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1 Introduction

The concept of first-order stochastic dominance is usually defined on probability
distributions over final outcomes (simple lotteries). Although this definition has
been widely applied in economics, there are situations where it is inadequate. In
this paper we analyze the concept of first-order stochastic dominance for probability
distributions over probability distributions (compound lotteries) under Bayesian
learning. We discuss conditions under which one person’s beliefs dominate another
person’s beliefs by first-order stochastic dominance regardless of what they observe
in common. We provide sufficient conditions on prior beliefs under which this is
true. These conditions can be easily verified without taking any observations.

One may claim that it is unnecessary to define stochastic dominance relation-
ships between updated beliefs. For instance, one may multiply probabilities in the
compound lotteries and apply the usual definition of stochastic dominance to the
resulting actuarially equivalent simple lotteries. However, the partial order on com-
pound lotteries obtained by comparing actuarially equivalent simple lotteries may
not be very useful from a normative standpoint. When a decision-maker faces a
series of decisions, with some resolution of uncertainty between decisions, valuable
information may be lost by multiplying probabilities in a distribution on distribu-
tions. In any setting where there is learning, such as in search models with learning
or in the bandit problem, the usual concept of first-order stochastic dominance for
distributions is inadequate. This is illustrated by the following example, adapted
from Bikhchandani and Sharma (1989).

Let F be a uniform distribution on [0, 1] and let G;, G be uniform distributions
on [0,1) and [3,1], respectively. F is the compound lottery which is degenerate at
and G is the compound lottery which yields the simple lottery G; with probability
%, { = 1,2. Consider a risk-neutral decision-maker searching sequentially (with
or without recall) for the lowest price when the cost of each sample is {. It is
well-known that when searching from a known distribution (i.e., a simple lottery)
H, it is optimal to stop as soon as one observes a price less than some reservation
price (see, for example, Lippman and McCall (1981)). The reservation price, r, is
obtained by solving

c =/:H(z)dz (1.1)

where c is the cost of each sample. Moreover, the minimum expected cost is equal
to r. (The cost includes the price paid for the good as well as the sampling cost.)
Thus, when searching from F, the minimum expected cost and the reservation
price are both equal to 1/ V2. On the other hand, when searching from G, the
decision-maker knows after exactly one observation whether he is searching from
G, or G;. Using (1.1) it is easy to check that it is optimal to stop after the first
observation from G, and the minimum expected cost is 0.75. Clearly, both F and
G have the same actuarially equivalent simple lottery, and yet the expected cost
is lower under F. The usual definition of first-order stochastic dominance, when



argue against this concept (for a discussion see Marschak (1975), and in particy-
lar de Finetti (1977)). We presume that they mean that when there is no learning
Probabilities of probabilities are equivalent to probabilities, but when there is learn-
ing the two are different. That, at least, is Totrep’s? view in Kreps’ (1988, p.150)
splendid drama concerning this issue.

Our results are as follows. We show that when each underlying simple lottery
is over the same two final outcomes, a compound lottery F' dominates another
compound lottery G by Bayes’ first-order stochastic dominance if and only if Fisa

The paper is organized as follows. We give necessary and sufficient conditions
for Bayes’ first-order stochastic dominance in Section 2. An alternative concept
of first-order stochastic dominance under learning, appropriate for decison-makers
who do not subscribe to the reduction axiom, is discussed in Section 3. In both

2 Bayes’ First-Order Stochastic Dominance

Let L, = {(P,, P;, «wPrm): P> o0, L P = 1} be the space of probability
distributions on a finijte set {zl,zg,...,zu}, T1 < I3 < ... < zp. An element of
L, X; = (P.-I,P.-,,...,P.-M) represents a simple lottery yielding outcome z; with
probability P;.

Let L, = {(X1, a1; X3, az;...; Xn,an): o >0, Ta=1, X e L,} be the space
of probability distributions with finite support in L,.3 Elements of L., called com-
pound lotteries, are denoted by F, G, etc. The lottery F = (X1, ag; X, az;...; Xn, ay)
yields the simple lottery X; with probability a;. Since we will be interested in com-
paring two compound lotteries F and G, we can write without loss of generality



The expected final outcome under the posterior distribution F(T) is

EF(T)] = 33 s5es(T) Py

j=1i=1

E[z|G(T)] is similarly defined. For the case of two final outcomes it is easy to see
that F >, G if and only if

E[z|F(T)] > E[z|G(T)}, VT (2.3)

This equivalence has been shown by Berry and Fristedt (1985). However, (2.3) is
an impractical condition for applications since it requires that the posterior distri-
butions F(T) and G(T) be computed for all T. It is our aim here to find easily
computable conditions equivalent to F >; G.

Consider the following conditions on F = (a1, a3, ...,an), G = (b1, b3, ... BN) €
L.. Suppose there exist a > 1, ¥ < N such that

F =(0,...,0,a4,0441,..,aN), @& >0, Vi>a (2.4)

G = (ﬂl)ﬂ?; '-"ﬁhoa""o)’ ﬂi > 0’ Vt' S b (25)
Moreover, if a < b then
o B

< i a<i<b 2.6
a; + a1 ~ Bi + Bin (2.6)

or equivalently
B
aiy1 = Bia’
Conditions (2.4) and (2.5) imply that if for some 1, a; = 0 and §; > 0 then oy = 0,
Vk < . Also, if for some ¢, &; > 0, B; = O then B = 0, Vk > i. Condition (2.6)
implies that if oy, &41,8i, Bi+1 > O for some ¢ then the conditional distribution of

F on X;, X;;1 dominates the conditional distribution of G on X;, X4, by FOSD,.

The main result of this section is stated below. The proof is omitted since
Theorem 1 is a special case of Theorem 2 below.

a<i<b

Theorem 1: Let Xi, Xa,..., X~ € L, be simple lotteries with two final outcomes
z, and z;. Let F = (a1, a3, ...an) and G = (b1, s, ...,4n) be compound lotteries
with outcomes in the set { X1, X3, ..., Xn}. The following statements are equivalent:
(i) F =, G;

(i) Elz|F(T)] > Elz|G(T)), VT;

(iii) F,G satisfy (2.4), (2.5) and (2.6);

(iv) F,G satisfy (2.4) and (2.5), and there exists a convex function, f, such that
F, = f(Gi), Vi € {a,a +1,...,b}, where a and b are defined in (2.4) and (2.5),
and F; = 2';=, a, G; = Ef,glﬂ, are the cumulative distribution functions of
F and G respectively. ~When F and G have the same support, that is, when



final outcomes X1, X3,..., Xn 80 that Py>Py>..> Ppyy. Clearly X1, X, Xy
satisfy (2.8), (2.9) and (2.10). For the case of three final outcomes types 1, 2 ang
3 are illustrated in Figures 1, 2 and 3 respectively. These triangle diagrams show
simple lotteries in the P, — Py space.’ Choose any X; and plot it on a triangle
diagram as shown in Figure 1. All points (P, P, Py) below the line AE satisfy
Py/Py > Py/Py, and all points above the line BD satisfy Py/P, > Fs/P;y. Thus
(2.8) implies that if X1, X3,y ..., Xn are of type 1 then X;,, must lie in the region
ACD, and X;_, must lie in BCE,

A similar argument establishes that if X1, X3, ..., Xy are of type 2 and X; is as
shown in Figure 2, then X;;; must lie in the region AFCD, and Xi-1 must lie in
HCE. Also, if X1, Xa, ..., X are of type 3 and X; is as in Figure 3, then Xy, is
in FCD and X;-1isin HCEB.

In each of Figures 1, 2 and 3, all simple lotteries that dominate X; (by FOS D)
are north-west of X;, and X dominates all simple lotteries to jts south-east. Thus,
at least for three outcomes, if X, X,, -y Xn are of type 1, 2 or 3, then Xy FOSD,
XN-1... FOSD, X,. The following lemma establishes this in general.

Lemma 2: If Xy, X,, ..., Xy are of type 1, 2 or 3, then Xy FOSD, Xy_,... FOSD, x,.

The converse of Lemma 2 s not true. The simple lotteries X1, X3, Xs, and X,
in Figure 5 (see below) can be ordered by FOSD, but they are not of type 1, 2or 3.
Also, there exist X1, Xy, ..., Xy which are of types 1, 2 and 3. For example, we can
choose X1, X3y ..., Xy which satisfy (2.8) with Pj =Py 5= 2,3, .,.M~1, { =
1,2,..,N - 1. In the case of three outcomes, if X, X,, -+ Xn lie on the line DH
in Figure 2 then they are of types 1, 2 and 3.

If the underlying simple lotteries are of type 1, 2 or 3, then for any s such
that @, @1, iy Biv1 > 0 it is possible to find a sequence of observations T such
that (i) F(T) and G(T) assign most of their mass to X; and X;,,, and (ii) the
relative mass assigned to X; and Xi+1 by F(T) and G(T) can be made arbitrarily
close to the relative mass assigned to them by F and G, respectively. Therefore,
E[F(T)] FOSD, E[G(T)] only if %(T) /a4 (T) < Bi(T)/Bi41(T) only if o /oy <
Bi/Bis1. Thus (2.6) is necessary for F >, G. The main result of this section
generalizes Theorem 1.

Theorem 2: Let XXy .., Xy € L, be of type 1, 2 or 3. Let F = (a;, a,, ..ay)
and G = (,, §,, -+sBNn) be compound lotteries with outcomes in the set {X1, Xy,...,
Xn}. The following statements are equivalent:

(i) F =, G;

(ii) E[z|F(T)] > E[z|G(T)], vT;

(iii) F,G satisfy (2.4), (2.5) and (2.6);

(iv) F,G satisfy (2.4) and (2.5), and there exists a convex function, f, such that
F, = f(Gi),¥ie {a,a +1,...,8}, where a and b are defined in (2.4) and (2.5), and
F, = Y10, G; = 2 9=18, are the cumulative distribution functions of F and ¢
respectively.



(i) if F FOSD; G then E[F) FOSD, E[G);
(li) if F tg G then F tl G.

The converse of Lemma 4(i) is not true (see Segal (1990)). For example, suppose
that there are two final outcomes z, and z; and that X; = (3,1), X; = (},}),
Xs = (%, §) are simple lotteries over z; and z;. Thus under X; the probability of
zy is 3 and so on. Let F = (aj,a3,as)= (0,1,0) and G = (1,53, Bs)= 3.3
Since 3., a;Pis > Y3, BiPa, (2.2) implies that E[F) FOSD, E[G]. But since
a; + ag > Py + B3, Lemma 3 implies that F FOSD; G does not hold.

Lemma 1 established that when the underlying simple lotteries can be ordered
by FOS Dy, (2.4), (2.5) and (2.6) are sufficient for F >, G. It turns out that they
are also sufficient for F >3 G.

Lemma 5: Suppose that Xy FOSD; Xn-;... FOSD, X,. Let F = (a;, a3, ...an)
and G = (4, Ba, ..., Bn) be compound lotteries with outcomes in the set { Xy, X3, ...,
Xn}. If F and G satisfy (2.4), (2.5) and (2.6) then F >; G.

Example A.2 of Appendix II shows that the converse of Lemma 4(ii) is not true.
However, if the underlying simple lotteries are of type 1, 2 or 3, then >; and >,
are equivalent.

Theorem 3: Let X;, Xs,...,Xny € L, be of type 1, 2 or 3. Let F = (a;,a3,...ay)
and G = (B, Bs, .., Bn) be compound lotteries with outcomes in the set { Xy, X, ...,
Xn}. Then F >, G ifand only if F =3 G.

Under the hypothesis of Theorem 3, FOSD; and FOS D, are not equivalent.
This follows from the example after Lemma 4, where the simple lotteries are of
type 1, 2 and 3.

4 Unordered Simple Lotteries

In this section we investigate the general case when X, Xj3,..., Xy are not com-
pletely ordered by FOSD,. First, we obtain sufficient conditions for >, and
>; generalizing (2.4), (2.5) and (2.6). These sufficient conditions require that
X1, X3, ..., Xy admit a D-partition,” that is, a partition such that all simple lot-
teries in any element of the partition are comparable by FOSD,; to all simple
lotteries in other elements of the partition. We close this section with a necessary
condition for >;.

Consider the following definition.

Definition 8: Let X;, X3, ..., Xy be simple lotteries, and let {I,,15,...,Ip}, D > 2,
be a partition of {1,2,..,N}. That is, for § # k, L n Iy = ¢, and UZ,I; =
{1,2,...,N}. Then {I, I,...,Ip} is said to be a D-partition if Vi > k,Vr € I;, Vs €
I, X, FOSD, X,.

In Sections 2 and 3, where we assumed Xy FOSD; Xy_;... FOSD, X, the sim-



Since dn_1(A) C da(A) C X, and X is finite, there exists n* such that dn,—1(A) =
d.(A) = dw(A), Yn > n°. For all n, d.({X,}) is a set which contains X; and has
the property that it cannot be partitioned into two disjoint subsets such that all
simple lotteries in one subset can be compared by FOSD;, to all simple lotteries
in the other subset. The maximal set with this property is doo({X1}). Thus if
dowo({X1}) # X, then any Xi € X\do({X1}) (where \ stands for set difference),
can be compared by FOSD, to any X; € doo({X1}).

Lemma 6: The set of simple lotteries, X, admits a D-partition if and only if
doo ({X1}) # X.

The proof of Lemma 6 is constructive and can be used to obtain a D-partition,
when one exists. In fact the finest D-partition can be obtained by repeatedly
applying the procedure in the proof.

Next we turn to an equivalent set of sufficient conditions for F >, G and F >, G.
Consider the following conditions

if X; FOSD, X, then ;P — Biay 20 (4.5)

if X; and X, are not comparable by FOSD; then o;f: — Biag =0 (4.6)

Although (4.5) and (4.6) do not explicitly require the existence of a D-partition,
they turn out to be equivalent to the hypothesis of Theorem 4.

Theorem 5: Let F = (&y,03,...,an), G = (1,P2,---,Bn), F # G, be compound
Jotteries with outcomes in the set {X;, X3,...,Xn}. Then F and G satisfy (4.5)
and (4.6) if and only if {X1, X3, ..., Xn} admits a D-partition and (4.1)-(4.4) are
satisfied by F and G.

When o;, 5; > 0, Vi, Theorems 4 and 5 imply the following corollary.

Corollary 1: Let F,G € L., o;,8; > 0, Vi. Suppose that

(i) if X; FOSD; X, then ;% < 5l

(i) if X; and X, are not comparable by FOSD, then ;ff; = 5&3:
Then F > Gand F >3 G.

We now obtain necessary conditions for >,. It is shown that if the simple
lotteries X3, X3, ..., Xy can be partitioned into two disjoint subsets such that the
simple lotteries in the first subset cannot be compared by FOSD, to the simple
lotteries in the second subset, then any two distinct compound lotteries F, G which

yield outcomes in the set {X1, X3, ..., Xn} cannot be compared by >a.
Theorem 6: Let F = (ay,03,...,an), G = (B1, P2, .., BN) be distinct compound
Jotteries with outcomes in the set {Xi, X3, ..., Xn}. Suppose that (after relabeling
the simple lotteries, if necessary),
(i) there exists K such that Vi < K, Vk > K, X; and X, are not comparable
by FOS D;;
(i) if Vi,' < K,Vk,K > K, PijPyj = PujPyj, Vj, theni=1, k=K.

11



can search for the lowest price either from F or from G. Further, once he chooses
F, say, and elicits a few price samples from F he is not allowed to search from
G. Are there conditions on F and G such that, without actually computing the
expected minimum prices, one can determine which one of the two distributions on

distributions will be preferred by the individual?

We show that FOS D, cannot be used to choose between F and G. Let X, =
(1,0), X3 = (3,1) and X5 = (0,1) be simple lotteries over two final outcomes z;
and z3, z; < z3. That is, X, yields z; with probability 1, etc. Let F = (0,1,0),
G = (3,0,1), and F = (1,0,1) be distributions on the set {X1, X3, Xs}. First,
consider the case when the individual is allowed to take two price samples from
either F or G. Let y; € {z1,3}, k = 1,2 denote the kth sample observation. Since

. 3 1 2 1 .

E[min(y1, 1) |F] = J21+ (Za < 371+ 371 = E[min(y1,v3)|G]
F is preferred to G. If, instead, the choice is between F and G, and again only two
price samples are allowed, then

. | 1 2 1 .
E[min(y, y2)|F] = 271 + 2% > 37! + 351 = E[min(y;, ¥2)|G]
implies that G is preferred to F. Since E[F] = E[F] = (},3) and E[G] = (§,3),
it follows that E[F] FOSD, E[G] and E[F) FOSD, E[G). Hence, FOSD, is
inadequate in this setting. As the next lemma shows, Bayes’ first-order stochastic
dominance can be used to choose between F and G.

Lemma 7: Let X1, X3,..., Xn be distributions on the set of prices, {Z1,Z2,...,ZM},
and let F and G be distributions on the set {X1, X3, ..., Xn}. If X1, X, .y XN are
of type 1 and F >, G, then for search with recall over a finite horizon the expected
minimum price under G is less than the expected minimum price under F.

In Bikhchandani and Sharma (1989) the problem of search from distributions on
distributions is considered in an infinite horizon setting (with a strictly positive cost
of obtaining a sample). It is shown that if F >, G, and either F or G is increasing,
then a risk-neutral decision-maker prefers G to F when searching with or without
recall for the lowest price. Moreover, if the optimal stopping rules under both F
and G are reservation price policies, then after any history of prices whenever it is
optimal to stop under G, it is also optimal to stop under F.

Another application of Bayes’ first-order stochastic dominance is to the bandit
problem. Consider a decision-maker facing a sequential choice from a finite set of
stochastic processes (also called arms, machines, etc.). At each stage the decision-
maker chooses one arm and obtains a reward which depends on the observation
made from the chosen arm. In the interesting case, the distribution of at most
one arm is known. The decision-maker updates his prior distribution after each
observation from an arm whose distribution is not known. At each stage a strategy

13



Appendix I
Proofs

We need the following result to prove Lemma 1.
Lemma A.l: Let F and G be as in (2.4) and (2.5) respectively. Then (2.6) implies

¢ ¢
=1 =1
Proof of Lemma A.l: If b < a, (A.1) follows trivially. Suppose that b > a.
e {1,2,...,a—1} or £ € {b,b+1,...,N} then again (A.1) follows trivially.
Suppose that there exists £ € {a,8 + 1,...,b— 1} such that

¢ ¢

Z o > zﬂl ’ (A2)
=1 =1

Without loss of generality we may assume that ¥}_, & < X5, i, Vs < L. There-

fore, ay > Bi. From (2.6) we know that o;/f;i < ait1/Bi+1, @ < ¢ < b Thus

a; > P;, ¢ < i <b This, together with (A.2), implies Yo > Y6 =1,

which contradicts the fact that ¥_, &5 < 1. Thus (A.1) must be true. i

Proof of Lemma 1: From Lemma A.1 we know that (2.4), (2.5) and (2.6) imply
(A.1). Since Xy FOSDy Xy_1... FOSD) Xy, it is easily checked that (A.1) implies
E|F] FOSD, E|G]. Thus it is sufficient to show that after taking one sample
the updated distributions satisfy (2.4), (2.5) and (2.6), and the lemma follows
by repeated application. Let T; be an M-vector with a 1 in the j** place and 0
everywhere else. Thus T; represents a sample of size one in which z; was observed.
We will show that F(T;) and G(Tj;) satisfy (2.4), (2.5) and (2.6).

Since o;(T;) > 0 if and only if &; > 0, (2.4) is automatically satisfied by F(T;).
Similarly, (2.5) is satisfied by G(Tj). Suppose that b > a. Choose t such that
a < ¢ < b. Since F,G satisfy (2.6), we know that a;/aiyy < Bi/Bi+1- Also, since
a(Tj)/aini(T) = (Pjas)/(Piyrjcinr)s and Bi(T;)/Bins(Ty) = (PisBi)/ (Piv1iBin)

we have (T)) 8(T;)
oi\dy ildj

as'+l(Tj) < ﬁi+1(Tj) (A.3)

But (A.3) implies that F(T;) and G(T;) satisfy (2.6). |

In the discussion on type 1 we claimed that (2.7) and (2.8) are equivalent. A proof
is provided below.

Lemma A.2: The simple lotteries X, X3, ..., Xy are of type 1 if and only if

i+l o Ll Vji<M,Vi=1,2,.,N—1
F;; i+1,5

15



Similarly, for all £ > £,

M M M M
Y Pi=) APy < ) P < Y P (A.6)
j=¢t j=t j=t j=t
Inequalities (A.5) and (A.6) imply X;yy FOSD, X. |

Lemmas A.3 and A.4 below are required to prove Theorem 2. First, some
notation.

For §; € [0,1], 30; = 1, define

M
Ci(01,0s,....00) = [[(Ps)", 1<iSN (A.7)
i=1
Ck(ol’ah sesy oM)

C;,.-(Ol, 03, weey 0M) =

<s.k< .
C'.(oly 02""’05{) ! 1 — '!k > N (A 8)

We can rewrite (2.1) as

o

2?:1 [+ 11 (Ch(E‘t’ 2?‘7, saey E‘f“:)

«(T) =

Lemma A.3: Suppose that X;, X, ..., Xy are of type 1, 2 or 3. For any k < 1
there exist 8%, 0%, ..., 0% such that

C(0Y,05,...,05) =1, if r € {k,1}
<1, if re {1,2,..k—1}U{i +1,..,N}

Proof of Lemma A.3: Suppose that X, X3,..., Xn are of type 1.
Let S“ = E;:l }’.‘j, vt < M. Then,

M-1 M-1
lnC.-(O.-, e ,OM) = Z 0¢ln(S.-¢ - Si,t—l) + (1 - z: 0,')!71(5.‘5{ - o',M—l)
=1 =1

atnC; _ 0. b _ 6 041
St  Sit—Sie-1 Signn—Sie P P
Thus alnC'.-/aS“ >0, V&< M if and only if

0, P

0ev1 — Pignr

By Lemma 2, S,¢ < Sie, Vr > 1,V¢ < M. Thus, if we choose (64, ..,0u) satisfying
the inequalities (A.10) then

V<M (A.10)

17



Without loss of generality we assume that a, = 0, Vr € {k + 1,k + 2,...,1}.
From the proof. of Lemma A.3 it is clear that if X, X,,..., Xy are of type t
then (0%,...,05) and (67,...,03),r > k,s > ¢, when consndered as simple lot-

teries, are also of type ¢ with (0}‘, ..., 0%) FOSD, (6%,...,605). Thus we can find
(63,. “f) such that (0F,...,0%), (0 . 0%) ancl(0"""1 0‘ %) are of type t
with (a;'+ veena Ot FOSD, (63,. .,au) FOSD, (6%,...,0%), and

Cri(0},...,05) <1, Vre{1,2,....,k—1}U{i+1,...,N}
(A.17)
Cul(8},...,04) <1, vre{1,2,...,k-1}u{i+1,...,N}
We can choose (6},...,03) to be rational and T = (t;,t, ..., ta) such that

83, Vj. Define H, to be the compound lottery which yields X, with proba.bnlnty 1.
Substxtutmg (A.17) in (A.9) we see that

'llng(ztl, ey 2ty) = Hy

lim G(zt1,...,2tm) = Z a. H,,
e r=k+1
where a, > 0, Ti_,,; ¢, = 1. Thus for large enough 2, E[F(ztl, ., ztpr)| does not
dominate E[G(zty,...,2tm)] by FOSD, and hence F ¥, G
A similar proof establishes that (2.5) is necessary for F >, G.
Next, suppose that b > a. Choose an increasing sequence of observations T =

(¢,...,t},) such that (E“l Z’—( zf‘-z)) converges to (6°*!,...,051"), where

a <i<band (6",...,8; '“) is as defined in Lemma A.3. Thus Lemma A.3 and
(A.9) imply that

0 if k¢{ii+1}
H &y _ ? ’
Jimeu(T7) ‘{ Sa, i ke{ii+1)
. o, if k¢ {s,s+1}
8y —
}L‘Eoﬂ*(T)'{ St if ke {i,i+1}

Also, since a;, @it1,08i,Bi+1 > 0, tlimF (TY and tlirgG(T‘) are well-defined com-

pound lotteries. Therefore

E|lim F(T*)] FOSD; E[}imG(T*)]
— 00 —+00

iff
k
#:;;j—l °-+°‘.+1 ZP"H" 2 ﬁ.+ﬂ-+1 ZP" + ﬂ.+ﬂ +1 ZP"H"’ Vk<M
iff
a;+a;.-+1 < ﬁ.'+pﬂi.'+|
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1,2,...,N. The rest of the proof is similar to that of the second part of Lemma A.2.
1

The following lemma, which is a special case of a result in Kamae, Krengel, and
O’Brien (1977), is required to prove Lemma 3.

Lemma A.5 (Kamae, Krengel, and O’Brien (1977)):

Let F,G € L. F FOSD, G if and only if F and G can be written as F
(X1, 915 X3, @33 -5 X1, 41)y G = (Y1,41:Y3, @3i -3 Y1, ) and X; FOSD,; Y;, Vs
1,2,..., L.

Proof of Lemma 8: The proof is a direct consequence of Lemma A.5 and is

omitted. 1§
Proof of Lemma 4: (i) Let V,: L, — R be defined as

M
Vt(Xi)=ZPija VX.'GL., t=2,3,...,M.

i=t

Clearly V, is increasing with respect to FOS D;. Therefore if F FOSD; G then

N M N M
Za‘ZRJ ZZﬂtz:Rn t=2’3""iM

-’:{1 Ni=t ;={1N,-=¢

> LY aPi2) Y APy L=23...,.M
v i

> Y Py <Y Y APy t=23,....M
j=li=1 j=li=1

= E[F] FOSD, E[G).

(ii) Follows from (i) and Definitions 2 and 7. 1

Proof of Lemma 5: From Lemma A.1 we know that (2.4), (2.5) and (2.6) imply
(A.1). Since Xy FOSD; XN-y1... FOSD; X,, Lemma 3 implies that F FOSD, G.
Thus it is sufficient to show that after taking one sample the updated distributions
satisfy (2.4), (2.5) and (2.6), and the lemma follows by repeated application. The
rest of the proof is identical to the corresponding part of the proof of Lemma 1. |

Proof of Theorem 3: By Lemma 4, F >; G = F >; G. By Theorem 2 and
Lemma 5, F >; G = (2.4), (2.5) and (2.6) = F =3 G. ]

Proof of Theorem 4: In view of Lemma 4, we only need to show that (4.1)-
(4.4) imply F >3 G. First, we establish that these conditions imply F FOSD; G.
Let |I;| denote the cardinality of ;. When |L| =1, Vi, (4.1)—(4.4) imply that we
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Proof of Theorem 5: Suppose that X = {X}, Xa,...,Xn} admits a D-partition.
Clearly there exist distinct F and G which satisfy (4.1)-(4.4). It is then straight-
forward to check that F and G satisfy (4.5) and (4.6).

Suppose instead that there does not exist a D-partition. By Lemma 6, doo({X1})=
X. Thus there exists a finite sequence §; = 1, $3,s,...,4z such that X = {Xis Xigyeons
X;, } and X;,,, € di({X:,}), s =1,2,...,L - 1. Suppose F = (a4, as,...,an),
G = (61,Ps,-- -, Bn) satisfy (4.6). That is,

a;,ﬂ,-,+, - a.-,“ﬂ.-, = 0, Vs = 1,2, cee ,L - 1. (A18)

As established later if a;8; — asfy = 0 and asfs — asf; = 0, then a1fs — asf = 0.
Thus (A.18) is equivalent to

q;ﬂg - a;,ﬂ; = 0, Vt, k. (Alg)

Suppose there exists £ such that a; > 0, 8¢ = 0. Let k be such that 8; > 0. But
then (A.19) is not satisfied for ¢, k. Thus for all 1, either o;f; > 0 or o = B; = 0.
Hence without loss of generality we may assume that o;53; > 0, and (A.19) implies
that for all 1, k, -3: = g: = 0, which implies a; = i, Vi. Thus if there does not
exist a D-partition, two distinct F and G cannot satisfy (4.6).

To complete the proof suppose that ;03 = a3f; and azfs = asfs. If a;8; # 0
then %282 = 2382 and thus ayfs = asf;. A similar proof holds if a3f8s # 0. If

asp ap
ai1f; = a:,ﬂl =lazgﬁ, = asff; = O then there are three possible cases: (a) oy =az =
as =0, (b) /=Py =P =0, (c) ai = B, for some ¢ = 1,2,3. In (a) and (b)

a;18s = asBy. In (c) we may ignore X;. |

The proof of Theorem 6 requires Lemmas A.6 and A.7 below. For each of these
lemmas, it is assumed that the hypothesis of Theorem 6 holds.

Lemma A.68: If F >; G then
K K

() Ya(T) =D _Bi(T), VT;
=1

x N M
(i) Y. D (b - i) [ (P Pej)'i = 0.

=1 k=K+1 1=1
Proof of Lemma A.6: F >; G = F(T) FOSD, G(T), VT. In partic-
ular, F FOSD; G. Thus, by Lemma A.S, F and G can be written as F =
(X @1 Xizs @25+ 3 Xiyy ), G = (anﬁ;xh"h;n-;Xk;,’:'QL),With X;, FOSD; Xu,,

Vs = 1,2,...,L. By the definition of K it follows that Ea‘- = Z Q% = Z g =
i=1 i.SK k<K

f:ﬂ.-. Similarly, F(T) FOSD; G(T) implies that f:a‘-(T) = iﬂ;(T), VT,
i=1

=1 1 =1
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Clearly, a;(2T*) = a. Now consider the distinct observation vectors T*,2T°,...,
K(N — K)T*. For each observation vector we have to satisfy the equation speci-
fied in Lemma A.6(ii). We therefore obtain a system of K(N — K) homogeneous
equations in the “variables” [a;f: — auf),§ = 1,2,..., K,k = K + 1,...,N. The
coefficient matrix is given by

a a + GK(N-K)
(a1)? (a3)? oo (axv-K))?
(a,)"(""‘) (az)x(n-x) oo (ax(n- K))K(N—K)

This is the van der Monde matrix and since a,,@3,...,ax(N-k) are distinct it has
full rank equal to K(N — K) (see Graybill 1983). It follows that the only solution
to the system of homogeneous equations is the trivial solution. Hence

afy — B =0, Vi=1,2,...,K, k=K+1,...,N
=>a.-=ﬂ.-, V£=1,2,...,N.

Thus F and G cannot be distinct. |

Proof of Lemma 7: Let y; € {z1,23,...,Zum}, k = 1,2,..., L denote the kth price
sample observation. We need to show that

E[min(y1, yz, ---,y)|G] < E[min(y1,y3, .., yz) |F] (A.20)
We will prove a stronger result: If X3, Xj,..., Xy are of type 1, and F >; G then

Prob{min(y1,y2,..-,¥r) < z;|G} > Prob{min(y;,y2,..-,¥z) < z;| F}, Vi<M

(A.21)
Since F >, G implies E[F| FOSD, E[G], (A.21) is true for L = 1. That is,
Prob{y, < z,|G} > Prob{y, < z;{F}, Vi<M (A.22)

Suppose that (A.21) is true for L = k. It is enough to show that (A.21) is true for
L = k + 1. Let F(z¢) [G(z¢)] denote the posterior distribution of F [G] if F [G] is
selected and the first observation is z,. Clearly, F(z,) =1 G(z¢), V¢ < M. Thus,
since (A.21) is true for L = k, we have

Prob{min(yz, ¥s, .- Y+1) < 7;/G(ze)} > Prob{min(ys, ys, .., ys+1) < zj|F(z4)},
Vi<M,VL<M (A.23)

Since X1, X3, ..., Xn are of type 1, both F and G are increasing. Therefore G(ze41) >1
G(z.), and the fact that (A.21) is true for L = k implies that

Prob{min(yz, Us, -, ¥a+1) < 7j|G(ze)} > Prob{min(ys, ys, .-, ¥e+1) < %;|G(zes1)},
Vi<M,VL<M (A.24)
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a,é;(T) + 046‘4(T) > ﬂség(T)
a3C3(T) + asCs(T) + alC(T) = BiCi(T) + B:Ca(T) + B5Cs(T)
which after substituting a;, f; becomes

15C,(T)Cs(T) + 120C,(T)Cu(T) + 16C5(T)C4(t) > C(T)Cs(T) (A.27)

Dividing across by C3(T), Cs(T) we have
15C13(T) + 120815(T)Cs(T) + 16Cs(T) 2 1

Since, either 012(01,0,,0,) >1lorCy (01,0,,0,) > 1, for all (4,,0,,0s), from (A.26)
we know that either Cy5(T) > 1 or C‘;(T) > 1, for all T. Thus (A.27) is satisfied
and F(T) FOSD; G(T), for all T.

Example A.2: In this example we show that in general >; and >; are not equiv-
alent. Thus the converse of Lemma 4(ii) is false. Consider the following sim-
ple lotteries over three final outcomes: X; = (0.3,0.4,0.3), X; = (0.5,0.05,0.45),
Xs = (0.1,0.5,0.4) and X, = (0.3,0.1,0.6). These are plotted in P;; — P;s space
in Figure 6. Let F = (ay,0a3,0s,a)= (0,0,0.6,0.4) and G = (B4, B, Bs, Bs)=
(0.5,0.5,0,0). Note that X, FOSD, X;, and X; cannot be compared with X; and
Xs by FOSD,. Thus, since 8; + B¢ > a3 + a4, Lemma A.5 implies that F does not
dominate G by FOSD,. To show that F(T) FOSD, G(T) for all T = (t,ts,1s)
we need to verify that

as(T)Psl + (M(T)Pu S ﬂl (T)Pu + ﬂz(T)le (A.28)

a,(T)P” + 04(T) P“ S ﬁl (T)Pls + ﬂz (T)st (A.Zg)
Since min{Py, Py} = max{Ps1, Pu} and as(T) + au(T) =p1(T) + f2(T) = 1, we
know that (A.28) is true. Substituting Py, s = 1,...,4 in (A.29) we have
4as(T) - 36,(T) < 3 (4:30)
After simplication (A.30) yields
2C13(T) + 4C15(T) Cus(T) + 2C4s(T) > 1 (A.31)

where C;; (T) is as in (A.26). Direct computation shows that the Cy3(0,,8;,0s) = 1
line is s = 0.84 — 1.040,, and the Cs(0,,0;,0s) = 1 line is s = 0.8 — 1.344,.
Plotting this on Figure 6 we see that for all (0,,03,03) either Cy5(0,,0;,0s) > 1 or
Cs(0y,0;,0s) > 1. Therefore for all T either Cn(T) >1lor C“(T) > 1, and (A.31)
holds. Thus F »; G.

Example A.3: In Theorem 6 we require that if Vi,s’ < K, Vk, k' > K, P,jPj =

Py; Py, Vj,thens = ¢,k = kK. This condition is generically satisfied by X, X3, ...,Xn.
We show that when this condition is not satisfied, we can have F # G, F >, G.
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Footnotes

! The question of ordering distributions on distributions has been addressed before
by Bohnenblust, Shapley and Sherman (1949), and Blackwell (1953). Bohnenblust,
Shapley and Sherman (1949) obtain a partial ordering on information systems, that
is on distributions on distributions, based on their value to the decision-maker.
Blackwell (1953) shows that this partial ordering is the same as the one obtained
from the statistical notion of sufficiency. This notion campares two information
systems based on the criterion of second-order stochastic dominance of the expected
posterior distributions after one observation.

? Trade-Off Talking Rational Economic Person.

3 In the Bayesian statistics literature, a distribution over distributions is sometimes
called a random distribution.

4 We assume P;; > 0 for simplicity. Our results can be extended to allow P,; = 0
for some ¢ and j.

5 Such diagrams were reintroduced in the literature by Mark Machina. He attributes
these diagrams to Jacob Marschak (see Machina (1987)).

8 A stronger definition of Bayes’ first-order stochastic dominance would be to require
that stochastic dominance be maintained after any observation T from F and T'
from G. Thus corresponding to >; and >; we may define

F >} G iff E[F(T)] FOSD, E[G(T")], VT,T
F >} G if F(T) FOSD, G(T'), VT,T'

Let F = (X1,p1; X3, p2; i XN, PN), i > 0, and G = (Y1,01; Y2, @25 . Y2, q1), 9 >
0. It is easily verified that F >} Gifand only if F >; G ifand only if X; FOSD, Y,, Vi, .
First note that for all T the support of F(T) is (X;, X3, ..., Xn), and for all T the
support of G(T") is (Y1, Y3, ..., Yy). Therefore a sufficient condition for F >} G and
F >3 G is that X; FOSD, Y,, Vi,L. From (2.1) it is clear that for any ¢ and £ one
can find T and T’ such that F(T) places most of its mass on X;, and G(T") on Y.
Thus a necessary condition for F >} G is that X; FOSD, Y,, Vi,¢. This condition
is also necessary for F >3 G since Lemma 4(i) implies that if F >3 G then F >} G.

7 The ‘D’ in D-partition stands for dominance.

8 That is, if each X; is an independent draw from a uniform probability distribtuion
on the simplex in RM, then with probability one X;, X, ..., Xy satisfy condition (ii).

9 Related assumptions are affiliation (Milgrom and Weber (1981)) and conditional
stochastic dominance (see Riley (1988)).
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