to zero for one to act
as if all the mass of the prior were are at zero. An affirmative answer
to the question posed by any pair of these diagnostics then justifies
the use of the dogmatic prior that sets y exactly equal to zero.

It is not generally an easy task to solve for values of (c, ¢)
that imply families of priors that are practically equivalent to a
dogmatic prior. Furthermore, if vy is a vector, some arbitrary choice of
the measurement of length of a vector |y| would have to be made. For
these reasons, it seems clear that some further restrictions would have
to be imposed, even though the restrictions need not be fully believed.

In this paper, the families of prior distributions that are used

are normal with given means and with intervals of covariance matrices.
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These intervals of covariance matrices have a one dimensional
representation of the form A8 < V < A*S where S is the sample
covariance matrix and X is a scalar. The family that is practically
equivalent to the dogmatic prior (V=0) has A, = 0. The family that is
practically equivalent to the diffuse prior (V= «) has A" = «». Comments

are made below about the propriety of this class of distributions.
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3.0 Diagnostics for the Simple Linear Regression Model: One Focus

Variable and One Doubtful Variable

The framework is first formulated in terms of a simple regression
and then extended to the general multivariate case. It is assumed that
data are drawn from the following linear regression process:

y,=a + B X

+yz, + ¢ t=1,2,...,n

t t’

where y,» X, and z, are observable variables, a, 8 and vy are

unobservable constants, and ¢, is a sequence of unobservables that are

t
drawn independently from a normal distribution with mean zero and known
variance which is without loss of generality set to one. In practice,
of course, the variance of ¢ is not likely to be known, but the results
that follow are approximately correct if the data are divided by the
square root of a suitable estimate of the variance.

The parameter of interest is B on which the prior distribution is
assumed (for now) to be diffuse. The prior for the coefficient (y) of
the doubtful variable is normal with mean zero variance v. The problem
is how to select the prior variance v. If v is set to zero, the z-
variable is omitted and a simple regression of y on x is estimated. 1If
v is set to infinity, the z-variable is included and a simple regression
of y on x and z is estimated. Other values for v select estimates
between these two extremes.

It is conceivable that the value for v could be elicited with an
infinite sequence of questions of the form: "Is v in the interval c, =V
=< ¢c,?" If this is the only form of elicitation question, then the value
of v would be precisely determined only if an affirmative answer were

given to this question with ¢, =c But, even if an unambiguous

2°

affirmative could be given, the probability of selecting ¢, =c,=vVvis
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zero, and thus no perfectly precise elicitation of v could occur in a
finite period of time. Any real data analysis must therefore make use
of approximate values for v, either because v is in fact an interval,
not a number, or because it is prohibitively expensive to elicit v
perfectly. An important question that has not been addressed in the
literature on the elicitation of priors is how best to elicit an
approximate value for v. This involves both the selection of the
sequence of questions (values for ¢, and c,) and the point at which the
elicitation should terminate. Clearly the solution to this elicitation
problem should depend on the nature of the data evidence. For example,
in settings in which the data are weak, it may be desirable to select
the value for v more accurately.

Here I consider only the elicitation questions: "Is v < v*?" and
"Is v 2 vu?" The value of v* is selected such that an affirmative
answer implies that the approximation v - 0 is adequate. The value of
V4 is selected such that an affirmative answer implies that the
approximation v = « is adequate. Thus an affirmative answer to the
first question implies that the z-variable can be neglected; an
affirmative answer to the second question implies that the z-variable
should be included. If neither question is answered affirmatively, then
the prior distribution would have to elicited more accurately with a

series of questions of the form "Is v in the interval c. < v < c,?" An

. =<
interesting question that is not further considered here is what values
of ¢, and c, offer the most expected information from each elicitation

question, given the data and the negative answers to the initial queries

"Is v < v¥?" and "Is v = v, ?"
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I assume that interest centers on 8. The posterior mean and

variance of f# are calculated in the usual way:

B(v) = E(Bly,x,z,Vv)

= [x'y + (x'yz'z-x'zz'y)Vv] / [x'x + (x'x2'z-Xx'22'X)V]

A

V(v) = Var(Bly,x,z2,v) = 1 / [x'x - (x'z)z/ (z'z + v'ﬂ
where y , x, z are data vectors with the means removed and where the
dependence of these moments on the prior variance v is made explicit.
The question considered here is whether v has to be specified, or can we
proceed instead as if v = 0, in which case the variable z is omitted and

the following approximate values are used:
B(0) = x'y/ x'x

G(O) =1/ x'x

For reference, note that

A

B(o) = (x'yz'z-x'zz'y) / (x'x2'z-X'22'X) = x'My / x'M x
V(o) =1 / [x'x - (x'2)%/ 2'2 ] = 1/x'Mx

where Mz =T -z(z'z)'lz. Furthermore, we may write the posterior mean

as a weighted average of the two extremes:

;(V) =-w ;(0) + (1-w) ;(w)
where w = x'x / [ x'x + 2'z2 x'Mx vli=1/[1+ z'szv].
3.1 Tolerance defined in terms of percentage change of coefficient
One might as well set v = 0 if selecting the correct value doesn't
make much of a difference. Suppose that the values of v that are

practically equivalent to v = 0 are those for which

|B(v) - BCO)[/1B(O)] =~



where 7 is the tolerance level. This interval of values of the prior
variance can be written as v < v" and v* can be found by first finding

the range of welights

| (1) (B(=) - 5(0))/B(0)| = »
(01 =1 1B0)/ (B(=) - 5(0))| = r q,
where 1-w = 2'M2v/ [ 1+ 2'M zv] ana
4 = 1(BC=) = B(0Y| / 150y
SOlVing for the value of wv*: Z'sz Vh = (T/do) [ 1+ z’szv*]
VT L)/ A /4y ) ar(rlves) 12 rjg <

where Var (y|vewo) = 1/z'M¥z is the least squares variance for v in the
unconstrained model. This interval of pPrior distributions that are
approximately the same as the sharp prior that v = 0 is wider if the
tolerance 7 is great and if the data are relatively uninformative about
Y. Thus you might as well omit the variable if the data do not strongly
suggest that it belongs.

The forgoing comment suggests that this diagnostic can be related
to the size of the t-statistic on the coefficient of z in the full
regression. This t-statistic is

t, = (2'My)/(2'M 2)%/?
where Mx = I -x(x'x)"x Then the difference in the estimates can be

written as:

§ = B(0) - B(o) = x'y ) X'yz'z - x'zz'y
X'x X'x2’'z - x'zz'x

' ’ ' - ’ ’ ' [
X'z [ x'xz2'y - x'zx y ] - X'z z'My

X'x [ x'xz'z - x'zz'x ] x'x z'M;z

= ’ ’ ’ 1/2 . [ 1/2
t7 x'z / x'x (z sz) t,7 r,, / (x sz)

15
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where Y, = X'z2//x'x2'z is the correlation between x and z. The
percentage difference in the estimates with the unconstrained estimate

as the denominator is then

d, = [(8(0) - B(=)) / E(m)l =it MY xmy) - It (t /)
where t; is the t-statistic for testing B=0 in the unconstrained
regression. Incidentally, this result is the foundation for
Leamer's(1975) observation that the sign of a coefficient cannot change
when a variable with a less significant t-value is omitted, lt,/tpl = 1.

Using this value for d,, it is a simple matter to solve for d, !
b = 1B=) - O} / 18O =1/ 1+ (ty/tr )|

A lower bound for the prior variance can be obtained by finding

the set of values v that imply essentially the same estimate as v = «;

BC) - A=) |/18(=)] = ¢
This inequality can be written as
[W(B) - B(0)) /B() | = »
which can be manipulated as:
1T (E,/60 | S 7] 1+ 2'M zv]
Thus
Ve = [(d,/7). - 1] Var(y|ve=e) if d/r>1

v, =0 if d/r <1

*
The width of this set of priors that are pPractically to the diffuse
Prior increases with the tolerance level r and increases as the data get

more informative about Y and Var(vy|ves) gets smaller.

1 Using | (x-y)/y| = ll/(1+[X/(Y'X)])l



In summary: (a) When the sample size is small, one might as well
just omit the confounder variable z. The parameter vy is thought
probably to be small, and in the absence of data evidence to the
contrary, one might as well set the estimate to zero. (b) When the
sample size is large, ordinary regression on the full model is likely to
be a good approximation. Though there exists prior information that v
is small, when the data information is rich enough, this prior can be
ignored. (c) Thus, the precise value for v has to be selected only for
intermediate sample sizes.

Incidentally, it is possible to have v, < v*, in which case,
whatever the value of v, it can be rounded off either to 0 or to =, or
possibly to either one. For that matter, if the tolerance is great and
the difference between the constrained and unconstrained estimates is
small, then it is possible to have Ve = 0 and v* = «, in which case it
doesn’'t matter which estimate in the interval of possible estimates is
selected.

3.2 Tolerance relative to the standard error

The foregoing defines the tolerable level of sensitivity in terms
of the percentage change in the estimate. Another approach compares the
change in the estimate with its standard error. This can be justified
formally be referring to a problem of estimating 8 with quadratic loss.

The expected posterior loss is then:

A 2 A A A 2
Exp. Loss = E[( B - B) Ix,z,y,v] =V(v) + ( B(v) - B)
If one were prepared to tolerate a 100 72 per cent increase in the
expected loss, one could act as if v = 0 if

( B(v) - B(O) )2/ V(v) = r2

This set of values for v is:

17






loosely speaking, compares the size of the t-value of the included
variable with t-value of the doubtful variable.

We can also find the set of priors that are equivalent to the
diffuse prior v = ». If one were prepared to tolerate a 100 r? per cent

increase in the expected loss, one could act as if v = « if

( B(v) - B(=) )2/ V(v) = 12

This set of values for v is:

w2(B(=) - B(OY)2 / V(v) = 12

which again is a quadratic inequality in v:
§2x'x < 12 (z'zv + 1)(z'szv + 1)
As above, it is conservative to use an underestimate of the variance
with v=0, in which case the inequality becomes
§%x'x < 12 (z'szv + l)2
which implies:
v, = Var(y|ve)[s/r - 1] if r/s =1
v, =0 ifr/s>1
where s = |6 (x'x)1/2 = It r,|/(l-x 22,

Note that if r/s > 1 then v, = 0 and v" = o, which means that the
tolerance is sufficiently high relative to the difference in the
estimates that it makes only an unimportant difference whether the
constrained or unconstrained estimate is selected, or anything in

between.

19



4.0 Multivariate Cases

The multivariate case is more difficult because the minimal set of
prior distributions that are practically equivalent to either the
diffuse or the dogmatic prior distributions cannot be described in terms
of a finite set of interpretable diagnostics. The solution that is
proposed here is to assume that the prior covariance matrix is
proportional to the sample covariance matrix. The set of prior
distributions that are practically equivalent to either the diffuse
prior or the dogmatic prior is then described in terms of intervals of
values of the scale factor that multiplies this prior covariance matrix.
A researcher is expected to be able to answer questions of the form:
"Can you comfortably assert that the prior variance of any linear
combination of parameters is smaller than A" times its sample variance,
or can you comfortably assert that the variance any linear combination
of parameters is larger than A, times its sample variance?" Because
these questions refer to any linear combination of parameters, these
apparently simple questions are really an infinite number of questions.
I am not certain that this infinite set of questions can be answered in
a finite time, but I will proceed as if it could.

First we consider the case in which the prior distribution is
diffuse on a subset of coefficients. Assume that the n X 1 vector y is
distributed normally with mean X8 + 2y and covariance matrix I, where X
is an n X q observable matrix , Z is an n X p observable matrix, B is a
q X 1 vector of unobservables and v is a p X 1 vector of unobservables.
Suppose, for now, that the prior distribution for B is diffuse and the
prior distribution for.7 is normal with mean vector 0 and covariance

matrix V.

20
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To summarize, the model is
y~-NXB+Z~, I)
B ~ N(O, =)
¥y ~ N(O,V)
Then let the unconstrained estimate of B and vy, and the
corresponding precision matrices be:
b= (X'MX)" X'My
g = (2'M2)" 2'My
H;s - X'MZX,
H7 = Z'MxZ,
where M =1I- z2(z'2) 'z’
M =1I-XXX7X.
And let the regression of the z-variables on the x-variables be:
P= (XX)x'2.

Then the posterior mean of B8 can be written as:

A

BIV) = (X'X) 1R/ (y- Zy(V)) = B(O) - P (V).

where the posterior mean for v is

A

Y(V) = (2'M2 + vH7? Z'My.
The corresponding posterior covariance matrix is
X'X X'2 -1
Cov(B8,7|V) =
z'x z'z +v!
The issue of interest is assumed to be the linear combination 'S
+ n'y where ¥ and n are vectors of constants. The posterior mean of

this linear combination can be written as

PB(V) + n'y(V) = $'B(0) + (n' - ¥'P) (V) = %'B(0) + ¢'y(V)

where



¢’ = (n' - ¥'P).
Observe further that the dogmatic prior sets the estimate of v to zero,

and the estimate of the issue is:

¥ B(0) + n'y(0) = ¥'B(0)
For later reference, we will need the following results:

1) The unconstrained estimate of g is

b= f(w) =8(0) -Pg (L)
2) The xz statistic for testing y = 0 is

2 '
X", g'Hg

3) The t-statistic for testing %'S = 0 is

t\(, = ¢'b/[¢’Hﬁ'1¢]1/2.
4) The t-statistic for testing ¢'y = (n' - P'P)y = 0 is

- A g “1,11/2

t, = 4’8 /14'H 912
5) The t-statistic for testing the "Hausman hypothesis" that %'B(0) is
unbiased, -y'P v = 0 , is

ty = ¥'Pg /[¥'PH “'Pp]Y/2,

Note that if the issue does not involve the omitted variable, that

is if n =0, then t, = ¢t

A g+ Further, using the standard rule for the

inverse of this form we have:
(X'MX)™ = (X'X - X'2(2'2)'2'x)?
- @07+ XX)TX'2(Z2'M2Z) 2R (X X)) Y
Thus :
PH1'1P' = X'X7X'z[2'¥Z] 2 xXX'X) ! - 6.0 5 SRLERING &5 SRENE

4.1 Partially Informative Priors Equivalent to the Dogmatic Prior V = 0.

22

The first problem that is considered is to find a set of prior

distributions that are practically equivalent to the dogmatic prior



V =0 in the sense of implying an estimate that is indistinguishable
from the estimate obtained if the z-variables are omitted. The
following theorem dealing with the set of estimates corresponding to a
family of prior distributions with covariance matrix bounded from above
V < V* is taken from Leamer(1982):
Theorem 1: The extreme values of w’B(V) + n';(V) for V < V* are:

PB(O) + ¢ [H, + v+ g/2

T Ig"H [H + W g) 2[4 [0+ ya1]Tlg 120 (2)

where ¢' = (n' - %'P)

The problem now is to find a "large" value for V* such that this
interval of estimates is practically equivalent to a point. A "large"
value can be found by selecting V* up to a proportionality constant V* =
A*V,, and then finding the maximal value for \# such that the interval
of estimates(2) is adequately short. There are of course an infinity of
possible values for V,- This is what makes the multivariate case more
difficult than the univariate case. One possibility is that the
researcher sensibly and economically selects a personal value for V-
When it takes a lot of effort to think about V , it may be useful to use

the sample precision matrix V, = H{*. In that event the interval (2)

takes a very convenient form.
Theorem 1’': The extreme values of ¥B8(V) + n'y(V) for V < /\"H,’“1 are:
¥ B(0) + ¢'gr"/2(1+2%)

T [g'H gl™2[4"H 912" /2(142") (2)

The first proposed diagnostic is the maximum value of A" such that

the posterior mean is essentially the same as the constrained estimate
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for all V satisfying V < /\*HN’"1 where "essentially the same" is defined

as making a percentage difference that is less than some tolerance r:

[$'BV) + n'y(V) - $'B(0)|/|¥'B(0)| = 7.
Using (2') we may solve for the extreme values of this tolerable

difference as [A*/(1+A")]s where

s = (1¢'gl + X 1V214'H 612 ) /2198(0) |

= U, + DAY ) (670, 912/2 147 6(0) |

Then the diagnostic becomes:
N ($,m) = (r/s) / (1 - (1/s)),

where I have indicated the dependence of this diagnostic on (¥,n) to
make clear that it depends on the issue of interest. The value of this
diagnostic will be large, and the corresponding family of prior
distributions will be wide, when s is small. This will occur when the v
parameters are insignificant, collectively and as the linear combination
¢'v. Also s will be small when the constrained estimate of the issue is
large compared with the unconstrained sampling standard error of ¢' v
([¢'H 1Y%,

Note, incidentally, that if ¥ = 0, then s = @ and \* = 0, which in
words means that there are no priors other than the dogmatic prior that
are equivalent to the dogmatic prior. This is correct because the
dogmatic prior in this case, with ¥ = 0, implies a zero estimate of the
issue, and any other prior will imply an estimate that is

proportionately different from zero by an infinite amount.
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Theorem 2: The extreme values of YAV + n'v(V) for V, =V are:

VIB(O) + TR + VR 4y 1),
* [g'[H T+ Vel 4 (Y + H 17'¢112/2 (3)
For the case of a pPrior precision matrix pProportional to the sample

precision this specializes to:
Theorem 2': The extreme values of Y8V + n'v(V) for ,\,,H,"'1 < V are:

¥IB0) + $'g(A,+1/2)/(142,) + [e"H 8121470 4122 /2(140,)  (3+)

We now select the smallest value for A« such that for all v
satisfying /\*H,’"1 = V the estimate is essentially the same as the

estimate with the diffuse prior V = w:

58CT) - 1) + 130Ty - nhe 1/19'B(=) + n'y(oy | <
where r is the tolerance level. Using (3’) and (1) we may solve for
the extreme values of thig tolerable difference [1/(1+),)] s where
5188 £ LIV H 8112 ) g 4 geg |
=S DA 187812 1g0h 4 g |
The extreme value of A, is the solution to (1/(142,)] s = . Thus
A, = s/r - 1,
The value for s further simplifies if n = 0, that is if the issue of

interest involves only the coefficients on which the prior is diffuse.
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Let
m = p'PH P Y/ P (MK Y
= 1 - @XM

Then

s = =w' (gl + P 1Y) 12 [t

The value of X, will be small and the corresponding set of prior
distributions will be large when s is small and the tolerance r is
large.

4.3 Fully Informative Priors Equivalent to the Diffuse Prior V = o,

The next result allows the prior to be informative on all the

parameters, not just a subset. The question that is raised is whether
the diffuse prior, V = =, is a good approximation in the sense that the
posterior mean is practically the same as the unconstrained ordinary
regression. It is assumed that the n X 1 vector y is distributed
normally with mean X8 and covariance matrix I, where X is an n X q
observable matrix, and 8 is a q x 1 vector of unobservables. It is also
assumed that the prior distribution for B is normal with mean vector 0

and covariance matrix V. Then the posterior mean for B is
A

B(V) = (X'X + VH7x'y,
The following theorem from Leamer(1982) uses the notation:
H=X'X

b~ (X'X)7X'y.

A

Theorem 3: The extreme values of ¥’'A(V) for vV, =V are:
V£ * [e]VPyraTly)M? ()
where f = (HV,H + H) 1(HV,Hb + Hb/2)
c = b'V,"Y(H+ v,”)) *Hb/4

A-HV H+H



This specializes when the prior precision is proportional to the sample

precision to:

Theorem 3': The extreme values of ¥'B(V) for AH! <V are:

YOO+ 1/2)/(142,) £ [b'HBIY2 [y H ]2 2(142,) (4")

A minimal value for A, is selected such that for all V satisfying

AHY < vy

*

[¥'BV) - ¥'b|/|¥'b| < 7

where r is the tolerance level. Using (4') we may solve for the
extreme values of this tolerable difference
A, = s/r -1 , where
s =11+ X100 0 /2
Thus, using this notion of sensitivity, the prior can be treated as if
it were completely diffuse if interest focuses on parameters with large
t-values. (I leave as an exercise the problem of finding the linear
combination with the maximum t-value.)
4.4 Tolerance relative to the standard error
The other kind of diagnostic compares the difference in the
estimates with their standard error. These are straightforward
variations of the diagnostics already considered and can be justified
with reference to the problem of estimation with quadratic loss that has
been discussed earlier.
The first diagnostic for the partially informative case is the
maximum value of A" such that the posterior mean is essentially the same

as the constrained estimate for all V satisfying V < Aﬁg'%

BBV + n'y(V) - !ﬁ'ﬂ(o))z/ ($,n)"Cov(B,7IV) ($,n) < 72 (5)
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where 7 is the tolerance level. Solving this problem and the ones
analogous to it for the other cases seems very difficult, but a narrower
set of priors that also satisfy this inequality can be found by
replacing the denominator with the variance of the linear combination
corresponding to the sharp prior V = 0. Paralleling the results above
we may solve for the extreme values of this tolerable difference as
[A"/(1+A") ]s where

s = (] + 1Y) (78 761Y2/2/($,n) ' Cov(B, 1| V=0) ($,n)

= (gl + P12 ) (670 81Y2/2 (9 (XM X)) /2
Then the diagnostic becomes:
X)) = (r/8) / (1 - (1/s)).

Note that if the linear combination of interest does not involve
the doubtful variables, that is if 5 = 0, then

s = (gl + XP0Y2 ) [9/PH Y122/ (XM X) My

= Ul + X1V ) o'/2 /2

where m.- 1 - ¢'(X’X)'1¢/¢'(X'MZX)'1¢ and t, is the t-statistic for
testing the Hausman hypothesis y'Py = 0.

Note also that if the linear combination involves only the
doubtful variables, % = 0, then this value of s is = and A" = 0, meaning
that there are no prior distributions that are equivalent to the
dogmatic prior. This is formally appropriate because if one sets V = 0,
then one acts as if the linear combination of interest were known
perfectly, and relative to this zero standard error any small change in
the estimate is unlimited in importance. This result, however, raises
questions concerning the tolerance definition in terms of the percentage
increase in the loss associated with this one decision since there may

be many other decisions that cause so much risk that this additional
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risk is inconsequential even though a small change in the estimate would
imply an infinite per centage increase in this risk. Further, if the
problem were forecasting or control rather than estimation, the size of
the residual variance affects the expected loss and setting a parameter
to zero can never increase the expected loss by an infinite percentage.
More on this subsequently.

The second diagnostic for the partially informative case is the
smallest value for A, such that for all V satisfying ,\‘,,H,,"1 < V the
estimate is essentially the same as the estimate with the diffuse prior
V = =» in the sense that inequality (5) is satisfied. If the denominator
of (5) is not zero when V = 0, then a family of priors that is
equivalent to the diffuse prior can be found by setting the variance in
the denominator to the smallest possible which occurs when V = 0. Using
the result above, this implies the value

A, = s/r - 1.

where

s = (t,] + [X° 1Y% ) [8'H 612/2(($, 1) " Cov(B,7|V=0) (,n))/?
The value for s further simplifies if n = 0, that is if the issue of
interest involves only the coefficients on which the prior is diffuse.
Then following the algebra above we have

s = ml/? (Ityl + [XZ,]1/2| )y /2

Note that if the issue in question involves only the doubtful
variables, that is if ¥=0, then this value of s is infinite and A, = @,
meaning that there is no prior that is practically equivalent to the
diffuse prior. But this solution is inappropriate because it allows the
variance in the denominator to go to zero when in fact it is bounded

away from zero. A better solution would be to define the class of



priors by Seéparately optimizing the numerator and denominator over the

class of priors /\*}!7"1 <V

ne B+ Ty - 18002/ min (byn) Covip, v V) (p gy < o2
The denominator is minimized at V = /\,,Hq,"1 since for V. < v, .,

Cov(ﬁ,ylVl) < Cov(ﬂ,y]Vz). From the discussion above, the numerator of

this expression is

max (§'8(V) + ' 7(¥) - 4502 = el + DAY (478712 / 210y
The denominator is a relatively complicated function of A,, except when
the issue does not involve the diffuse parameters, y = Q0. Then the
denominator becomes
WH BT 0 = ) A1)
Dividing the previous expression by this, using ¢ = g, implies a value
Ao =8 /1
where
s = Ut ] + [ 1Y%)) /2

Another diagnostic can be found if the prior covariance is

inequality that makes reference to the sample covariance matrix, and do
not assume that the Prior covariance matrix is known up to a factor of

proportionality.) With V = AH!, we have
BQAY =bdA/(1+2)

Cov(f) = H™ A/ ( 1+

and

[¥'BQA) - $'bl/(p'Cov(Byp)/2 [(¥'B/(W'HY2 ] /[ 2 (142 ) 12
Thus A, is the solution to

th/ 2= (14 A,)
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This quadratic has the relevant solution
A, = -1/2 + (1 + Atj/ 22,9
4.5 Summary

All of these results are summarized in three tables. Table 1
contains the assumptions and various summary statistics. Table 2
contains the diagnostics that indicate families of priors that are
equivalent to the dogmatic prior which implies that variables are
omitted from the equation. Table 3 contains the diagnostics that
indicate the range of prior distributions that are equivalent to the
diffuse prior which implies estimates equal to the unconstrained
ordinary least squares estimates.

What you see in these tables is that the traditional
"misspecification” test statistics, namely the x-squared statistic for
the omitted variables and the Hausman statistic for zero bias, do play
an important role in determining the values of these elicitation
diagnostics. But none of these elicitation diagnostics suggests a
simple study of the size of either of these misspecification test
statistics alone. My inference is that the diagnostic statistics that
we are traditionally using are probably the right thing to be examining,
but we are not using them in the most appropriate way, certainly not if

they are used implicitly as elicitation diagnostics.
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5.0 An Example

The preceeding algebra is probably best understood by way of an
example. For want of a better data set, I will reanalyze the murder
data for which I previously reported bounds in Leamer(1982) and
Leamer(1983). These bounds answer the question: If the prior
distribution has certain properties, what properties must the posterior
distribution have? In this paper I turn this question around to form:
If the posterior distribution has certain properties, what properties
must the prior distribution have?

The variables are listed in Table 4. The dependent variable is the
murder rate per hundred thousand population, observed for 44 states in
1950. The explanatory variables are divided into three sets. There are
four deterrent variables that characterize the criminal justice system,
or in economic parlance, the expected out-of-pocket cost of crime.

There are four economic variables that measure the opportunity cost of
crime. And there are four social/environmental variables that possibly
condition the taste for crime. This leaves unmeasured only the expected
rewards for criminal behavior, though these are possibly related to the
economic and social variables and are otherwise assumed not to vary from
state to state.

Individuals with different experiences and different training will
find different subsets of the variables to be candidates for omission
from the equation. Five different lists of doubtful variables are
reported in Table 5. A right winger expects the punishment variables to
have an effect, but treats all other variables as doubtful. He wants to
know whether the date still favor the large deterrent effect, if he

omits some of these doubtful variables, The rational maximizer takes
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the variables that measure the expected economic return of crime as
important, but treats the taste variables as doubtful. The eye-for-an-
eye prior treats all variables as doubtful except the probability of
execution. An individual with the bleeding heart prior sees murder as
the result of economic impoverishment. Finally, if murder is thought to
be a crime of passion then the punishment variables are doubtful.

The prior elicitation questions that will be posed subsequently
refer to the least-squares standard errors reported in the first column
of Table 6. These elicitation questions compare the standard errors of
whatever prior information you may have with these sample standard
errors. In order to facilitate the introspection that is necessary to
answer these elicitation questions, Table 6 contains an interpretation
of each standard error based on the assumption that the estimate is
equal to a multiple of its standard error. The number that is reported
is the amount by which the explanatory variable would have to change in
order for the murder rate to change by 1/100,000. For example, the
estimated standard error for PC, the conditional probability of
conviction, is 4.0. An estimate of 4.0 implies that an increase in the
conditional probability of execution by 1/4 = .25 changes the murder
rate by 1/100,000. This number can be found in the column headed by a
multiplier equal to one. If the estimate were ten times as large as the
standard error, it would take only a 1/40 = .025 increase in the
conditional probability of conviction to decrease the murder rate by
1/100,000. This number can be found in the column headed by a
multiplier equal to ten. The last column in Table 6 contains the units

of the variables, most of which are fractions(f).
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The elicitation questions implicit in the diagnostics soon to be
discussed select a posterior distribution and identify a family of prior
distributions that are mapped by the data into it. Before discussing
these diagnostics it is useful for purposes of contrast to do the
mapping in the other way, that is to find an "agreeable" family of prior
distributions and the corresponding family of posterior distributions.
Consider, for example, the problem of selecting a family of prior
distributions to characterize your uncertainty about the effect of the
conviction probability on the murder rate. First find a lower bound for
the prior variance: If the prior location is zero, what is the smallest
prior standard error that you could comfortably allow? A standard error
about the same size as the sample standard error of 4 seems right to me.
What this means is that there is at least a fifty percent chance that
the coefficient exceeds 4, and consequently that it takes less than a
.25 increase in the conditional conviction probability to reduce the
murder rate by 1/100,000. Next find an upper bound for the prior
variance: If the prior location is zero, what is the largest prior
standard error that you could comfortably allow? A number about five
times the sample standard error seems about right to me. What this
means is that there is at least a fifty percent chance that the
coefficient is less than 20, and that it takes more than a 1/20 = .05
increase in the conditional conviction probability to reduce the murder
rate by 1/100,000. Both of these numbers can be found in Table 6.

The choice of these upper and lower standard errors can be done
only with some discomfort. That is the primary reason for taking the
other approach of identifying a family of prior distributions that are

practically equivalent to a dogmatic distribution or to a diffuse



distribution. For example, a couple of diagnostics taken from Table 7
are A" = 0 and A, = 1.48 which apply to the first prior distribution in
which the probability of conviction is a doubtful variable. These
diagnostics form the questions: "Is your prior standard error less than
zero times the sample standard error?" "Is your prior standard error
more than 1.05 times the sample standard error?" The first question
cannot have an affirmative answer and there can be no prior distribution
that is equivalent to the dogmatic prior that merely sets this parameter
to zero. The second question could have an affirmative answer, in which
case the prior can be taken to be diffuse.

For purposes of discussion, the issue is assumed to be the effect
of the conditional execution probability on the murder rate. The
Bayesian elicitation diagnostics applicable to this issue for each of
the five prior distributions are reported in Table 7. The first column
indicates if the issue is an "included" or a "doubtful" variable. After
that are two sets of four columns each, the first refering to
diagnostics with the tolerance defined in terms of the percentage change
in the estimate and the second set of four columns referring to
diagnostics with the tolerance relative to the standard error. The
first two columns in each group of four indicate the values of the
statistics s” and s, which can be used to form diagnostics at any
tolerance levels. The next two columns contain the elicitation
diagnostics /A" and JA, corresponding to a ten per cent tolerance level.
(The squareroot of ) is reported here in order to facilitate comparisons
with standard errors rather than variances.) The elicitation questions

posed by these two sets of diagnostics are: "Are your prior standard
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errors less than A" times the sample standard errors?" "Are your prior
standard errors greater than )\, times the sample standard errors?"
Consider first the case in which the tolerance is defined in terms
of the percentage change in the estimate. The five values of A" are all
very small; two values in fact are zero. This means that the prior
distribution would have to be very concentrated in order to proceed as
if it were dogmatic. The two zeroes occur because the constrained
estimate is zero, and any coefficient different from zero is infinitely
different in a per centage sense. Thus there can be no prior
distribution that is practically equivalent to the dogmatic prior. The
non-zero values for A" occur when the probability of execution is not a
doubtful variable. Consider the right-wing prior which takes everything
but these punishment variables as doubtful. The value of A" is .71.
The elicitation question posed by this diagnostic is "Are your prior
standard errors for the coefficients of the doubtful variables all less
than .71 times the sample standard errors. The numbers in Table 6 can
help to answer this question. Take a look at the column headed by the
multiplier equal to .5 (which is close to .71). Referring to all but
the punishment variables, is there a greater than fifty per cent chance
that it would take a larger change than the value indicated to affect
the murder rate by 1/106,000. Is it probable (50 per cent or more) that
to change the murder rate by at least 1/100,000 would require more than:
a .09 change in the per cent poor, a .06l change in the per cent
unemployed, a .087 change in the fraction employed, a .37 change in the
per cent nonwhite, a .026 change in the per cent youth, a .33 change in
the per cent urban, a .028 change in the per cent male, a .032 change in

the per cent of complete families and a 1.23 change in the Southern
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dummy (which is impossible). If you can answer affirmatively to all
these questions and others like them, then you can act as if the prior
distribution were dogmatic and all but the punishment variables could be
omitted. I cannot, and I would not think that this dogmatic prior is a
good approximation.

The other diagnostics, A, , identify a family of prior
distributions that are equivalent to the diffuse prior. In the case of
the crime of passion prior, which treats only the punishment variables
as doubtful, the value of XA, is only .57. Referring again to the
numbers in Table 6 corresponding to a multiplier of .5, this diagnostic
is asking the questions: "Are you pretty confident (at least fifty per
cent) that in order to change the murder rate by 1/100,000 it would take
less than a .5 increase in the conviction probability, less than a .22
increase in the execution probability and less than a 222 increase in
the number of months of incarceration." My answer is yes, and if I were
to use the bleeding heart prior, the approximaton that my prior is
diffuse seems adequate.

The diagnostics applicable when the tolerance is defined relative
to the standard errors do not seem to suggest that either the diffuse or
the dogmatic prior is adequate.

Thus except in one case the message of these diagnostics is that
this data set is neither so small that we can rely entirely on the prior
information no so large that we can rely entirely on the data
information. In retrospect, that seems like a predictable conclusion.
It is hard to imagine that observation of 44 states could yield an

estimates of the effect of executions that are impervious to the state



of prior information, but it is equally hard to imagine that one could
discard the data altogether.

This Bayesian approach to diagnostics can be contrasted to the
traditional pretest diagnostics that help to select a method of
estimation. The traditional diagnostic statistics for each of the five
prior distributions are reported in Table 8. The first column indicates
if the issue is an "included" or a "doubtful" variable. The second
column contains the chi-square statistic for testing if the omitted
variables have no effect. The third column reports the unconstrained
estimate of the issue, and the fourth column the corresponding t-value.
The last two columns contain the estimate of the issue with the doubtful
variables omitted and the corresponding t-value.

Using the traditional levels of significance, the chi-squared
statistics all would suggest that the restricted estimators are
undesirable, the one possible exception being the crime-of-passion
restrictions. The t-statistics for testing the Hausman hypothesis that
the restricted estimator is consistent are small in two cases, which
might suggest opting for the restricted estimator, nevermind the large
chi-square statistic.

It is difficult for me to guess exactly how one might use the
pretest diagnostics reported in Table 8 to select among the alternative
estimates. It is even more difficult for me to suggest how they
sensible could be used, since that would depend either on sampling
properties or implicit prior distributions, neither of which do I have
any inkling of. Thus my message: Bayesian elicitation diagnostics have
a firm philosophical foundation, though they are often difficult to use

in real settings. Pretest diagnostics, which seem easy to use, have a
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'shaky philesophical foundation, and consequently yield a product whose
value is very much in doubt .
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Table 1

The Statistical Model and Summary Statistics

Model :
y~ NCXB+2Z v, I)
Yy~ NCO, V)

Parameter Combination of Interest: %'B + n'y , ¥ and 7 given

Notation:
r '1
b= (X'MX)" X'My
H = =2'M2,
v X
M =1I-2(2'2)"2
M =1I-XXX7X.

P = (X'X)"x'2.
BOV) = (X'X) IR/ (y- Zy(V)) = BCO) - P (V).

A

Y(V) = (2'M2Z + V) 2'M y.
¢ = (n - P'yY)
m=1 - ¥ (XX)YP XM
Test Statistics:
tests vy = 0
t, tests -y'Py =0
t, tests (n' - »'P) vy =0
t, tests ' =20
t tests n'y =0

Error Tolerance level: r



Table 2

Diagnostics Indicating Priors Equivalent to the Dogmatic Prior

I. Constrained least squares with doubtful variables omitted (V = 0) is
an adequate approximation if the prior variance satisfies

vV < A'H7?
v

where )" = (r/s) / (1 - (r/8)),

A._Tolerance 7_Defined in Terms of Per Centage Change in Coefficients

1. Linear Combination of Interest Depends on Doubtful Coefficients
(n »# 0)

s, = (It ] + (X172 ) [4'H 7612 / 219'8(0) |

2. Linear Combination of Interest Depends on Diffuse Coefficients Only
(n = 0)

s, = w2 egl + [XP1Y2 ) 19'b/p B0) | / 21t

B. Tolerance 7_Defined in Terms of the Difference in Estimates Divided
by the Standard Error

1. Linear Combination of Interest Depends on Doubtful Coefficients
(n = 0)

s; = (e, + [P1Y2 ) (4871612 / 209" R' M) )2
2. Linear Combination of Interest Depends on Diffuse Coefficients Only
(n = 0)

s, = w2 (Jegl + X212 /2
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Table 3
Diagnostics Indicating Priors Equivalent to the Diffuse Prior

II. Unconstrained least squares with doubtful variables included (V = =)
is an adequate approximation if the prior variance satisfies

AHTY < v
7

where A, = s/ - 1.

E

A. Tolerance r_Defined in Terms of Per Centage Change in Coefficients

1. Linear Combination of Interest Depends on Doubtful Coeff.(n = 0)
a. Partially Informative Prior
ss = (gl + XA 1Y% ) [¢'B71Y2 / 2|9'b + n'g |
b. Fully Informative Prior X =0, ¥ = O
se = [ 1+ IX* 17%/1g,1 1 /2

2. Linear Combination of Interest Depends on Diffuse Coefficients Only
(n = 0)

a. Partially Informative Prior

1/2 2 11/2
s, = mt2 (el + EIYE) /21t

B. Tolerance Defined in Terms of the Difference in Estimates Divided by
the Standard Error

1. Linear Combination of Interest Depends on Doubtful Coefficients
(n = 0)

a. Issue depends on diffuse parameters, ¥ = 0

sg = (It + X2 1Y% ) [67H 1Y% / 209" (R'MX) )12

b. Issue does not depend on diffuse parameters, p = 0O
2 11/2 .
s = (It | + DAY )72 5 A = s/t
b. Fully Informative Prior X =0, % = 0, V = A(2'2)7!

Ao = 172 + (1 + 4t % rHYE 49

¥*

2. Linear Combination of Interest Depends on Diffuse Coefficients Only
(n =0, ¥ »0)

a. Partially Informative Prior

sy = W2 (gl + P12 /2
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/DIAGNOSTICS/TABLES2’ .DOC
Table 4

Variables Used In the Analysis

[

Dependent Variable
M = Murder rate per 100,000, FBI estimate.
b. Independent Deterrent Variables
PC = (Conditional) Probability of conviction for murder given
commission. Defined by PC = C/Q, where C = convictions for
murder, Q = M X NS, NS = state population.
PX = (Conditional) Probability of execution given conviction
(average number of executions 1946-50 divided by C).
T = Median time served in months for murder by prisoners
released in 1951.
XPOS = A dummy equal to 1 if PX > 0.
Independent Economic Variables
%) = Median income of families in 1949,
X = Percent of families in 1949 with less than one-half W.
U = Unemployment rate.
LF = Labor force participation rate.
d. Independent Social and Environmental Variables
NW = Percent nonwhite.
AGE = Percent 15-24 years old.
URB = Percent urban.
MALE = Percent male.
FAMHO =Percent of families that are husband and wife both present
families.
SOUTH =A dummy equal to 1 for southern states (Alabama, Arkansas,
Delaware, Florida, Kentucky, Louisiana, Maryland,
Mississippi, North Carolina, Oklahoma, South Carolina,
Tennessee, Texas, Virginia, West Virginia).
e. Weighting Variable
SQRTNF = Square root of the population of the FBI-reporting
region. Note that weighting is done by multiplying
variables by SQRINF.
f. Level of Observation
Observations are for 44 states, 35 executing and 9
nonexecuting. The executing states are: Alabama, Arizona,
Arkansas, California, Colorado, Connecticut, Delaware, Florida,
Illinois, Indiana, Kansas, Kentucky, Louisiana, Maryland,
Massachusetts, Mississippi, Missouri, Nebraska, Nevada, New
Jersey, New Mexico, New York, North Carolina, Ohio, Oklahoma,
Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee,
Texas, Virginia, Washington, West Virginia.
The nonexecuting states are: Idaho, Maine, Minnesota,
Montana, New Hampshire, Rhode Island, Utah, Wisconsin, Wyoming.

e}
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Table 5
Doubtful Variables for Each of Five Priors

PC PX T W X u LF NW AGE URB MALE FAMHO SOUTH
Right wing D D D D D D D D D D
Rational Maximizer D D D D D D
Eye-for-Eye D D D D D D D D D D D
Bleeding Heart D D D D D D D D D

Crime of Passion D D D



Table 6
Change in the Explanatory Variable
Needed to Alter Murder Rate by 1/100,000
Coefficient Assumed to Equal Standard Error Times Multiplier

Standard Error Multiplier /A

Stnd Err- .25 .50 1.00 2.50 5.00 10.00 15.00- wunits
PC 4 1.000 .500 .250 .100 .050 .025 .017 f
PX 8.99 .445 .222 .111 .044 .022 .011 .007 f
T .009 444 222 111 44 22 11 7 mnths
W .002 2000 1000 500 200 100 50 33 $
X 22.3 .179 .090 .045 .018 .009 .004 .003 f
U 32.7 .122 .061 .031 .012 .006 .003 .002 f
LF 22.9 .175 .087 .044 .017 .009 .004 .003 f
NW 5.4 .741 .370 .185 .074 .037 .019 .012 £
AGE 77.1 .052 .026 .013 .005 .003 .001 .001 £
URB 6 .667 .333 .167 .067 .033 .017 .011 f
MALE 71.4 .056 .028 .014 .006 .003 .001 .001 f
FAMHO 61.8 .065 .032 .016 .006 .003 .002 .001 f
SOUTH 1.62 2.469 1.235 .617 .247 .123 .062 .041 £

Note: f = fraction



Prior
Rt. Wing
Rat. Max.
Eye-Eye
Bleed. Heart
Passion

A values correspond to ten percent tolerance

Table 7

Diagnostics

2¥ = (.1/s) / min[(1 - (.1/s),0]
Ay = min{ (s/.1) - 1, 0]

Issue: Effect of Probability of Execution

Tol. defined in terms of Difference in
Rel. to estimate

i/d s* Sy

L QL s s e

2.180 1.674
3.135 1.018
2.278 2.160
© 0.320
© 0.133

%

.71
.18
.21
.00
.00

e

3.97
3.03
4.54
1.48

.57

Rel.

to

g%

2.300 2.
1.399 1.
2.969 2.

-]

0

13.
5.
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the coefficients
Standard Error

30
40
97
23
49

.21
.28
.19
.00
.00

Jax

4.69
3.61
5.36
11.50
7.41



Table 8
Test Statistics

Probability of execution
2

Prior Status x“ =~ Est(®) t Est(0)  t(0) |t
Rt. Wing i 68.99 -12.22 -1.37 -9.66 -0.81 0.55
Rat. Max. i 25.14 -12.22 -1.37 -3.97 -0.39 2.49
Eye-Eye i 127.37 -12.22 -1.37 -11.59 -0.78 0.13
Bleed. Heart d 40.37 -12.22 -1.37 - - -
Passion d 6.30 -12.22 -1.37 - - -
Note: x%. tests the joint significance of the doubtful variables.

Eék(m) is the estimate of the issue with all variables included.

Est(0) is the estimate of the issue with doubtful variables excluded.

t is the t statistic of the issue when all variables are included.

t(0) is the t statistic of the issue when doubtful variables are excluded.

t, test the "Hausman" hypothesis that the constrained estimate is unbiased.
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Table 9

Estimates and t-values

ALL RWING RATMX EYE BLEED PASSION
Intercept 47.55 15.51 7.37 7.90 -2.23 29.55
(0.622) (7.07) (0.51) (4.13) (-0.16) (0.40)
PC -8.78 -15.81 -9.79 -9.51 - -
(-2.21) (-3.04) (-2.15) (-1.52)
PX -12.22 -9.66 -3.97 -11.59 - -
(-1.37) (-0.81) (-0.39) (-0.78)
T -0.0089 -0.046 -0.025 - - -
(-1.01) (-4.86) (-2.75)
W 0.0006 - -0.0073 - -0.009 -0.0003
(0.23) (-4.37) (-5.40) (-0.11)
X 26.88 - -9.94 - 0.823 40.44
(1.21) (-0.59) (0.05) (1.86)
U -0.310 - -22.25 - -25.09 -27.42
(-0.009) (-0.72) (-0.88) (-0.99)
LF 14.21 - 40.82 - 48.60 13.20
(0.62) (1.53) (1.70) (0.55)
Nw 10.21 - - - - 12.16
(1.90) (2.23)
AGE 46.99 - - - - 38.25
(0.61) (0.47)
URB -0.93 - - - - 3.5
(-0.17) (0.65)
MALE -85.10 - - - - -66.35
(-1.19) (-0.93)
FAMHO -22.35 - - - - -19.34
(-0.36) (-0.31)
SOUTH 4.93 - - - - 5.15

(3.03) (3.45)



