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ABSTRACT

This paper presents a model of an asset market with an infinite
number of states of the world. Equilibria exist (under standard
assumptions) provided that assets are denominated in a single
numeraire commodity. For a given sequence of assets, necessary and
sufficient conditions are established that the equilibria of the finite
asset markets necessarily converge to an efficient allocation or to an
equilibrium allocation of the underiying complete contingent claims
market. The set of assets railing this condition is residual: it

contains a countable intersection of dense, open sets.



1. INTRODUCTION

Underlying the Walrasian (Arrow-Debreu) model of economic activity
are two assumptions: that agents act as price-takers, and that there is
a market for every commodity. When there is uncertainty about the
future, the latter assumption entails a complete set of contingent
claims; i.e., claims to consumption streams dependent on the future

state of the world.

Arrow (1953, 1964) presents a different model, with trading in
futures markets for securities (assets) whose payoffs depend on the
state of the world, and in spot markets for physical commodities.!
Although the Walrasian model and the security market model are
formally different, Arrow shows that, if security markets are complete
(i.e., if every wealth pattern can be obtained from a portfolio of
available securities), the two models are equivalent: they support the
same equilibrium allocations (of physical commodities). In particular, if
security markets are complete, equilibrium allocations are efficient

(Pareto optimat).

If security markets are incomplete, however, the situation is quite
different: the Walrasian model and the security market model are not

equivalent. In particular, equilibrium allocations of security markets

1. Arrow considers only nominal securities; i.e., securities denominated in units of
account. Radner (1972) considers a model with real securities (i.e., securities
denominated in physical commodities).



need not be Pareto optimal.? Indeed, equilibrium allocations need not
even be optimal within the set of allocations that can be obtained
through trades in the given securities. (See Hart (1974, 1975), Grossman
(1977), Newberry and J. Stiglitz (1982), Stiglitz (1982), and especially
Geanakoplos and Polemarchakis (1987).)

Security markets equilibria will be efficient if assets span all the
uncertainty; they may be inefficient if assets fail to span all the
uncertainty. Intuition might suggest (and mine did) that security
markets equilibria will be "nearly” optimal if assets span "most” of the
uncertainty, then . The results of this paper suggest that this intuition
may be wrong - badly wrong. In general, security markets equilibria
may be inefficient, and remain inefficient (i.e., bounded away from
Pareto optimal allocations) even when the set of assets expands to a set
which resolves all the uncertainty. Moreover, this "asymptotic
inefficiency” is robust: in fact, “asymptotic inefficiency” is a generic

property of asset sequences.

Our results suggest that, although a complete securities market is 2
perfect substitute for a Walrasian (complete contingent claims) market,

a large securities market need not be a good approximation for a

wWalrasian market.

To establish these results, we construct a model of a securities

2. Of course, they may be optimal in certain circumstances; the capital asset pricing
model provides a noteable example.



market with a countably infinite number of states of nature.® When the
number of assets is finite, we are able to prove (under standard and
natural assumptions about the returns on assets, and the preferences and
endowments of consumers) that such a securities market always has a
security market equilibrium (Theorem 1). To study the behavior of
equilibrium allocations when the assets span "most” of the uncertainty,
we fix an infinite sequence («n} of assets, and consider, for each N,
the corresponding securities market. We say that such a sequence is
asymptotically efficient if, for all consumer preferences and
endowments (in a well-behaved class), the equilibrium allocations of the
security markets involving only the assets (o(n :1 =ns N} converge to
Pareto optimal allocations of the underlying Walrasian markets. We
identify a condition on an infinite sequence of assets which is necessary
and sufficient that it be asymptotically efficient. Modulo a small
technical caveat (that preferences be uniformily proper), sequences of
assets which are asymptotically efficient are also asymptotically
complete, in the sense that the equilibrium allocations of the security
markets involving only the assets {o:n: 1 snsN) converge to
equilibrium allocations of the underlying Walrasian market (Theorem 2).°
The requisite condition for asymptotic efficiency (and asymptotic
completeness) is that every Arrow security can be uniformly
approximated by the returns from a finite portfolio. This condition is

extremely strong: the sequences of assets which rajl to satisfy this

3. It would be natural to allow for continuous uncertainty, but this would give rise to
serious technical difficulties that we wish to avoid; see Section 7 for further
discussion.

4. This method of studying the assumption of complete markets seems anaiogous to
the familiar method of studgying the assumption of price-taking behavior by
consumers; see Anderson (1986) for ecxample
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condition comprise a residual subset of the space of all asset sequences

(Theorem 3).5

We find it convenient (for technical reasons) to work with numeraire
securities ; i.e., securities denominated in a single commodity.
Numeraire securities constitute a convenient halfway station between
the purely financial securities of Arrow and the general securities of
Radner (1972). As shown by Geanakoplos and Polemarchakis (1987), the
problems of existence identified by Hart (1975) for general security

models do not arise in the case of numeraire securities.®

Our results do not depend on pathologies in securities structures,
endowments, or preferences. We assume the existence of a riskless
asset, and that the returns on other assets are bounded; we could,
without loss, assume that all assets have strictly positive payoffs. Wwe
assume that endowments are bounded away from zero; we could also
assume that endowments are bounded above. Finally, our negative
results are obtained with preferences representable by separable,
strictly concave utility functions (with bounded marginal rates of
substitution); similar constructions could be carried out with

preferences representable by homogeneous utility functions.

The crucial idea underlying our negative results is that the

requirement that consumption bundles be non-negative places severe

S. Recall that residual sets are large, and their complements are small, so
“asymptotic inefficiency” is a generic property.

6. This had already been established for models involving only purely financial
securities by Cass (1964), Werner (1985) and Duffie (1985).
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constraints on the set of portfolios which can be traded. In other

words, terminal wealth constraints matter.

If consumption bundles are not required to be non-negative (i.e., if we
ignore terminal wealth constraints), the situation is quite different. On
the one hand, security markets equilibria need not exist; moreover,
equilibrium allocations of security markets may become unbounded as
the set of available assets expands. On the other hand, if the infinite
sequence {txn} of assets spans all the uncertainty, then limits of
equilibrium allocations of the finite securities markets will be
equilibrium allocations of the underlying complete markets economy,
provided that the finite security markets have equilibria and that these

equilibrium allocations converge (Theorem 4).

The first research of which I am aware on the asymptotic behavior of
security markets is due to Green and Spear (1987, 1988), and their
thought-provoking work has provided some of the impetus for the
present paper. However, the conclusions of the present paper are not
entirely in harmony with those of Green and Spear. For further

discussion, see Section 7.

The remainder of the paper is organized in the following way. We
describe the model in Section 2. Section 3 provides the basic existence
theorem and its proof. Section 4 discusses asymptotic efficiency and
asymptotic compieteness, Section S presents the generic analysis, and
Section 6 discusses the case of unconstrained consumption. Finally,

Section 7 concludes.



2. THE MODEL

The model we use is a variant of the model of Geanakoplos and
Polemarchakis (1987), adapted to accommodate an infinite number of

possible states of the world.

Transactions occur (at date 0) in assets (or securities) before the
state of nature is known, and then (at date 1) in real commodities, after
the state of nature is known. (There would be no difficulty in allowing
for several periods, or for consumption before the state of nature is
known.) The state of nature is described by an atomic probability space
(5, ), where S =(1,2,3,...) is the set of states of nature, and
o is a probability measure on S.° We assume that o(s) > O for each

s €S (this involves no loss of generality).

At each state there are available for consumption 2 physical goods,
1,...2, of which the first is the numeraire . Commodity bundles (or
. 0
consumption patterns ) are elements of the commodity space Ll(s’d) ;
i.e.,, functions x: S~ IRn for which the norm
]

IxI = Jxts)| dots) = [ T |x.(s)] dots)
i=1

7. The probability o(s) may be interpreted as the objective probability that state s
will occur, or as the unanimous assessments of consumers, but neither of these
interpretations is necessary. All that is necessary for our purposes is that
assessments of consumers be consistent, in the minimal sense of allowing for the
same consumption patterns.



is finite. Since o is a probability measure, the norm of x is just the
expectation of |x| = 5 | %, We usually do not distinguish between
functions x: 5 = IRn and Q-tuples (xl ,...xn) of functions

x]. : S+ IR. Since S is countable, a function x], : S+ IR may be
identified with a sequence of real numbers, but it is convenient to use
functional notation; we shall usually write x(s,i) rather than xl.(s) .
It is frequently convenient to identify a function we Ll(s'd) with the
0-tuple (w,0,...0)¢ L1(S,d)n; we frequently call w a numeraire
pattern . Given bundles x, y € LI(S,o')11 , We write: x sy to mean
x(s,i) < y(s,i) foreach i,s; x <y tomean x(s,i) < y(s,i) for each
i,s and x #Yy; X <<y tomean x(s,i)<y(s,i) foreach i,s. We
write Xsi for the consumption pattern which is one unit of commodity

i in state s ; i.e., )(S].(s,i) =1, Xsi(r’j) =0 if (r,j) # (s,i).

An asset (or security ) is a claim to a numeraire pattern at date 1.
(Thus, securities are denominated in the numeraire commodity.) The
return on asset « in state s is «(s), which may be positive,
negative or zero. We frequently use the same notation for an asset and
for its returns; it should always be clear from context what is
intended. We assume that asset returns are bounded ; i.e., for each «,
there is a constant ¢ such that |«(s)| s c for each state s .® we
assume that the first asset «, is riskless; i.e., “I(S) = 1 for each

1
se€S.% (We usually write 1 for this element of "1(5"’) 2

8. The requirement that asset returns be bounded is likely unnecessary, but it is very
conventent.
9. This requirement too is likely unnecessary but very convenient.



If there are N assets Xy reen &y, @ portfolio is a vector

6 = (e] ,...GN) e R\ ; © is the holding of the k-th asset, and may be

k
positive, negative or zero. The return on the portfolio 6 = (e] ,...eN)

is the numeraire pattern:
return(e) = > 6 x € L, (5,0).

Asset prices are vectors q e lRN y Where 9 is the price of the k-th
asset; if © ¢ IRN is a portfolio, then q -6 = 2 qkek is the value of
the portfolio © at the prices q. The asset prices q are no-arbitrage
prices if q - © > 0 for each portfolio © such that return(e) > 0.
Commodity prices are functions p: S~ (IRQ)+ ; p(s,i) is the price of
commodity i in state s . We shall always normalize so that, for each
state s, zp(s,i) = 1. (This is a free normalization, because there will
be a different budget constraint in each state; see Geanakoplos and
Polemarchakis (1987).) The income pattern pox required to purchase

a commodity bundle x at prices p is defined by:
pax(s) = D p(s,i)x(s,i) .

Consumers h e {1,...H) are defined by endowments eh and
preferences <h . We assume that aggregate endowments are strictly
positive and that numeraire endowments are bounded away from O ;
i.e., zeh >> 0, and there is a § > 0 such that eh(s,l) > 8§ for each
consumer h and state s . Consumption sets for each consumer are

the positive cone [Ll(S,d)Q]+ ; i.e., we require terminal consumption to



be non-negative (except in Section 6, where we consider unconstrained
consumption). Preferences are (norm) continuous, convex and strictly
monotone; i.e., X <h y whenever x <y . (Such preferences are
representable by continuous, quasi-concave, strictly monotonic utility
functions [LI(S,d)n]+ + [0,00) .) Finally, we assume that the numeraire
is desirable in every state, in the sense that, for each commodity
bundie x € [L'(S,o’)n]+ and state s, there is a ¢ > 0 such that:

x <" CXgy * % eh(s,i))(si

i=2

(Note that the right hand side is the consumption pattern that yields ¢
units of the numeraire and the endowment of every other commodity in

state s and nothing in other states.)

A securities (or asset) market is a pair & = ({o:k}. ((eh, <h)}) '
where {o:k:l < k <N} is a finite set of assets and {(eh,<h):l < h < H)
is a finite set of consumers. The assumptions above are understood to
be in force at all times; in particular, , is riskless.

Given securities prices q, commodity prices p, and endowments
eh , the budget set Bh(q,p,eh) for consumer h is the set of pairs
(xh,eh) consisting of a commodity bundle xhe [L](S,d)n]+ and a

portfolio eh € lRN with the properties:



. h
(i) gq- =<0 (6h is affordable );
(ii) p|:1(><h - eh - returns(eh)) <0 ( eh finances xh )

(Note that (ii) is an infinite collection of budget constraints, one for

each state, but that there is no overall budget constraint.)

A (securities market) equilibrium for the securities market & is a
4-tuple (q,p,x,0), where qe IRN are asset prices, p: 5~ (IRQ)+ are
commodity prices, X = (xl,...xH) is the equilibrium allocation (so that
xh is consumer h's equilibrium consumption bundle) and

e = (e' ,...,eH) is the profile of portfolios, satisfying:
. h h .
(i) D(x -e)=0 (commodity markets clear)
(ii) Eeh =0 (assets are in zero net supply)

(ii1) for all h, xh is <h-maximal in Bh(q.p,eh)

(consumers optimize)

Underlying every securities market & is a Walrasian (Arrow-Debreu)
economy GCM , With the same commodities and consumers, but with
complete contingent claims to every state/commodity pair. Commodity
prices for GCM are non-negative linear functionals on the commodity
space; i.e., elements of the space [Lw(S,d)Q] Y of non-negative,

bounded functions, T :S - (IRQ)+ . A Walrasian (competitive)

10



equilibrium for GCN is, as usual, a pair (m,x), where T are

commodity prices and x = (x',...xH) is the equilibrium allocation (so

that xh is consumer h's equilibrium consumption bundle), satisfying:
M Sx"-eM=o0 ;

(ii) for each h, 7 - (xh - eh) <0;

(iii) for each h, if xh " gh then T - (gh - eh) >0 .

11



3. EXISTENCE OF SECURITIES MARKET EQUILIBRIUM

In this section, we show that securities market equilibria exist.

THEOREM 1: Every securities market satisfying the assumptions of

Section 2 has a securities market equilibrium.

PROOF: Let & = ({cxk},((eh,<h)}) be a securities market. We may
assume, without loss of generality, that the assets have linearly
independent returns, since redundant assets can be priced by arbitrage.
We construct a securities market equilibrium for & as the limit of
securities market equilibria for finite state securities markets that

approximate §.

The first step is to construct these finite state markets and their
equilibria. To this end, fix a positive integer n, and write
S, = (1,...n}, the first n states. Let L be the space of functions
from Sn to IR, and let Lnn be the space of functions from Sn to
r2

(respectively LI(S,G)Q ) consisting of functions which vanish off S .
Q

. We identify L (respectively Lnn ) with the subspace of L‘(S,c)

Let P : LI(S,d)-» L, and Q : LI(S,o')Il L be the projections (so

that Pn(w) is the restriction of w to Sn , etc.).

For each n, we let Gn be the securities market with state space

12



Sn , commodity space L 2 , assets «
h n n—k

= Pn(.xk) , endowments

ne = Qn(eh) , and preferences the restrictions to Lnﬂ of the given
preferences. By a result of Geanakoplos and Polemarchakis (1987), Gn
has a securities market equilibrium (qn,pn,nx,ne) . Without loss of
generality, we may assume that the riskless asset o\ has price 1 ;
i.e., q, %, = 1 . This completes the first step.

The second step is to extract a convergent subsequence of the
sequence ((qn, PhrnXe n6)} of securities market equilibria. Note first
that the equilibrium bundles nxh are non-negative and sum to the
aggregate endowments 2 eh . Passing to a subsequence if necessary,
and keeping in mind that S is countable, we may assume that the

equilibrium bundles converge; i.e., there are bundles xh € L](S,d)Il

such that _x"(s,i) » x(s,i) for each s,i. Note that _x"-x" in the
norm topology of LI(S,O) (again because S is countable and because

all the bundles nxh are bounded by Se" ). write x = (x',...x") .

Since we have normalized the state prices to sum to 1, we may
(again passing to a subsequence if necessary) also assume that the state
prices p_(s,i) converge; say pn(s,i) + p(s,i) . If p(s,i) = O for any
state s and commodity i, then, for n sufficiently large, the demands

in state s would be unbounded. Hence, p(s,i)# 0O for each s,i.
The definition of securities markets equilibrium implies that the

securities prices q, are no-arbitrage prices for the assets {n“k} , and

hence for the assets {uk} . Since each of the assets *\ is bounded

13



and «, is ariskless bond, there is (for each k ) a constant ck >0

1

such that «, + ck(n“k)z 0 and x, - ck(nuk)z 0 ; hence

1

n® * ci(nexk) 20 and o, - ck(ncxk) 20. Since q -, =1, it follows

that “C S, x SC . In particular, the sequence {qn} of securities
prices lies in a bounded subset of IRN . Passing to a subsequence if
necessary, we may assume that the securities prices q, also converge
to a limit, say 9, 4 for some qe€ IRN . Note that q - x, = 1 and

that €, SQqrx <S¢, for each k.

To show that the equilibrium portfolios ne lie in a bounded subset
of IRN , we show first that q is a no-arbitrage price for the securities
(o:k} . To see this, let ¥ be a portfolio of the securities (uk} whose
returns ¢ are non-negative, and positive in some state r; without
loss, we may assume that g(r) = 1. For each n2r, ¥ may be viewed
as a portfolio of the securities { o }, with returns g =P (3). In
particular, g(r) = g(r) = 1. By the assumption of numeraire
desirability, there is a number C > 0 such that
zeh <h CXp +> eh(s,i))(s‘. (summation over i) for each consumer h.
By assumption, numeraire endowments are bounded away from O ; say
eh(s,I) 28>0 forevery h,s. Hence, for each n, the portfolio
(C+8)¥ - 8(n°‘|) is feasible for each consumer. However, the returns
on this portfolio, together with consumer h's endowment, are, by
numeraire desirability, preferred to any feasible consumption bundle.
Hence, this portfolio cannot be affordable at equilibrium, so its price
must exceed that of the endowment. Thus, q, ° [(C+8)¥ - 8(no<1)] >0,
so that q_ - ¥ > [8/(C+8)]. Passing to the 1imit yields

14



q-% >[8/(C+8)] . In particular, q is a no-arbitrage price, as
asserted.

We can now show that, for each h, the equilibrium portfolios neh
remain bounded (as n -+ e ). For, suppose not. Passing to a subsequence
if necessary, we may assume that the portfolio directions neh/"neh"
have a limit T € lRN . Since q, neh = 0, it follows that
qp, (nehlllnehll) = 0 and hence that q-t = 0. Since q is a no-
arbitrage price, it is impossible that © has returns which are non-
negative, and strictly positive in some state. We have assumed that the
returns X yeen ) A€ linearly independent, so that, for some m, the
returns Pm(“l)""Pm(“N) are also linearly independent. This means
that no non-zero portfolio of X yeee &y CAN have O returns in the
states 1,...m; in particular, © cannot have O returns (because
|zl = 1 ). Hence T must have negative returns in some state s . We
have assumed that the portfolios neh are unbounded, and the state
prices pn(s,i) converge to non-zero limits; this implies that, for n
sufficiently large, the returns on the portfolios neh create liabilities
in state s which cannot be satisfied. Since this contradicts the
equilibrium conditions, we conclude that the portfolios neh remain

bounded, as asserted.

Passing once again to a subsequence if necessary, we may assume

that the portfolios neh also converge; say neh - eh for each h.

Write © = (e',...e“) . This yields a limit 4-tuple (q,p,x,©),

completing the second step.

15



The third step is to show that (q,p,%,0) is a securities market
equilibrium for &. It is routine to verify that assets are in zero net
supply and that commodity markets clear, that all portfolios are
feasible and affordable, and that each consumer's consumption bundle is
in his budget set. It remains only to verify optimality of portfolios and

consumption bundles.

To this end, suppose that consumer h's portfolio and consumption
bundle are not optimal (in his budget set). Then there is a consumption
bundle y which is strictly preferred to xh and is financed by a
feasible and affordable portfolio ¥ . We first construct a consumption
bundle z which is strictly preferred to xh and is financed by a
feasible and affordable portfolio » with the additional property that
q-v<0. Let t be areal number (to be chosen later), with
O<t<1,and let T be the returns on the portfolio ¥ . Since ¥

finances y, we have poly+¢- ehl <0, so
h, _ h
palty+ty-te’] = t{poly+g-e'l}so0 .

Note that ty + tg - teh = ty + (1 -t)eh + i - eh , S0 that the feasible
portfolio t¥ finances the consumption bundle ty + (1 -t)e . Since
numeraire endowments are bounded away from O, there is areal § >0
such that [ty + (1 -t)ehl(s,I) 2 (1-1)6§ . Hence the consumption bundle
z =ty + (1 -t)el - (172)(1 -t)c, 1is non-negative in each state, and can
be financed by the feasible portfolio v = t¥ - (1/2)(1-)éx, , with

returns & = t& - (1/2)(1 -t)8¢x1 . However, the value of the portfolio v

16



is q-v=t(q-¥)-(1/2)(1-t)§ < 0. Finally, since z-»y as t- 1,
continuity of preferences implies that xh <h Z for t sufficiently

close to 1.

Now, consider the projections Qn(z) of the consumption bundle z
and the projection Pn(t) of the returns & (of the portfolio v ) into
the first n states; write vn for v, viewed as a portfolio of the

By construction, asset prices and commodity

assets o

n“l v n N
prices converge; i.e., 9, 9 and P2 P- It follows that 9, ° Yy < 0
for n sufficiently large. Moreover, the portfolio v, is feasible and
finances the consumption bundle Qn(z) , for n sufficiently large. On
the other hand, continuity of preferences implies that Qn(z) is strictly
preferred to nxh , for n sufficiently large, so this contradicts the fact
that (qn,pn,nx,ne) is an equilibrium for the securities market Gn .
We conclude that portfolios and consumption bundles are optimal (given
prices), so that (q,p,%,©) is an equilibrium for the securities market

& , as asserted. This completes the proof. l

17



4. ASYMPTOTICS

The result of the previous section guarantees that securities market
equilibria exist; in this section we study the asymptotic behavior of
such equilibria as the set of securities grows. We ask: When do
equilibrium allocations of the securities markets converge to Pareto
optimal allocations or to Walrasian (competitive equilibrium) allocations

of the underlying Walrasian economy?

Before formalizing these questions, we address a small but important
point. As Mas-Colell (1986) has pointed out, the usual assumptions on
preferences and endowments which suffice to guarantee the existence of
Walrasian equilibrilium in the finite dimensional setting do not suffice
in infinite dimensional settings such as ours. The difficulty is that the
consumption sets of consumers are assumed to be the positive cone,
which has an empty interior. This leaves opens the possibility that
individual preferred sets may not be supportable by prices; in such a
case, competitive equilibria need not exist. To avoid this difficuity,
Mas-Colell introduced a restriction on preferences which he called
uniform properness ; in essence, uniform properness bounds marginal
rates of substitution. In conjunction with the usual assumptions on
preferences and endowments, uniform properness suffices to guarantee
the existence of competitive equilibria. If we hope to show that
equilibrium allocations of securities markets converge to equilibrium

allocations of the underlying Walrasian economy, we must surely make

18



assumptions that are strong enough to guarantee the existence of
Walrasian equilibria. The easiest way to do this is to assume that

preferences are uniformly proper, and that is what we shall do.'°

To formalize our questions about asymptotic behavior of securities
market equilibria, we fix an infinite sequence {o:k} of assets (of which
the first is riskless). Given a set ((eh, <h)= 1 <h<H)} of consumers,
we call the tuple § = ({«k),{(eh, <MY a securities market structure .
For each N, let GN = ((o:k: 1 <k <N}, ((eh, <h)}) be the corresponding
securities market. We say that the securities market structure § is
asymptotically efficient if, for each € > 0, there is an integer NO

such that: for N = N, , every equilibrium allocation of the securities

0
market &, is within ¢ (in norm) of a Pareto optimal allocation of the
underlying Walrasian economy GCM . (Since the space of states of
nature is countable, all these allocations lie in a norm compact subset
of the commodity space L](S,O') , S0 this requirement is equivalent to
the requirement that equilibrium allocations of GN converge, as N
tends to o , to Pareto optimal allocations of GCM . Norm continuity of
preferences implies that the utilities of equilibrium allocations of GN
also converge to the utilities of Pareto optimal allocations.) We say
that the securities market structure § is asymptotically complete if,
for each € > 0, there is an integer N0 such that, for N 2 NO , every
equilibrium allocation of the securities market GN is within € of an
equilibrium allocation of the underlying Walrasian economy GCM .
(Similarlg,'this is equivalent to the requirement that equilibrium

allocations of GN converge, as N tends to o, to equilibrium

10.For more on the meaning of uniform properness, see Richard and Zame (1986).
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allocations of et . Again, norm continuity of preferences implies that
the utilities of equilibrium allocations of &y also converge to the
Jtilities of competitive equilibrium allocations of My 1ra
securities market structure is not asymptotically efficient (respectively
not asymptotically complete), we say it is asymptotically inefficient

(respectively asymptotically incomplete ).

Securities market structures are the appropriate objects of study if
we view assets, preferences and endowments as fixed (or known).
Alternatively, we might view assets as fixed (or known), but
preferences and endowments as variable (or unknown). Taking the latter
point of view, we shall say that a given sequence {ak} of assets (of
which the first is a riskless bond) is asymptotically efficient if, for all
choices of consumers {(eh, <h)} , the securities market structure
$ = 1y {(e y € Ny}) is asymptotically efficient. We say that {ock} is
asymptotlcally complete if, for all choices of consumers {(e ,<h)}
with uniformlg proper preferences, the securities market structure

= () {(e <M1 is asymptotically complete. If an asset sequence is
not asgmptotlcallg efficient (respectively asymptotically complete), we
say it is asymptotically inefficient (respectively asymptotically
incomplete ). From this point of view, the basic questions are: When

are asset sequences asymptotically efficient? aymptotically complete?
Theorem 2 provides complete answers to these questions about asset

sequences (and its proof provides some information about the

corresponding questions for securities market structures). Before giving
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the formal statement, we collect some notation and terminology.

For x,yeL (5,0), we define d_(x,4) = sup g |x(s)-y(s)| . Of
course, this supremum will be infinite if |x -y| is an unbounded
function. Nevertheless, this "distance function” induces a well-defined
(complete, metrizable) topology on LI(S,G) , which we call the uniform
topology . If E is a subset of LI(S,d) , we denote its closure with
respect to the uniform topology by c1_(E); xe€cl (E) if and only if x
can be uniformly approximated by elements of E . The distance from a
point x to aset E is d_(x,E) =inf{d_(x,y):yeE}. Note that
d(x,E) = 0 exactly when xecl (E). By an Arrow security (for state
s ) we mean the security Xsl whose return is 1 in state s and O
in every other state. (Note that this is in agreement with our previous

useage.)

The following result completely characterizes asymptotic

completeness and asymptotic efficiency for a sequence of assets.

THEOREM 2: Let {«k} be a sequence of assets, of which the first is

riskless. The following statements are equivalent:

(i) the sequence {x } is asymptotically efficient;
(11)  the sequence {« } is asymptotically complete;
(iii) every Arrow security can be uniformly approximated by the

returns on a finite portfolio of the securities ) -
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The last condition may be formulated equivalently as: for every state
s and every ¢ > 0, there is a finite portfolio of the assets {ock)

whose returns differ from xsl by at most € in every state.

PROOF: (111) % (1) and (11) : Fix H consumers {(e", <™}, and
consider a sequence {ozk} of assets (of which the first is riskless)
having the property that every Arrow security can be uniformiy approxi-
mated by the returns on a finite portfolio. Assume we are given a
subsequence &y = ({x, 2 1 sk s N, ((eh, <M of {€y} » and

1 . _ 1 2
equilibrium allocations xn = (nx ,nx yaee

2

H )
n% ) for GN(n) , converging

to x = (x' ) X ,...xH) ; let 9, be the corresponding asset prices and

let Pn be the corresponding state prices. We proceed by showing that

X is in the core of the underlying Walrasian economy GCM .

Suppose this were not so. Then there would be a set of consumers,
which we may assume to be the consumers M = {1,2,...M}, and an

allocation y = (gI ,...g”) that is a redistribution of the endowments

(e‘

,...e”) and is unanimously preferred to x by consumers in M.
Continuity of preferences, together with the assumption that numeraire
endowments are bounded away from zero, guarantees that we can find a
state r, allocations z = 2! ,...z”) and 3= (3 ,...ZM) , and a real
number & > O such that Z is unanimously preferred to x by

consumers in M and:
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IM(s,i) = 2M(s,i) = 0O for s>r,1<is<Q ;
$Ms,i) = 2M(s,i) for ssr,2sis<® ;
3Ms, 1) = 2M(s,1) - & for s<r ;
eM(s,1) 2 & for all s ;

SzM(s,i) = SyM(s,) = TeM(s,1)  for ssr,1sis2
m m m

Since we have normalized the state prices to sum to 1, we miag
(passing to a subsequence if necessary) assume that the state prices
P,(s,i) converge; say p (s,i)~ p(s,i) . As noted in the proof of
Theorem 1, if p(s,i) = O for any state s and commodity i, then, for
n sufficiently large, the state s demands in GN(n) would exceed total
endowments. Hence, p(s,i) #0 for each s, i. (The limiting behavior

of asset prices is irrelevant.)

For each price system p* and each me M, define a2 numeraire pat-

tern w(p*) by
wm(p*,s) = [I/p*(s,!)]lp"u(zm -e™Xs) for s sr, and

wm(p*,s) =0 for s>r.
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For s<r, wm(p*,s) is the amount of numeraire that must be
transferred into state s in order to make the net purchase

M

- eM™)(s) , at prices p* . Since z is a reallocation of endowments
in states s <r, and wm(p*,s) = 0 in states s >r, if follows that,
for each price system p* and each state s, Zwm(p*,s) =0

(summation over me M ).

For each m, wm(p) is a finite linear combination of Arrow securi-
ties, so (iii) enables us to find finite portfolios e' ,...em_l , such

that d_(returns(6™), w™(p)) < 6/M for 1 sm s M-1. Set

M-1
o = - T oM

m=1

so that o' is a finite portfolio, and dw(returns(em), wM(p)) < §. Since
the state prices p (s,i) converge to p(s,i) for each s, i and
wm(p*,s) = 0 for states s > r, we conclude that
dw(returns(em),wm(pn)) < & .for each me M, provided that n is

sufficiently large.

Our construction guarantees that, at all prices Ph sufficiently close
to p, the portfolio 6™ is feasible for consumer m (i.e., it does not
impose unsatisfiable liabilities). Since we have constructed 9[‘1 SO
that zem = 0, at least one of the portfolios @™ must have a non-

positive price (at asset prices q, ). However, at prices Pn
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sufficiently close to p, the returns tm on the portfolio oM will

finance purchase of the commodity bundle zM . since nxm » x™ and

x™ <M 2M | continuity of preferences implies that nxm <M 3™ for n
sufficiently large. Since zm belongs to the budget set of consumer
m , this contradicts the equilibrium conditions in GN(N) . It follows
that x is in the core of the underlying complete markets economy, as

desired.

We have just proved that (iii) implies that every limit of
equilibrium allocations of the finite securities markets is in the core of
the underlying Walrasian economy. Since allocations in the core are
Pareto optimal, this certainly yields asymptotic efficiency, and we

obtain the implication (iii) > (i).

If we replicate the economy, and note that a securities market
equilibrium for the original economy is necessarily a securities market
equilibrium for the replicated economy, we conclude that every limit of
equilibrium allocations of the finite securities markets is in the core of
every replication of the underlying complete markets economy. We can
now apply a result of Aliprantis, Brown and Burkinshaw (1987), which is
the infinite dimensional version of the Debreu and Scarf (1963) core
convergence theorem: ~assuming that preferences are uniformly proper,
equilibrium allocations are precisely those in the core of every
replication. This yields asymptotic completeness, and we obtain the

implication (iii) > (ii) .
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(1) > (if1) and (ii) 3 (ii1i) : Wwe establish the contrapositives.
Suppose that some Arrow security, say X14 (without loss), cannot be
uniformly approximated by returns on a finite portofolio. Note that the
set of returns on finite portfolios constitutes a linear subspace of
L,(5,0) coinciding with the linear span span{cx } of the securities. Set
4p = dm()(l oy span{o:k}) > 0. We find two consumers so that the
equilibrium allocations of the corresponding securities markets are
bounded away from Pareto optimal allocations of the underlying
Walrasian economy. It is convenient to give the construction first for
the case of one commodity (the numeraire) in each state; the general

case requires only a simple adaptation.

For the one commodity case, let u:[0,c0) » [0,00) be any continu-
ously differentiable, strictly concave function such that u'(0) < e and
u'(ee) > 0. The two consumers will have identical utility functions

1 2

U =U=U, where U(x) = > a u(x(k))o(k) , and (a,) is a bounded

sequence of strictly positive numbers, to be chosen later.''" Endowments

are: e' = (Z&,;),p,p,...),e2 = (1,3p, Py Py-..). Write

e = el + e2 for the aggregate endowment. Since consumers have identi-
cal, separable, strictly concave utility functions, it is easy to see that
every Pareto optimal allocation is of the form (Ae, (1-2A)e) for some
real number A with O<A =< 1. To obtain the Pareto optimal

allocation (Ae, (1-3)A) requires the net trade (for consumer 1 ):

11. Note that any choice of the sequence (ak} will lead to a well-defined utility func-
tion U on Li(s,a) ; U will be uniformly proper if we choose the sequence (ak)
bounded away from O,
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Ae-e! = (47-3, (4x-1)p, (27~ 1)p, (2A-1)p, ...)

Equilibrium allocations of securities markets (and hence their limits)
are individually rational, so any Pareto optimal allocation which is the
limit of equilibrium allocations of the securities markets must also
satisfy the individual rationality requirements U(\e) 2 ute') and
U((1-A)e) 2 U(ez) . By choosing the coefficient sequence {a .} appro-
priately, we can guarantee that these inequalities are satisfiable only if

A is very close to 1/2. (We leave the details to the reader.)

Now consider a securities market GN = ({cxk: 1 < k <N}, {(eh, <'h)}) ,

1

and an equilibrium allocation (x ,xz) of &, ; suppose that (xl,xz) is

norm) to a Pareto optimal allocation. If we choose
1

close (in the L1

(ak} so that A is close to 1/2, then x must be close (in the L

1
norm) to e, for some A close to 1/2, and the net trade of consumer

1, which is x'-e1 , must be close (in the LI norm) to )\e-el. If

A is close to 1/2, the net trade of consumer 1 must be close to 1
in the first state, close to p in the second state, and be bounded by p
in every other state (since neither consumer 1 nor consumer 2 can
incur liabilities greater than endowments). Hence, we can obtain (by
choosing {a } so that A is sufficiently close to 1/2 ) that

dm(x‘ - el, )(l ‘) < 2p . Since there is only one commodity in each
state, equilibrium trades in the securities market GN must be effected
entirely through transactions in available securities. In particular, we
can find a finite portfolio whose returns are precisely x1 - el , and

hence differ from )(” by at most 2p . This contradicts our supposi-
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tion that dm()(I 1,span{mk}) = 4p . We conclude that, (for appropriately
chosen {a )} ), no equilibrium allocation of the securities market

&y = U 3 1 sksN), {(eh, <M} can be close to a Pareto optimal
allocation of the underlying Walrasian economy; since Walrasian alloca-
tions are Pareto optimal, it follows a fortiori that no equilibrium allo-
cation of the securities market &, = ({fx : 1 =k =N} {(eh, <M) can e
close to a Walrasian allocation of the underlying Walrasian economy.
This completes the proofs of (iii) 3 (i) and (ii) for the case of one

commodity in each state.

To obtain the case of 2 commodities from the case of one commod-
ity, we simply choosae utility functions so that, in each state, all &
commodities are perfect substitutes. (Of course, this is incompatible
with strict concavity of utility functions, but strict concavity can be
restored by making a tiny perturbation. Again, we leave the details to

the reader.) [

The argument of Theorem 2 actually proves a bit more. The assump-
tion that Arrow securities can be uniformly approximated by the returns
on finite portfolios entails that, for every numeraire pattern x thatis
non-zero in only a finite number of states, and every ¢ > O, there is a
finite portfolio of the assets (o:k) whose returns differ from x by at
most € in every state. However, the argument that equilibrium
allocations of GN converge to a core allocation (and in particular, to a

Pareto optimal allocation) of the underlying Walrasian economy, uses a
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bit less. To be precise, this argument uses only that for every nu-
meraire pattern x that is non-zero in only a finite number of states,
every € > 0, and every state So there is a finite portfolio of the
assets {txk} whose returns differ from x by at most ¢ in states
$<8,, and are bounded (in absolute value) in every other state by
numeraire endowments divided by the number of consumers. This is
equivalent to the assumption that every numeraire pattern x that is
non-zero in only a finite number of states 1,2,...,50 is the limit, in
the L1

numeraire endowments divided by the number of consumers. Informalily:

norm, of portfolio returns that are bounded in states s > So by

if the assets span a norm dense subspace of L‘(S,d) , and endowments
are "large enough” then securities markets equilibria will converge to
Pareto optima.'? However, this is a stringent requirement; see Example

4 below and Section 5, particularly the concluding discussion.

We now give a number of examples. (See also Green and Spear
(1988).) It is convenient to describe an asset sequence by an infinite
matrix, the j-th column of which represents returns on the j-th asset
(so that the entry in the i-th row and j-th column is the return paid by

the j-th asset in the i-th state, etc.).

12.The reader should not infer that asymptotic efficiency is a generic property when
endowments are uniformly large. However, analysis of that case seems to require
different methods.
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EXAMPLE t1: -

t 100 0O
1 01 0 00O
1 001 00O
A = 1 000 10

A is asymptotically efficient; of course, it is simply a riskless securi-

ty, together with a complete set of Arrow securities.

EXAMPLE 2:

- -
1 000 0.
1 100 0.
1 1t 1.0 0.
B = 111 0.
L .

B is asymptotically efficient. This is merely to illustrate the point
that asymptotic efficiency depends only on the space spanned by the as-
sets; note that the space spanned the first n columns of B is pre-

cisely the same as that spanned by the first n columns of A .

30



EXAMPLE 3:

1 000 O
1 1.0 0 O
1 01 0 O
C = 1 001 O

C is asymptotically inefficient. Indeed, the distance from )(” to the

span of the columns of C is 1/2.

EXAMPLE 4: - -

o
n

o
'

LJ

D is asymptotically inefficient; as in Example 3, the distance from
)(l | to the span of the columns of D is 1/2. Note that any sequence

in the span of the columns of D that converges to X” in the L](S,d)
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norm is necessarily unbounded. (See the comments following the proof

of Theorem 2 above.)

We have required that endowments be bounded away from 0 ; the
final example shows the kind of difficulties that could arise if we did

not make this restriction.

EXAMPLE S: Consider the sequence of assets (ctk} whose returns are
cxk(s) = k~° . If endowments are eh(s) = exp(-s) , then no finite non-
zero portfolio (except for the O portfolio) is dominated by
endowments. Hence no finite portfolio can be traded. We surely cannot
expect to say much about asymptotic efficiency for such sequences of

assets.

32



9. GENERICITY

Roughly speaking, the results of Section 4 tell us that a sequence of
assets leads asymptotically to efficiency whenever it is possible to
approximate any given numeraire pattern which is non-zero in only a fi-
nite number of states by portfolios which do not involve "large trades”
in other states. As we have noted by simple examples, this is not an
innocuous restriction. Here we show that it is in fact a very strong
restriction. We do this by showing that "most” asset sequences cannot
approximate any numeraire pattern which is non-zero in only a finite
number of states without simultaneously requiring "large trades” in
other states. The meaning of "large trades” should become clear in what
follows; to give precise meaning to "most” we need a topology on the

set of asset sequences.

Let « = {ock) be a sequence of assets, of which the first is riskless.
Since we are interested only in the span of the assets, there is no loss
of generality in assuming that ||o<k|| = 1 for each k; such a sequence
normalized . Note that a normalized sequence of assets gives rise to 2
bounded operator (continuous linear transformation) R® from Q] (the

space of all summable real sequences) into LI(S,o’) defined by
“ —

for ¢ = (c‘ ,c2,...) € Ql . If we identify normalized asset sequences
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with the operators they induce, it seems natural to define the operator

distance between asset sequences « , § as
d%P(x, 8) = |R* - RBHOP = sup (Sa(s) |[RX(e)(s) - RB(c) ()] )

where the sum extends over all states s, and the supremum extends
over all sequences c € £, with IIcIIQ' = Elcil < 1 . In the topology
induced by this distance function, two asset sequences « , § are close
together if the same portfolios yield nearly the same (expected) returns,
uniformly over all portfolios representing total trades of at most 1

share. (See Dunford and Schwartz (1958) for further discussion.)

Alternatively, we can define another distance between asset

sequences « , § by:
d'(x,8) = T a(s)| () - B (5)]

the sum extending over all indices k and all states s . (Strictly
speaking, this is not a distance function, since it might be infinite;

nonetheless, it induces a well-defined topology.'®)

Since we have required that the returns on assets be bounded, we

should take account of this. There are several ways in which we might

13. This is the topology arising from the trace norm ; again, we refer to Dunford and
Schwarz (1958) for further details. One point to note: if d'(«.s) is finite, then
the difference R°‘-R3 is a compact operator from D.I to LI(S.O) ; i.e., it maps
bounded subsets of 21 to relatively compact subsets of L1(3,o) .
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do so; the simplest is to restrict our attention to asset sequences for
which the k-th asset is bounded by a preassigned number. To this end,
fix, once and for all, a sequence b = (bk} of positive numbers, with

bk > | for each k, and let # be the set of normalized asset
sequences {« } for which I«k(s)l s b, foreach s, k. Itisnot hard
to see that the topology on # induced by dl is stronger than that
induced by a°P , and that they are both complete, metric topologies.
(Note that # is certainly not empty, since it contains the asset

sequence each term of which is the riskless asset.)

The identification of asset sequences as operators Ql - LI(S,O)
suggests at least one way to answer the question of what it should
mean for a given infinite set of assets to be complete . Informally,
completeness of a set of assets should mean that any prescribed wealth
stream can be obtained as the returns of a suitable portfolio. Since the
set of states and available assets is infinite, we should allow for
infinite portfolios. However, it is not entirely clear which infinite
portfolios we should admit; questions of convergence must be
addressed. For normalized asset sequences, it seems clear that, as a
minimum, we should certainly allow any portfolio in ﬂ| (since, for
0 € Il1 , the series Eej«j converges absolutely). If the returns of
such portfolios exhaust all possible wealth streams (i.e., if the returns
operator R¥ : D‘l 2 LI(S,d) is onto, and a fortiori if the returns
operator is invertible) we should certainly say that the sequence « is
complete. The set of invertible operators D.I - LI(S,G) and the set of

onto operators Q1 - L1(S,d) are both open in the topology induced by
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a°P ,» and a fortiori in the topology induced by dI (since it is stronger).
Countability of S implies that these sets of operators are not empty.
Hence the set of complete, normalized asset sequences is a relatively
open, non-empty subset of & . It follows that, so long as b, = 1/0(k)
for each k , the set of complete , normalized asset sequences is
certainly a non-empty open subset of # , since it contains asset
sequences that induce invertible operators Q‘ » L‘(S,O') . (See Example

2 of Section 4.)

Recall that a subset of a complete metric space is residual if it
contains the countable intersection of dense, open sets. (Recall that re-
sidual sets are large and that their complements are small. In particu-
lar, the Baire category theorem implies that a residual subset of a
complete metric space is dense.) Since we have identified two different
complete metric topologies on & , we have two possible interpreta-

tions of "residual” for subsets of & ; fortunately, the sets of interest

to us are residual in both these topologies.

THEOREM 3: The set of asymptotically inefficient asset sequences is a
residual subset of & in both the cll and d°P topologies.

To motivate the proof, write C,(S) for the set of functions
vel,(5,0) with the property that [v(s)| » 0 as s » e . Note that

Co(S) is exactly the uniform closure of the subspace of L,(5,0)
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spanned by Arrow securities. Theorem 2 tells us that the asset se-
quence {uk} is asymptotically efficient exactly when every Arrow se-
curity, and hence every numeraire pattern in C,(S), lies in the d_|
closure of span(o:k} . Equivalently, for every vector ve CO(S) , We have
dw(v, span{uk}) = 0. Of course, O is the closest a numeraire pattern
can be to span{uk} ; since ®, = 1 , the furthest a numeraire pattern
can be from span{o:k} is its distance from the one-dimensional sub-
space spanned by the asset 1 . We show that, for a residual set of
asset sequences, all vectors in CO(S) are at least half as far from

span{ozk} as they could possibly be.

Before beginning the proof proper, it is convenient to isolate the most

technical part in a Lemma.

LEMMA: For each ve L'(S,d) , the set Q(v) of normalized asset

sequences {«, } with the property:
d(v,span{ex }) 2 (1/2)d_(v,span{1))

is a residual subset of & in both the cl1 and d° topologies.

(s)

PROOF: Foreach s €S, and we L](S,d) , write w for the nu-

meraire pattern which coincides with w in states 1,2,...s andis O
elsewhere. Fix positive integers m, n; write p = (1/2) - 2~m , and
let Q(v,m,n) be the set of asset sequences {cxk} in & such that:
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(i) “l(n)""“n(n) are linearly independent;

(i1) d_ (v, span{x,...x }) > pd_(v,span{1}) .

It is easily seen that Q(v) contains the intersection (taken over all
integers n, m ) of the sets Q(v,m,n), so it suffices to show that

each Q(v,m,n) is an open subset of # with respect to d°P and is

dense with respect to dI .

To see that Q(v,m,n) is an open subset of & with respect to

q°P , hote first that the linear independence of «1(n)“_°‘n(n)

certainly preserved by any perturbation of the sequence {ozk} which

is-

is small in the first n states and for the first n terms of the
sequence. Hence the set of sequences {ozk} satisfying the linear

independence condition (i) is open. Note too that, if
dw(v,span{ul,...un)) > pdw(v,span{I}) ,

then there is a state s such that

(s)

dm(v(S),span{ocl ,...ocn(s))) > pd_ (v,span(1)}) .

Since the vectors v(S),uI(S),...un(S) all lie in the finite dimensional

space RS , @ simple continuity argument shows that the last inequality

is also satisfied by any perturbation of («k} which is sufficiently
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small in the first s states and for the first n terms of the sequence.
Hence, the set of sequences {«, } satisfying the span condition (i1) is

open, as desired.

To see that Q(v,m,n) is a dense subset of 4 with respect to d' )
fix a sequence § = (Bk} ¢ 8 ; we construct a perturbed sequence
B = (Ek} € Q(v,m,n) such that d(r)|§k(r) - Bk(r)l is arbitrarily small
(the sum extending over all states r, and all indices k < n ). Since
||B,- - 51(5)" + 0 as s tends to o , we may (choosing s sufficiently

large), assume that 3.(5) = Bi for i = 2,...n. Moreover, since linear

. m

independence of 31 ’“"Bn is equivalent to the vanishing of an nxn
determinant, this condition can be achieved by an arbitarily small

perturbation, which we assume to have been already carried out.

To achieve the span condition, it is convenient to work with the
linear transformation R® : R" > L](S,d) . If the span condition (ii) is

not satisfied, let C be the set of vectors ce R" such that
Bie) -
IR¥(c) - v|_, = pd (v,span{1})).

Since {51(n)v---8n(n)} is a linearly independent set, the linear

N with a finite dimensional

transformation R‘B is an isomorphism of IR
subspace of L1(S,d). so that C is compact. For each ceC , the above
inequality, the triangle inequality, and the facts that 31 = 1 and that

p < 1/2 imply that:
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lei 1080, = IR%@) - ¢ 11, > pd_(v,spani1})
2

e

i

Choose any state r>s. For 1 =2,...,n, write 8]. = 0 if c; = 0,

§; = -1 if c; # 0 and v(r)/ci >0,and §, = +1 otherwise. Define

Ei and ,B*i by:

Bt = g (t) for tzr ,
B.m =518,
gr = B./18;l

This yields a perturbation {8*} of {B,} such that
¥ ey -
IR” (e)- v > pd_(v,span{1})
. g* . :
Since R is continuous, we conclude that
*
||R‘B (eD-vl,, > pd_(v,span{1})
for all c' in some neighborhood wc of ¢. Since C is compact, we
can cover C with a finite number of these neighborhoods. Since we can
make these perturbations in different states r, we conclude that there

is a single perturbation {Ei) (a normalized asset sequence) such that

"R'B(C) - v||°° > pd_ (v,span{1}) for every ceC . Since we have made
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the~se perturbations in states where the 3]. vanished, we conclude that
||R5(c") - vl > pd_(v,span{1}) for every c"e R"\ C. Finally, since
we can make these perturbations only in states of arbitrarily low
probability, we can guarantee that d'(s,B) is as small as we like.
Hence the perturbation § has all the required properties. We conclude
that Q(v,m,n) is dense with respect to d1 , as desired. This

completes the proof. |

With this technical result in hand, we turn to the proof of Theorem 3.

PROOF OF THEOREM 3: Write Q for the set of asset sequences
{ozk} € & having the property that, for each v e CO(S) ,

d_(v,span {o:k) ) 2 (1/2)d_(v,span{1})

We claim that Q is a residual subset of & in both the topologies d'

and d” . To see this, note that for each v € CO(S,O) , the Lemma

provides a residual set Q(v) of asset sequences {« } such that
d“(v,span{uk}) z (1/2)d_ (v,span{1})

If {ock} € Q(v) and doo(v,v') < (l/4)d°°(v,span(1)), the triangle

inequality implies that
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dw(v',span{ock}) 2 (1/4)d_(v',span{1})

Since CO(S,O) is d_-separable, we may choose 2 countable dense
subset {vi) . Set Q = nQ(vi) : as the countable intersection of resid-
ual sets, Q is also a residual set. For each non-zero vector

W € CO(S) , we can find a v such that

d_(w, v].) < (1/2)d_(w,span{1})

It follows that d_ (w,span{x }) > (1/2)d (w,span{1}) for all
{«k) € Q(vi) , and a fortiori for all (o:k} € Q. Thus, Q has the

properties required.

In view of Theorem 2, each asset sequence in Q is asymptotically

inefficient; this completes the proof of Theorem 3. [

An observation about Q yields a strong negative implication about
the asymptotic inefficiency of securities market structures, and may
serve to explicate further the sense in which “large trades” are impor-

tant. Consider any two consumers (e',( h , (e2.<2) , for which:

(i) there is an s* such that e'(s)+e2(s)} < 1

for s > s*

(ii) if z is an individually rational, Pareto optimal
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net trade (for consumer 1), then z(1) = +4 and

2(2) < -4

(Such pairs of consumers are easy to find.). Then, for any asset se-
quence {uk} € Q (in particular, for a residual set of asset sequences),
the securities market structure § = {{x }, ((eI,< Y s asymptotically
inefficient. To see this, let w be an equilibrium net trade in the
securities market &, = ({ock: 1 <k s N}, ((eh.<h)}) . Feasibility of w
implies that |w(s)|< 1 for s=zs*. On the other hand, if z is any

*
Pareto optimal net trade then (ii) entails dm(z(s )
(s%)

, span{1}) > 4, and

the definition of Q therefore entails d_(z'~ °, span{x }) > 2. In
»*

particular, dw(z(s ), w) > 2. Since |w(s)|s 1 for s=zs*,we

conclude that dw(z(s*), w(s*)) > 1, and hence that

lz-wll > D o(s)
s<s*
That is, no security market equilibrium net trade is close to any Pareto

optimal net trade, so no security market equilibrium allocation is close

to a Pareto optimal allocation.

Finally, we note that we could obtain similar genericity results if we
restrict ourselves to sequences of assets with positive returns.'® The
only substantive change required is in the Lemma. Given a sequence )
of assets, we must construct a perturbed sequence $ which belongs to

Q(v,n,m) . In the argument given, the assets we construct may not have

14. At least if bkzz for each k.
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positive returns, even if the original assets do. However, the argument
can be modified in the following way. Given a sequence (‘Bk} of assets
with positive returns, and with 8 = 1, we consider the sequence {Kk}
defined by 61 =1 and 8k = -1 for k2. Arguing as before, we
construct a small perturbation (3k) which belongs to Q(v,n,m), and
which consists entirely of assets whose returns are bounded below by
-1 . Then (3k+ 1} is a sequence of assets with positive returns which
is a small perturbation of {ﬁk) and belongs to Q(v,n,m) . The

remainder of the argument is as before.
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6. UNCONSTRAINED CONSUMPTION

As we have noted earlier, the asymptotic inefficiency we have
demonstrated may be traced directly to the requirement that
consumption bundles be non-negative in each state. In this section, we
briefly discuss the case of unconstrained consumption; i.e., we assume
in what follows that the consumption set of each consumer is the entire
commodity space L1(S,c5)Il . (The other assumptions of Section 2 are
understood to remain in force. In particular, preferences are monotone,
norm continuous and convex, and endowments are positive.)
Unconstrained consumption seems not unnatural if the commodities are
themselves (capital) assets, and the discussion that follows might be

viewed in the light of asset pricing models.

The first comment that needs to be made is that, when consumption
is unconstrained, the set of feasible consumption bundles is not
compact; as a consequence, equilibria need not exist. This can, of
course, be the case even for complete market economies with one
commodity and two states of nature. (Werner (1987) and Nielsen (1986)
have given elegant treatments of the existence problem in the finite
dimensional case, but the infinite dimensional case does not appear
susceptible to such an elegant treatment.) Unboundedness of feasible
consumption bundles also opens the possibility that the securities
markets corresponding to each finite set of assets might have equilibria,

but that these equilibrium allocations might not converge (or have 2
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convergent subsequence) as the set of assets expands. In short, without
consumption constraints, existence and convergwence of equilibria are
problematical; as we shall see, however, efficiency of limits of
equilibria is not at all problematical. If assets span a dense subspace
of the set of all wealth streams (a condition that seems like 2 natural
formalization of the idea that assets span all the uncertainty), and the
securities markets corresponding to a sequence of assets have
equilibria, and the equilibrium allocations converge, then the limit is an
equilibrium allocation of the underlying complete markets economy (and

in particular is Pareto optimal).

A small point should be addressed here. Positivity constraints imply
that all feasible allocations (and thus all equilibrium allocations of
finite securities markets) lie in a norm compact set, so norm
convergence of equilibrium allocations of finite securities markets is
the relevant notion. Moreover, since preferences are norm continuous,
norm convergence of allocations implies convergence of the
corresponding utilities. In the absence of consumption constraints, it
seems useful to consider weak convergence of equilibrium allocations.
However, weak convergence of allocations does not imply convergence of
the corresponding utilities. This motivates us to incorporate

convergence of utilities in the definition below.

Let §= ((ock}.{(eh, <h)}) be a securities market structure, and let

1 H . . s .
u,...u be norm continuous, quasi-concave utility functions

representing the preferences <',...<H. We say that § is
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conditionally asymptotically complete if every allocation

X = (xl,...xH) that is the weak limit of equilibrium allocations (nx}
of a subsequence (GN(n)} of the securities markets

GN(n) = ({cxk:l < k s N(n)},{(e", <h)) is an equilibrium allocation for the
underlying complete markets economy, and has the additional property
that uh(nxh) > uh(xh) for every consumer h . (The latter property is
independent of the choice of utility functions.) We say that an asset
sequence {o< } is conditionally asymptotically complete if, for all
consumers {(eh,< )} , the securities market structure ({cx }, {(e , € )})

is conditionally asymptotically complete.'s

THEOREM 4: If (o:k} is a sequence of assets, and span{ock} is a
(norm) dense subspace of L1(S’°) , then (cxk} is conditionally

asymptotically complete .

PROOF: The argument is very similar to the argument of Theorem 2.
Fix H consumers (eh, <h) , and utility functions uh representing the
preferences <h . Assume we are given a subsequence

= ({o< 1 < k s N(n)}, ((e ,< ))) of {8 } , and equilibrium

N( )
allocatlons n¥ ( xI ,nxz,... X ) for GN(n) , converging weakly to
X = (x1 ,x2 X ) ; let q, be the corresponding asset prices and let

Pn be the corresponding state prices.

We first establish the following:

15. We could define conditional asymptotic efficiency in a similar way.
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CLAIM: there does not exist a set C of consumers and an
allocation y which is feasible for consumers in C (i.e., the
restriction of y to C is a reallocation of the endowments
of consumers in C ), such that uc(gc) > lim sup uc(nxc) for

every ceC.

If this is not so, then there is a set of consumers, which we may

assume to be the consumers M = {1,2,...M}, and an allocation
y = (gI ,...gM) that is a redistribution of the endowments (el ,...eM)
and has the property that um(gm) > lim sup um(nxm) for meM.
Continuity of preferences, together with the assumption that numeraire
endowments are bounded away from zero, guarantees that we can find a
state r, allocations z = (z‘ ,...ZN) and Z = (i'1 ,...EM) , and a real

number & > O such that uT(Z™) > lim sup um(nxm) for meM and:

3M(s,i) = 2T(s,i) = 0 for s>r,1<is<?0
sMs,i) = 2M(s,0) for ssr,2=<is @
3M(s,1) = 2M(s,1) - 5" (s,1) for s<r ;
sz(s,i) = z gm(s,i) =z Z em(s,i) for s<r,1<i=<?@
m m m

Since we have normalized the state prices to sum to 1, we may

(passing to a subsequence if necessary) assume that the state prices
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pn(s,i) converge; say pn(s,i) <+ p(s,i) . If p(s,i) = O for any state s
and commodity i, then, for n sufficiently large, the demands in state
s would be unbounded. Hence, p(s,i)# 0 for each s, i. (The limiting

behavior of asset prices is irrelevant.)

For each price system p* and each me€ M, define a wealth stream

w T (p*) by
Wm(p*.S) = [l/p*(s.l)llp*n(zm -e™s) for s=<r , and
wm(p*,s) =0 for s>r.

For s<sr, wm(p*,s) is the amount of numeraire that must be
transferred into state s in order to make the net purchase

2" - e™M)(s) , at prices p* . Since z is a reallocation of endowments
in states s <r, and wm(p*,s) = 0 in states s >r, if follows that,
for each price system p* and each state s, Ewm(p*,s) = 0

(summation over me M ).

We now use the density of span{«, } in LI(S,d) to find portfolios
61,...6”_] whose returns t',...c are within §/M of wm(p) in

the L, norm; i.e., 1™ - wmp)] < 8/M for 1 sms<M-1. If we set

M-1
o = - 5 o
m=1

M
we obtain a portfolio whose returns CM are also within § of w (p)
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in the L, norm; i.e., lli:M - w”(p)ll < § . Since the state prices pn(s,i)

1
converge to p(s,i) for each s, i and wm(p*,s) = O for states s>r,
we conclude that ||(",m - wm(pn)ll < § for each me M, provided that n

is sufficiently large.

Our construction guarantees that, at all prices pn sufficiently close
to p, the portfolio o™ is feasible for consumer m . Since we have
constructed eM so that Zem = 0, at least one of the portfolios o™
must have a non-positive price (at asset prices q, ). However, at
prices pn sufficiently close to. p, the returns l:m on the portfolio
o™ will finance purchase of the commodity bundle Em . By
construction, um(im) > lim sup um(nxm) for each m . Since 27
belongs to the budget set of consumer m, this contradicts the
equilibrium conditions in GN(n) . This establishes the CLAIM.

if x is not in the core of the underiying complete markets economy,
there is a set C of consumers and an allocation y which is feasible
for consumers in C such that uc(gc) > u®(x%) for ceC. However,
norm continuity and quasi-concavity of utility functions imply that
lim sup uh(nxh) < uh(xh) for every h (i.e., utility functions are weakly
upper semi-continuous), so this would contradict the CLAIM. Wwe
conclude that x is in the core of the underlying complete markets

economy; that it is a competitive equilibrium allocation follows, as

before, by replication.

It remains only to establish that utilities converge. If not there
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would be a consumer, say consumer 1, for whom (u](nxi)} does not
converge to u‘(xl) . Passing to a subsequence if necessary, and keeping
in mind that utility functions are weakly upper semi-continuous, we
obtain 1im sup ul(nx') < u‘(x‘) . Continuity allows us to choose a
number r < 1, sufficiently close to 1 so that

lim sup u'(nxl) < ul(rxl) . Write ghI = rx' and gh = x" (t/H)(1 -
r)xI for h#1. Then y = (g‘,...gH) is a redistribution of
endowments, and uj(gj) > lim sup uj(nxj) for every j , so this again

contradicts the CLAIM. This completes the proof. [ |
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7. CONCLUDING REMARKS

In this paper, we have examined the asymptotic behavior of securities
markets. Our results show that a large, but incomplete, securities mar-
ket need not be a good approximation to a Walrasian market. Green and
Spear (1987, 1988) appear to reach different conclusions (in a somewhat
different model). However, the earlier version (1987) contains errors;'®

the later version is not at variance with the results here.!”

We have have found it convenient to work in the commodity space
L‘(S,d) , but other choices could be made. So long as the set of states
of nature is countable, all our results results and arguments over to all
of the spaces Lp(S,d) , 1 s p <o ,provided we change the definitions
of the distance functions d‘ and d°P (and hence the notion of a resid-
ual set) in the obvious way. For the space Lw(s,d) , it seems natural
to substitute the Mackey topology for the norm topology and the weak
star topology for the weak topology (see Bewley (1972)); with these
changes, the arguments given for Theorems 1, 2 and 4 work equally well
in Lw(s,d) . It is not clear, however, what the appropriate distance

function(s) on asset sequences should be (and hence, what notion(s) of

genericity we should use) in this case, so it is not entirely clear what

16. In particular, the proof of existence of equilibrium is not correct, and the efficien-
cy assertion is not true.

17. In the later version, Green and Spear give a proof of the existence of equiliibrium
which is an adaptation of the one given here. They also identify a condition on
asset sequences and endowments that guarantees asymptotic efficiency. This
condition is very strong; in particular, it is generically not satisfied.
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form Theorem 3 should take.

As noted earlier, it would be natural to model the set of states of
nature by a continuum (rather than by a countable set, as we have done).
However, the existence proof given here does not generalize to this
setting; with a continuum of states, it is not at all clear that the limit
portfolios represent feasible trading plans at the limit prices (because
the mapping (p,x) » pox will not be jointly continuous in the relevant
topologies). In the setting of complete markets, Bewley (1972) cleverly
finesses a similar issue, but it seems that Bewley's method does not
work in the setting of incomplete markets.'® In the special case of a
single good, this difficulty does not arise, and it is possible to obtain

results similar to those given here; see Zame (1989).

The methods employed here could easily be adapted to the context of
multiple trading dates, but they do not seem easily adaptable to
continuous time models of trading (for precisely the reason above); see
Duffie and Huang (1985), Duffie and Zame (1987) for example. For some

subsequent work in that area, we refer the reader to Zame (1989).

18. Hellwig, Mas-Colell and Zame have given arguments for the case of separable
preferences and two periods, but the general case seems quite difficult.
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