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ABSTRACT

Default appears to play an important role in the economy - but not in general
equilibrium models. This paper provides a general equilibrium model of default that
suggests that, when markets are Incompl'ate, default is compatible with equilibrium,
does not interfere with the orderly functioning of markets, and may promote - indeed |

even be necessary for - efficiency.



1. INTRODUCTION

Default appears to play an important role in the economy - but not in general equilib-
rium models. Analysis of default to date has largely been in the context of game-
theoretic and/or partial equilibrium models. (Hart and Moore (1989) is a recent example.)
From the perspective of general equilibrium theory, it would seem that the default which
is actually observed in the economy is a sign of disequilibrium, and that this default
interferes with the orderly and efficient functioning of markets.! The purpose of this
paper is to provide (within a general equilibrium framework) a model of default that
suggests, precisely to the contrary, that - in a world of uncertainty and incomplete
security markets - default is not incompatible with equilibrium, does not interfere with
the orderly functioning of markets, and may promote - indeed, even be necessary for -
efficiency.

To explain this positive role for default, it is useful to look briefly at the usual
general equilibrium models. Of course, default is not contemplated in the Walrasian
(Arrow-Debreu) model. In particular, agents never promise deliveries of commodities that
they do not personaily own. Moreover, default could not promote efficiency, since the
first welfare theorem guarantees that Walrasian (competitive) equilibria are already
efficient (Pareto optimal).

This fundamental conclusion depends, of course, on the assumptions that undertie the
Walrasian model, and in particular on the assumption that there is a market for every
commodity. When there is uncertainty about the future, this assumption entails a
complete set of contingent claims (to consumption patterns dependent on the future state
of the world). Arrow (1953, 1964) has described an alternative model (a security market
), in’ which trading takes place in spot markets for physical commodities and in futures
markets for financial securities whose returns depend on the state of the world. Arrow
assumes that the set of securities is complete (in the sense that every future wealth
pat'tern‘ can be realized as the returns on a portfolio of available securities), and shows
that a complete security market is a perfect substitute for a market with complete
contingent claims (a Walrasian market), at least in the sense that both structures support

1. The U.S. Bankruptcy Court reported 3.9 million filings for personal bankruptcy in the 10 year
period ending June 30, 1989. : ‘



the same equilibrium allocations (of physical commodities). Default is not contemplated
in Arrow’s complete security market model, any more than in the walrasian model. In the
security market model, agents may promise deliveries of goods that they do not personally
own, but they will be able to keep these promises because other agents make promised
deliveries to them. Moreover, as in the Walrasian model, default could not promote
efficiency; since the equilibrium allocations of a complete security market coincide with
* equilibrium allocations of the underlying Walrasian market, they are, in particular, Pareto
optimal.?

If security markets are incomplete , however, the situation is quite different. If some
wealth patterns cannot be realized as the returns on a portfolio of available securities,
equilibrium allocations need not be - (indeed, usually will not be) Pareto optimal, so there
may be a gap between equilibrium and efficiency.’ It seems natural to suppose, however,
that this gap between equilibrium and efficiency would be small if the set of available
securities were "nearly” complete, and would disappear entirely as the set of available
securities expanded to complete the market.

This supposition is quite wrong, and it is here that default can play a positive role.
To demonstrate this, we construct a model of a security market in which uncertainty is
“described by a countably infinite set of possible states of nature.*° To examine the
effect of expanding the set of available securities, we proceed by: fixing an infinite
sequence (An) of securities; examining, for each index N, the security market GN in
which only the securities {15.I ,....AN) are available for trade; and asking about the
behavior of equilibrium allocations of GN as N tends to infinity.® (Note that, with an

2. Arrow considers only purely financial securities, denominated in units of account. Radner
(1972) expands Arrow’s model to allow for real securities, denominated in physical
commodities. For further discussion of these models, see for example Diamond (1967), Hart
(1975), Stiglitz (1982), Cass (1984), Duffie (1985), Werner (1985), Duffie and Shafer (1985),
and Geanakoplos and Polemarchakis (1987).

3. Indeed, when there is more than one consumption good, equilibrium allocations need not be
optimal even within the set of allocations that can be obtained through trades in the given
securities; see for instance Hart (1975), Stiglitz (1982), or Geanakoplos and Polemarchakis
(1987). This "constrained suboptimality” is not relevant for us here, however, since we work in
the context of a single consumption good - a setting in which security market equilibria are
constrained optimal; see Diamond (1967).

4. It seems difficult to address these questions in 2 model in which the set of possible states of
the world is finite: in such a setting, an expanding set of securities will - at some finite
stage - already comprise a complete set.

5. Green and Spear (1987, 1989) and Zame (1988) have described similar models.
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infinite state space, none of the security markets & can be complete.) If the sequence

{An) is complete (in an appropriate approximate sense) we might expect that, as N tends
to infinity, equilibrium allocations should converge to Walrasian equilibrium allocations
(and a fortiori , to Pareto optimal allocations) of the underiying complete markets
economy (and hence, assuming continuity of utility functions, that the corresponding

utilities also converge).

In fact, however, equilibrium allocations of GN may remain bounded away from

Pareto optimal allocations as N tends to infinity; indeed, all feasible allocations of &
may remain bounded away from Pareto optimal allocations (and utilities of feasible
allocations remain bounded away from Pareto optimal utilities). Moreover, far from
representing an extreme or pathological situation, this asymptotic inefficiency represents
(in a2 sense we make precise) the typical situation.’

N

Surprising though this may be, it has a simple explanation. The requirement that
future consumption patterns be non-negative places constraints on the set of portfolios
which can be traded; in some cases, these constraints will bind. After all, securities
provide a method of shifting wealth between states; a typical portfolio will yield
positive returns in some states and impose liabilities in others. If these liabilities are so
great that they exceed endowments, satisfying them would violate the requirement that
consumption be non-negative; such portfolios cannot be traded. Hence, if such portfolios
are required in order to implement - or to approximate - Pareto optimal trades, feasible
security market allocations may be inefficient - and remain inefficient even as the set of
available securities expands.

To explore the role played by default, we adapt a model introduced by Dubey,

6. This method of analysis is in the same spirit as the familiar method of studying perfect
competition through competitive sequences of economies; see Hildenbrand (1974) for instance.

7. The first examples of asymptotic inefficiency were given by Green and Spear (1987). More
examples were given by Zame (1988), who identifies a condition on a sequence of securities
that 1s necessary and sufficient for asymptotic efficiency. What is required is that every
Arrow security (a security returning one unit of the numeraire commodity in one state, and
nothing in every other state) be uniformly approximable by the returns on a finite portfolio of
the given securities. This is an extremely stringent condition, and most sequences of
securities rail this condition. These conclusions are completely consistent with those reached
here. Green and Spear (1987) appears to reach different conclusions; however, there are some
difficulties with this work. The conclusions of Green and Spear (1989) are not at variance
with those of 2ame (1988) and the present paper.



Geanakoplos and Shubik (1988). In the present context, a security is simply a promise to
pay; default means that (some) agents can not or do not keep (some of) these promises.
In the real world, such default might entail various consequences: creditors might be able
to seize assets and be awarded judgments against future earnings, defaulters might be

~ barred from future credit markets, etc. Rather than attempt to model such institutional
details, we assume here that the only consequences of default are penaities assessed
against the defaulters, and that these penalties are assessed directly in terms of utility.
Such penalties might be interpreted as extra-economic (debtor‘s prison, flogging,
indentured servitude, public humiliation, etc.), but we prefer to interpret them simply as
proxies for economic penalties.®?

In the same spirit of simplification, we also assume that the default penailty is
independent of the security and of the state of nature, is the same for all consumers, and
is proportional to the amount of default; we write A for the constant of
proportionality.'® Since we work in a general equilibrium, perfect foresight framework,
we assume that all default is perfectly anticipated, but anonymous, and that default is
spread equally among ail creditors.'' In particular, each agent observes - and is affected
by - only the aggregate default on each security.

For each default penalty A (with 0 s A s e ), a default equilibrium exists. If
A = 0, default goes unpunished; in such a situation, no optimizing agent will ever keep
promises to pay, and there will be no trade at the default equilibrium. At the other
extreme, if A = o, no optimizing agent will ever default, and a default equilibrium
coincides with a security market equilibrium in the sense discussed previously. (So.the
security market model might be viewed as a special case of the default model.) However,

8. It might be kept in mind, however, that extra-economic penalties have played an important role
in the past. _

9. Kehoe and Levine (1989) have constructed a3 model in which the penalty for default is denial of
access to future credit markets. However, in their model, markets are complete and there is no
equilibrium default. In work in progress, Geanakoplos and Zame construct a model in which
collateral may be seized and there is equilibrium default,

10. As in Dubey, Geanakoplos and Shubik (1988), state-specific, security-specific, consumer-spe-
~cific, and non-proportional default penalties could all be easily accommodated. The essential
requirements are that penalties be concave in the amount of default and become sufficiently

severe for large default. ‘

11. Of course, the identity of defaulters must be known to some central authority, responsible for
imposition of penalties.



for all intermediate values of A , there will generally be equilibrium default (although the
probability and expected magnitude of default will both be small if X is large).'?

As we have said, when default is not possible, the requirement that liabilities 'b_e
satisfied may severely restrict the portfolios that can actually be traded. When default is
possible, however, some liabilities may be left unsatisfied; this will enlarge the set of
portfolios that can actually be traded. Moreover, since the decision to default is
endogenous, this enlargement seems likely to be in precisely the right directions to lead
to efficiency. Indeed this is the case: so long as the sequence of securities (An) is
complete (in an appropriate approximate sense) and the default penalty is sufficiently
large, default equilibria will be close to Pareto optima (indeed, to Walrasian equilibria).
A bit more precisely, let 8N'>‘ be the security market in which the securities
(Ay,...,A\} are available for trade and the default penalty is A . If the sequence (A )
is complete, and N and A are sufficiently large, then default equilibrium allocations of
GN’)‘ are close to Walrasian equilibrium allocations of the underlying complete markets
economy (and the corresponding utilities are close, taking default penalties into account);
moreover, all Walrasian equilibrium allocations are in turn close to approximate default

equilibrium allocations of &>,

We emphasize that the positive role of default depends crucially on incompleteness of
security markets. If security markets are complete (or if a complete set of contingent
~ claims is available), equilibrium allocations will already be Pareto optimal, and default -
whenever it takes place - will necessarily have a Pareto worsening effect.

We have nothing to say here about why security markets are incomplete, although this
is certainly an important question. It does seem useful, however, to analyze the
consequences of incompleteness, even without addressing the causes. Similarly, we have
nothing to say about the origin of securities (a question that is certainly connected to the
reasons for market incompleteness), or moral hazard, or adverse selection.’> Other issues
we hope to address in future work include the role of collateral, and the possible
magnitude of default.'*

12. If the security market is complete, there will be no equilibrium default if the default penalty is
sufficiently high. ' ‘ .

13. Adverse selection could certainly be addressed in a version of the present model, sufficiently
enriched to allow for informational asymmetries. '

14. As we shall show, if the nhumber of securities and the default penalty are sufficiently large,



The remainder of the paper is organized in the following way. Section 2 describes the
basic security market model, and establishes the existence of equilibrium. Asymptotic
inefficiency of security markets is discussed in Section 3. Section 4 presents the default
model, and establishes the existence of default equilibrium. Section S discusses the
asymptotic properties of default equilibrium. Proofs are collected in Section 6.

then the probability of default and the expectéd magnitude of default are both small. However,
we have nothing to say about the magnitude (or fraction) of defauit, conditional on the event
that default actually occurs.



2. THE SECURITY MARKET MODEL

In this Section we describe a model of a security market, adapted to accommodate an
infinite set of states of nature. We use what seems to be the simplest possible model
because it is adequate for our purposes and avoids the technical difficulties that would
‘ arise in more general models.

We consider a model with two dates, 0 and 1, and uncertainty about the state of
nature at date 1. A single good is available for consumption at date O and in each
state at date 1. At date O, trade takes place in the single consumption good and in
each of a finite number of securities, whose date 1 payoffs depend on the state of
nature. At date 1, the state of nature is revealed, securities pay their returns, and
consumption takes place. Since we consider only a single consumption good, there will of
course be no trade at date 1 .'°

Formally, we describe uncertainty by the set Q of states of nature, which we
assume to be a countably infinite set; for convenience, we write Q = {1,2,....}. A
consumption plan (or consumption pattern ) specifies consumption at date O and in each
state at date 1 . Thus, a consumption plan is a pair x = (x(0), x(-)) , where x(0)€R is
consumption at date 0, and x(:):Q - R is a date 1 consumption plan; x(w) is
consumption if state w occurs. For simplicity, we shall assume throughout that all
conceivable consumption plans are bounded.'® We write (:1 for the space of date 1
consumption plans, and C = leC1 for the space of all consumption plans.

For notational convenience, we sometimes write Q* = {0} U Q, and view consumption
plans as functions on Q* . Thus x(0) represents consumption in date O, in conformity
with our previous notation. We identify a date 1 consumption pattern xe€ C1 with
(0,x)e C. Givenplans x,ye€C =R x c! , We write: x 2 y to mean x(w) 2 y(w) for all

weN*; x>y tomean x(w)>y(w) for all weQN*,and x >>y to mean that there is

15. There would be no difficulty in allowing for multiple consumption goods, and opportunities for
trade at date 1, so long as securities are all denominated in the same good; see Zame (1988,
1989) for details.

16. Since § is countable, a2 bounded function on Q may be identified with a bounded sequence of
real numbers; for our purposes, however, it is convenient to use functional notation. For other
formalizations, see Green and Spear (1987, 1989) and Zame (1988).



a positive number ¢ > 0 such that x(w)> y(w) + ¢ forall weN*. In particular,
X >> 0 means that x is bounded away from 0.

Securities are claims to consumption patterns at date 1, and thus are element§ of
C' . The return on a security A in state w is A(w). We shall assume, for the sake of
parallelism with the default model to follow, that security returns are non-negative; i.e.,
0 s A(w) for each w . If there are N securities Al ',...AN , a portfolio is a vector
6= (e‘ '",'°N)" IRN ; en is the holding of the n-th security. The returns on the
portfolio © = (el,...eN) are:

1

- 1
returns(e) = 20A €C .

Security prices are vectors q € IRN ; If 0€ IRN is a portfolio, then q -6 = Z q, en is
the vblue of the portfolio © at the prices q. We take date O consumption as
numeraire, so that security pfices are denominated in date O consumption.'?

Consumers he€ {1,...H) are defined by endowments e and utility functions gt ;
consumption sets for each consumer are the pbsitive cone ¢ = R*x (C')+ . For the sake
of simplicity we assume that each consumer maximizes the sum of utility for consumption
at date O and expected utility for consumption at date 1 according to some probability
distribution uh on . We allow for the possibility that different consumers have
different probability assessments uh , but we assume that assessments are consistent, in
the weak sense that consumers find each of the possible states of nature to have positive
probability; uh({w)) > 0 for each h, w . Our assumptions on utility functions mean that

there are functions vh, uh such that:

. Uh(x)

v () + Ju (x(w)) du"

v () + 3 u (x(w)) u"w))

We shall assume that the functions Vi Up ¢ R* > R" are continuous, strictly concave,

and strictly monotone, and that the (right hand) derivatives vh’(o) ’ uh’(O) _are finite.

Finally, we assume that endowments are bounded away from 0 ; i.e., eh >> 0 forall h.

17. Since we take date O consumption as numeraire and there is no trading in date 1, spot prices
for commodities are frrelevant. :



We equip each bounded subset of C with the topology of simple convergence : X" x

it x™0) » x(0) and x"(w) - x(w) for every state we Q.'® Note that (on bounded sets)
simple convergence implies convergence at date O and convergence in expectation with
respect to every probability measure u on Q (just convergence in expectation, for '
“short). Conversely, if u(w) > 0 for each state w , then convergence in expectation with
respect to p implies simple convergence (and hence convergence in expectation with
respect to every other probability measure). If we fix consumers’ probability
assessments u', .oy uH , a particularly convenient metric for convergence in

expoctation suggests itself. Let |- |E be the expectation norm (with respect to zu )
Ixlp = |x0] + 3 [ ]x(w)] duMw)
and define the metric dE by

dE(va) = Ix "'JIE

for x,ye€ C. Of course, this metric defines a topology on all of C, and not just on
bounded sets. We caution the reader that convergence in expectation and simple
convergence coincide only on bounded sets.

It is easily seen that utility functions are continuous on bounded sets, and hence on the
set of feasible consumptions (which is bounded), and that the set of feasible consumptions
is compact.'®

The data of a security market is a tuple & = (((eh,Uh)). (A ), where
((eh.Uh):l shsH) is afinite set of consumers and (A :1<ns N} is a finite set of
securities. The assumptions above are understood to be in force at all times.

Because there is a single physical commodity, there will be no trading in commodities
after the state of nature is revealed. Hence, given security prices q, we define the
budget set B (q, e U ) for a consumer with endowment eh and utility function U to
' be the set of triples (x y 'P 4‘ ), where %" is a feasible (i.e., non-negative) consumption

plan and \P h are non-negative portfolios - of security purchases and security sales,

18. A subset B<CC is bounded if there is a constant M> 0 such that x| sM for each x¢B.
19. For a related discussion, see Bewley (1972).



respectively - such that:
M q- 9" -9M = oMo - x"0)
h h h | h
(1) x™(w) = e (w) + returns(P ) (w) - returns(y N w) all weN

Note that (i) says that consumers finance.purchases and sales of securities from date 0
consumption, while (ii) says that consumer h’s consumption in state w is the sum of
his endowment and the returns on his purchases, less his payments on l{abilities.?°

An equilibrium for the security market & is a 4-tuple (q.(xh).(’Ph).Wh)) , Where
N is a vector of security prices, each xh is a feasible consumption plan (consumer
h are non-negative portfolios such that:

qe€ R
h’s equilibrium consumption plan ) and \Ph y ¥

@) > " -eM < o0 (commodity markets clear)
T Wh-¢M = o (securities are in zero net supply)

(iif) for each h, (xh,\Ph,4‘h) € Bh(q. eh.Uh)
(plans are budget feasible)

av it e M eBMg, " UM, then UMM = uM(y™
(consumers optimize in their budget sets)

For € > 0, an g-equilibrium is a 4-tuple (q.(xh),(\Ph).Wh)) of security prices,
tfeasible consumption plans, and portfolios, satisfying (i), (ii), (iif) and

(iv) if (gh,o:h,,sh)e Bh(q. eh,Uh) , then v 2 Uh(gh) +e

. (consumers e-optimize in their budget sets)

The basic fact about security markets is that equilibria exist; we defer the simple
proof to Section 6.

20. It is customary not to separate sales and purchases, but rather to consider only portfolios ©
of net security trades. That would make no difference here. We maintainthe separation in the
interests of parallelism with the default model, where the separation plays an important role.

10



THEOREM 1: Every security market has an equilibrium.

Underlying the security market & is a complete markets (Arrow-Debreu) economy
cc” with the same consumers, in which all contingent consumption patterns are available
for sale. In GC" , a price is a positive linear functional m :C- R’ whose restriction
to each bounded set is continuous.??2 Continuity implies that we may interpret T as 2
price list: There is a (unique) function F:qa*->R" with the property that, for each
x € C, the value of the consumption plan x at the price T is:

mex = TOIX(0) + D TM(w)x(w)

Hence TI(w) is the value (at the price ) of the consumption plan guaranteeing 1 unit
of consumption at w and O elsewhere. Since 1-x is finite for all consumption plans
X , this guarantees that > T(w) < e .

As usual, a (Walrasian ) equilibrium for e is a pair (1, (xh))
consisting of prices T for contingent claims, and feasible consumption plans xh ’

satisfying:

M  Sa"-eMso

h

(if) me(x - eh) < O for each h

h

Gi) i UMM > t"e™ then m- " -eM>o0.

22. Equivalently, pricés are continuous with respect to the strongest vector space topoiogy that
coincides, on bounded sets, with the topology of simple convergence; this is usually called the
bounded weak star topology . In principle, we might consider price functionals which are not
continuous, but nothing would be gained by doing so, since Bewley (1972) has shown that the
assumptions in force here guarantee that equilibrium prices are necessarilg continuous.

1"



3. ASYMPTOTIC INEFFICIENCY OF SECURITY MARKETS

Since the state space is infinite, no finite number of securities can form a complete

set (span all the uncertainty). The failure of securities to span will usually mean that
equilibria need not be efficient. In this section, we show that this gap between

. equilibrium and efficiency need not disappear even as the set of securities expands to a

complete set. We motivate our discussion with three simple examples.?’

We fix utility functions and endowments and an infinite sequence of securities, and
examine the effect of increasing the number of available securities. We consider a two
consumer world, in which consumers have identical utility functions:

U = x0 + 52 [1exml!’?

but differing endowments:
L (151,7,0,1,0,1, .. 2) 02 = (137,0,1,1,1,1, .+ . )

(i.e., e‘(O) , e‘(I) = 1, etc.) ; aggregate endowment is e = (2;8,8,2,2, ...) . Note
that the Pareto optimal allocations are all of the form (xe,(1-x)e) for some «,
0 s« s 1, and that the unique Walrasian allocation is (x! —2) ((1/72)e,(1/2)e) .

To examine the effect of expanding the set of available securities, we fix an infinite
sequence (A ) of securities; for each N we consider the security market in which the
first N securities are available for trade. Since the state space Q and the set {A } of
securities are each countably infinite, it is convenient to represent the array of securltg
returns by an infinite by infinite matrix, in which the entry in the i-th row, j-th column
represents the return on the j-th security in the i?th state.

EXAMPLE 1: Consider the sequence (An) of Arrow securities ; i.e., the security An
returns 1 unit in the n-th state, and O in every other state. In matrix notation, we may
represent this éequ'ence of securities as:

23. For related examples, see Green and Spear (1987, 1989) and Zame (1988).

12



©O O O -—
o O — O
o - O O
- O O O
o O O o

If the securities A,. oo AN are available for trade, then the two consumers can jointly
~ obtain precisely those allocations (g Y 2y for which y "y = e'(n) and gz(n) = o%(n)
for n>N. If N is sufficiently large, consumers can therefore jointly obtain allocations
arbitrarily close to Pareto optimal allocations. Indeed, it may easily be seen that
equilibrium ailocations of the security market converge (as N - e ) to the unique
Walrasian allocation (X', X2). = ((1/2)%,(1/2)8) .24

EXAMPLE 2: For each n, let B, be the security that returns 1 unit in the n+1-th
state, and O in every other state. In matrix notation, we may represent this sequence of

securities as:

0 0 0 O
1 0 0 O
0 o 0
B = o o0 1 ©

Since none of the securities B yield non-zero returns in the first state, if the allocation
(g Y ) is obtained by trading date 0 consumption and (any number of) these securities,
then y (1) = e (1) =1 and y (l) = e (1) = 7 . The only Pareto optimal allocation which
is a limit of such allocations is (1;1,1,1,...), which is not individually retional (it
yields consumer 1 less utility than his endowment). Since security market equilibria
(and hence limits of such) are individually rational, it follows that no sequence of

24. For details, see Zame (1988) or Green and Spear (1987, 1989).

13



security market equilibrium allbcations can converge to a Pareto optimal allocation.

EXAMPLE 3: Let Dn = An + ZBn , S0 that

O O N —
o N = O
N - O O
- 0O O ©O
o O O O

Consider any feasible allocation (gl,g2) which can be obtained by trading the first N
securities, so that there is a portfolio & (the net security trade of consumer 1),
involving only the first N securities, such that l_.j1 = e1 +returns(6) and 92 = 92—
returns(8) . Feasibility requires that g1 2 0 and g2 2 0 ; evaluating successively in

states N+1 ,N,... 1 yields the following pairs of inequalities:

1 + 26(N) z 0 1 - 26(N) z O
1 + 26(N-1) + o(N) 2 0 1 - 20(N-1) - o(N) = ©
1+ 26(2) + 6(3) z2 0 ‘ 1-26(2) -3 =z O
7 + 26(1) + 6(2) z2 0 1 - 26(1) -6(2) =z 0
1+ e(1) 2 0 7 - e , 2 0

Solving this system of ‘inequalities yields -1 < 6(1) s +1 and -1 < ©(2) s +1 . Since

14



gl = o +returns(®) , this entails g‘(I) $2 and 4s 91(2) L If (x‘.xz) is a Pareto
optimal allocation, then x'(i) = x1(2) ; it follows that
dE(x'.g') 2 min(ul(l),u'(z)) > 0, independently of the number N of securities available

for _trade.

We see that, as the set of available securities expands, the gap between equilibrium
and efficiency may disappear (Example 1) or it may persist (Examples 2, 3). It is
important to note that, although the gap persists in both Examples 2 and 3, it does so for
different reasons. In Example 2, the available securities do not span all the uncertainty
(even in the 1imit). In Example 3, the available securities span all the uncertainty (in the
limit), but portfolios yielding certain return patterns in the first two states necessarily
create large - and unsatisfiable - liabilities in later states, so these portfolios cannot be
traded. (We might say that the "effective span” of the securities is too small.)

In general, convergence to efficiency will depend (in a rather complicated way) on the
specific sequence of securities and on the specific endowments. What further moral (if
any) we should draw depends to some extent on which of these Examples we view as
“typical” and that in turns depends on our model of the process which gives rise to
securities. Unfortunately, no convincing model seems available (and we have none to
offer). Instead we take what seems to be a reasonable shortcut. We parametrize the set
" of endowments and the set of sequences of securities as compact metric spaces, and
appeal (as is frequently done) to a topological notion of size to represent the "typical”
situation. Using this framework, we show below that it is Example 3 that represents the
typical situation, and Examples 1 and 2 that are atypical. Inefficiency and spanning are
the rule, rather than the exception.?®

25. The topological framework we use is certainly open to criticism. An alternative model, which
is probabilistic rather than topological, could be constructed in the following way. Equip the
interval [0,1] with Lebesgue measure. The set of securities is the countably infinite product
of intervals, and so inherits a product probability measure; the set of sequences of securities
is a countably infinite product of the set of securities, and again inherits a product probability
measure. The set E of endowments is a finite product of intervals [1/8H, 1], and also
inherits a product measure. In the probabilistic framework, we interpret "almost all” to mean
"except for a set of measure 0 ." Then (the analog of) Theorem 2 remains valid. However, this
probabilistic model is also open to criticism. For instance: Why should we assume that
securities (and security payoffs in various states) are independent of each other and follow the
same probability distribution?
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To describe the formal framework, we fix the nhumber H of consumers, and their
utility functions (Uh} (for reasons that will become clear in 2 moment, we leave
endowments unspecified). Given an infinite sequence (An} of securities, we consider
equilibrium allocations of the security market in which the first N of these securities
are available for trade; and we ask whether these equilibrium allocations (or any feasible
allocations) are near to Pareto optimal allocations if N is large.?s

To parametrize endowments, recall that we have, throughout, required that endowments
be bounded above and bounded away from O . For the present purpose it is convenient to
restrict attention to endowments bounded above by 1 and below by 1/8H; write

E = ((e‘,...eH):1/4sehsI for each h}

This is a compact metric space.

To parametrize sequences of securities, recall that we have required that security
returns be positive and bounded; there is no loss of generality in requiring that they be
bounded by 1. Write 8 for the set of such securities,

S = (A:0sA(w)s 1 foreach w)

and let & be the set of (infinite) sequences of securities (in §). S is a compact
metric space; if we equip & with the product topology, it too becomes a compact metric

space.

Recall that a set is residual if it is the intersection of a countable family of dense
open sets. It is customary to view residual subsets of a compact metric space as large,
and their complements as small; in particular, the Baire category theorem asserts that
residual sets are dense. We say that a property is valid for almost all endowments (or
sequences of securities) if the set for which it is valid contains a residual set; such a
property is'sometimes said to be generic . '

1

Given endowments e = (e ,... eH)eE and a sequence of securities A = (An) , Write

26. Because utility functions are continuous and the set of feasible allocations is corﬁpact,
convergence of allocations to Pareto optimal allocations and convergence of utilities to Pareto
optimal utilities are equivalent (up to a passage to subsequences).
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PO(e) for the set of Pareto optimal allocations (from endowments e ) and FN(e) for the
set of allocations that can be obtained from the endowments e by trading date 0
consumption and the securities A1, e AN . We say that the sequence of securities

A= (An) is asymptotically inefficient (from e ) if there is a § > 0 such that
dE(FN(e),PO(e)) = § for all N. Informally: asymptotic inefficiency means that feasible
_allocations (and in particular, security market equilibrium allocations) are uniformly
bounded away from Pareto optimal allocations, independently of the number of securities
available for trade. As we have noted before, if feasible allocations are bounded away
from Pareto optimal allocations, then utilities of feasible allocations are bounded away
from Pareto optimal utilities,?™2®

As the examples above show, the asymptotic behavior of security market allocations
depends on the particular sequence of securities, but it also depends on endowments. In
particular, equilibrium allocations will always be Pareto optimal if endowments are
themselves Pareto optimal - even if no securities are available for trade. It seems
natural therefore to focus on 2 generic set of endowments.

As we have noted in Example 2, inefficiency may arise simply because securities do
not span all the uncertainty, but it is the combination of inefficiency and spanning that is
of most interest. In the case of a finite state space, spanning (completeness) has an
unambiguous meaning: every wealth pattern can be obtained as the returns on a (finite)
portfolio. When the state space is infinite, it seems natural to require only that every
wealth pattern be approximable by the returns on a finite portfolio. We say that the
sequence A = (An) of securities spans all the uncertainty if every wealth pattern (in C
) is the limit (in the topology of convergence in expectation) of returns on finite
portfolios of the securities -(An) .

1

As the following result shows, spanning and inefficiency are the rule. Looking ahead to
Section 5, we take this opportunity to record the fact that aimost all sequences of
securities are also linearly independent.

27. Keep in mind that we regard utility functions as fixed.
28. We caution the reader that Zame (1988) uses the term “asymptotically inefficient™ with 2
slightly different meaning.
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THEOREM 2: (a) Almost all sequences of securities are linearly independent.
(b) Almost all sequences of securities span all the uncertainty.
(¢) For almost all endowments, almost all sequences of securities are
asymptotically inefficient.
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4. THE DEFAULT MODEL

In this section, we describe an adaptation of the security market model which allows
-for the possibility of endogenous default. The model we describe is a variant of a model
due to Dubey, Geanakoplos and Shubik (1988), developed further by Dubey and Geanakoplos
(1989). Some of our discussion is also adapted from these sources; we refer the reader
to the original papers for further discussion.

The data of the model are precisely the same as the data of the security market model
described in Section 2. However, we modify the definitions of the budget set and of
optimizing behavior (and consequently of equilibrium) to allow for the possibility that
agents do not meet their liabilities.?® To be more precise, we allow each agent h to
" choose, in addition to a consumption plan and portfolios of purchases and sales, the
amount Dh(n,w) that he actually delivers on security A in the state w. (Recall that
sale of a security is really a promise to pay in the future. Since we require securities to
have non-negative returns, we avoid the need to interpret failure to deliver on promises of
negative quantities.) Of course, if agent h chooses not to sell securitg A » he will have
no obligation to meet; in this case we require that his delivery D (n w) = 0. Inevery
case, we require that D (n w)z 0. (To allow D (n,w) to be negative would amount to
allowing additional borrowing at date 1 .) Since additional consumption is always
desirable, consumer h will never choose to deliver more than the full amount of his
promises, which is *Ph(n)An(w) ; hence we will always have 0 < Dh(n,w) < ~Ph(n)An(w) .

Several things are important to note. First of all, the decision not to deliver on a
security is voiuntary; in particular, there is no requirement that agents meet their
obligations whenever they are able. Default may occur either out of necessity or for
strategic reasons. Second, by separating purchases from sales, we have allowed for the
possibility that agents go long and short in (i.e., buy and sell) the same security. We have
implicitly contemplated this possibility in the security market model, but when default is

- not possible, such an action is irrelevant. However, when default is possible, such an

29. It does not seem possible to incorporate default in the model by simply respecifying securities
and states to account for what is actually delivered, as opposed to what is promised. As Dubey,
Geanakoplos and Shubik (1988) puts it “... what is delivered is determined endogenously and
cannot be predicted without solving for the equilibrium. Moreover, different agents will make
different deliveries on the same asset even though the lenders receive the same aggregated
payoffs.”
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action is not be irrelevant; it may benefit an agent to go long and short in the same
security if he does not intend to meet all his obligations . In particular, there is nothing
to prevent an agent from buying one share of a security, selling one share of the same
security, collecting the returns from his pufchase, and defaulting on his obligations.>°

With the possibility that others will default on their obligations, a rational agent will
make conjectures about this default, and act accordingly. We view purchases and sales of
securities as implemented through some central bank, and assume that shortfalls on
promised deliveries are spread uniformly among all creditors. In this sense default is
anonymous, and each agent observes (and is affected by ) only the aggregate default.>!
(Mortgage securities provide a reasonable real world approximation to such securities.)
Moreover, although we consider explicitly only a model with a finite number of consumers,
we implicitly take the view that there are actually a continuum of consumers, but-onlg a
finite number of types . Hence, each consumer correctly views the effect of his own
actions on the aggregate level of default as negligible. Write Kh(n,w) for agent h’s
conjecture about the aggregate fraction of promised deliveries on security n that will
actually be made in state w , so that 0 < Kh(n,w) s1.

If consumer h s conjectures are correct, then 1 share of security A will yield the
actual return K (n w)A_(w) in state w , rather than the nominal return A (w)
Consumer h’s budget set B (e »q,K ) given endowment eh , security prices q ,and
" conjectures Kh , will then consist of 4-tuples (x y P .\P , D ) ,» Where " is a
consumption plan, \Ph is a portfolio of security purchases, \Ph is a portfolio of security
sales, and Dh is a plan of delivery on liabilities, such that:

M g 9" -¥M = ™o - xN0)

an  Mw = eMw) + ZKh(n,w) \Ph(n)An(w) -3 pM(n,w)
' n n

As before, (i) says that consumers finance purchases and sales of securities from date 0
consumption; (if) says that consumer h’s consumption in state w is the sum of his
endowment and the returns on his purchases (taking into account the default against him),

30. Without this possibility, default equilibria might not exist. :
31. Of course, the identity of defaulters must be known to some central authority, responsible for
the imposition of penalties.
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iess his own deliveries on liabilities.

To this point we have not spoken of the consequences of default. In reality, creditors
might be able to seize assets and be awarded judgments against future earnings,
defaulters might be barred from future credit markets, etc. To simplify matters as much
as possible, we assume here that the only consequences of default are penalties assessed
against the defaulters, and that these penalties are assessed directly in terms of utility.
Such penalties might be interpreted as extra-economic (debtor‘s prison, flogging
indentured servitude, public humiliation, etc.), but we prefer to interpret them simply as
proxies for economic penalties (seizure of assets, loss of future credit, etc.).>2 Although
it would be more satisfying to explicitly model the economic consequences of default, it
would also be more difficult, and would involve m.ang institutional details. (For instance:
what assets can be seized? and when?>®)

We shall also assume that default penalties are independent of the state of nature and
of the security, are the same for all agents, and are proportional to the amount of default.
However, these latter assumptions are made solely for notational convenience. There
would be no difficulty in allowing for default penaities that depend on the state and the
security, are agent-specific, and are not proportional to the amount of default. All that is
really required is that default penaities be concave and become sufficiently severe, with
large default, to ensure that no agent will acquire liabilities that exceed the aggregate
resources of society.

Given a default penalty of A, the utility consumer h will achieve by following the
plan (xh,NPh,NPh,Dh) is:

o ghghom =t - [ (S ¢hma ) - Dhnw} au”

That is, agent h enjoys the utility of his consumption, less his expected penalties. (Note
that *Ph(n)An(w) - Dh(n,w) is the amount of agent h’s default on the n-th security.)

32. It might be kept in mind, however, that ‘extra-economic penalties have played an important role
in the past. '

33. Kehoe and Levine (1989) have constructed a model in which the penalty for default is denial of
access to credit markets in succeeding periods. However, in their model, markets -are complete
and there is no equilibrium default. In work in progress, Geanakoplos and Zame study a model
in which collateral may be seized. ' :
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A default equilibrium is a list q of security prices, a collection {Kh) of
conjectures, and a collection ((xh,'Ph.¢h,Dh)) of choices such that:

M Se"-eM s 0

an 3" -9M = 0

(1) """, D™ e Bh(eh,q,Kh) .for each h

av  1f @M € 86"k , then W™ 9"9"0M = Wi, 3,06
(v)  every conjecture K" ‘is correct

In other words, commodity markets clear, security markets clear, agents optimize (among
budget feasible plans) given security prices and their own conjectures, and agents have
correct (and therefore identical) conjectures. _

It remains to formalize requirement (v), that conjectures be correct at equilibrium.
This is straightforward for conjectures about securities that are traded and yield positive
returns in a given state w ; the requirement becomes:

(v.a) if Z\Ph(n)An(w) > 0 then K'(nw) = {Z Dh(n,w)}/{z \Ph(n)An(w)}

For securities that yield no returns, conjectures are irrelevant:
(vb) if A (w) = 6 then K'(n,w) may be arbitrary

However, if the security An yields positive returns in state w and is not traded at
equilibrium, potential buyers and sellers receive no signals on which to base their
expectations. Were we to allow for arbitrary conjectures in this case, there would always
be trivial equilibria in which no assets are traded because all agents conjecture total
default - even if default penalties were so high that purchasers of securities would not
actually be willing to default. A similar difficulty arises in the theory of extensive form
games. As Selten (1975) points out, the Nash equilibrium notion imposes no restrictions
off the equilibrium path. Requiring that agents optimize at all decision nodes - even those
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off the equilibrium path - leads to the stronger notion of subgame perfect equilibrium. Of
course the bite of subgame perfection is in the restrictions it imposes on beliefs. In our
framework, insisting that consumers conjecture that others always choose optimal actions
- even out of equilibrium - rules out the trivial equilibria described above.

There are several ways to formalize the requirement that consumers always conjecture
optimal behavior by others. Two such formalizations are given by Dubey, Geanakoplos and
Shubik (1988) and by Dubey and Geanakoplos (1989). Our formalization is weaker than
either of these, so that we allow more equilibria (as the reader will see, this is in
~ keeping with our aims).

To motivate our reduirement, we show that, if the default penalty A is sufficiently
high, then - if consumers are optimizing - the probability of default will be low, and there
will be no voluntary default at all. To make these assertions precise, let the aggregate
endowment be & . Fix a consumer k , and consider an optimal budget-feasible plan
(x .\P 4' Let 2, be the set of states in which consumer k defaults on some
security ( 4' (n)A (w)-D (n w) # 0 for some n) and let ﬁ be the set of states in
which consumer k s default is voluntary (V¥ (n)A (w) -D (n w) # 0 for some n and
xK(w) # 0 ). We assert that:

(*) If A>u (0) then & =g
(%) uk(ﬂk) < (|/>\)[uk’(0)+vk’(0)l (sup (8(w) : w € Q*))

Note that (*) means that consumer k will not default voluntarily if the penalty is
sufficiently high; and (**) bounds the probability that consumer h will default at all.

To verify (*), suppose to the contrary that A > uk'(O) and that there is a state w in
which consumer k defaults voluntarily. If ¢ is less than consumer k’s consumption
and default in state w , then consumer k can alter his plan by making a larger payment
on his state w debt, thereby decreasing both his consumption and default in the state w
by ¢ . Reducing default by € reduces the utility penalty by eau (w) H reducing .
consumption bg ¢ reduces the utility of consumptlon by at most eu ’(O)u (w) If
A>u (0) , this contradicts the optimality of (x , \P \I' D ) ; this contradiction
‘ establlshes (.

23



To verify (**), let t be a real number with 0 <t < 1, and consider the aiternate plan
X+ t(xk-ek), t?k, t\Pk, p¥). since ok >> 0, this plan is budget-feasible for t
sufficiently close to 1. This alternate plan would entail a utility cost of foregone
consumption not exceeding (1 -l “(0)+v, (0)] (sup (e(w) w € :z*)) while avoiding a
“utility penalty of (1-t)A (9 ). Since the plan (x , \P \P Xy s optimal, this
alternate plan cannot be an improvement; this yields (**).

Our rationality requirement is that conjectures should be consistent with the above
observations. To express this requirement most simply, define u= 1nf{u TETEY ) by
H(w) = tnf (' (@), ... i(w)) , and write M, = sup(u, (0 +v, (0 : 1 sk s H) and ol =
{w: Kh(n,w) #0 for some n). Applying (**) for each consumer leads to the requirement:

(v.c) ﬁ(Qh) < H(r‘lo/)\)(sup (8(w):we Q*})) foreach h

As we have said, this is weaker than the rationality requirement imposed in Dubey,
Geanakoplos and Shubik (1988) and Dubey and Geanakoplos (1989). In particular, our
requirement is vacuously satisfied when H(Ho/k)(sup(é(w) : w € Q%)) > 1 (.e., when the
default penalty is sufficiently small). Hence, we allow here for 2 potentially larger set of

default equilibria.

For € > 0, we define an e-equilibrium to be a list q of security prices, a collection
K" of conjectures’*, and a collection ((xh,¢h,¢h,Dh)} of choices satisfying (i), (if), (ifi),
(v) and

vy it @M EN 5N € B a k™ , then WhKM o v"0M = w3 EN6M - ¢

This completes the description of the default model. The next step is to show that the
madel is consistent; i.e., that equilibria exist. Again, the proof is deferred to Section 6.

THEOREM 3: If securities are linearly independent, then for each A , 0 s A\ s o, 2 default
equilibrium exists.®

34. Our arguments for the rationality requirement (v.c) lose some of their force in the case of ¢-
equilibria. However, the e=equilibria we construct (in Section 5) have the property that all
available securities are actually traded, so the issue becomes moot.

35. The requirement that securities be linearly independent is necessary here. The problem is that,

24



It is instructive to consider the two extreme cases A =0 and A =c . If A =0,
there is no penalty for default. In such case, optimizing agents will never honor any of
their commitments, and agents with correct expectations will never lend (1.e., sell -
securities). Thus, at equilibrium, there will be no trade in securities, and hence (given
thaf there is a slnglé commoditg), no trade at all. If A = o« , optimizing agents will
never default (else they would incur infinite penalties). Hence such default equilibria
coincide with security market equilibria as described previously.

So, in extreme cases, we see no equilibrium default. However, for all intermediate
penalties, there will generally be some (probability of) default at equilibrium. We have
already noted that, if the default penalty is high, the probability that default will occur
will be small. As we shall see, if the default penalty is high, the expected amount of
default will also be small.

since default patterns may depend on the names of the securities (and not just on their returns)
redundant securities cannot necessarily be priced by arbitrage; see Dubey, Geanakoplos and
Shubik (1988) for further discussion.
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S. THE ROLE OF DEFAULT

Default creates inefficiencies: the direct losses of imposing the default penalties, and
the indirect losses due to the reluctance of lenders to lend and the resulting inability of
borrowers to borrow. In this section we show that, despite the inefficiencies it creates,
default may promote overall efficiency. Example 3 and Theorem 2 of Section 3 provide the
intuition necessary for understanding this apparent contradiction. When default is not
possible, the requirement that consumers keep all their promises (i.e., that terminal
wealth constraints be met) may severely restrict the portfolios that can actually be
traded, and hence the effective span of securities. (Indeed, this will "typically” be the
case.) Default gives consumers some ability to téilor security returns to their own
requirements. In this way, default endogenously increases the effective span of
securities, and this in turn more than compensates for the direct and indirect losses
associated with default. ‘

We make this intuition precise by showing that, if the default penalty is sufficiently
large and enough securities are available for trade, then every equilibrium allocation of
the security market is close to a Walrasian equilibrium allocation of the underlying
complete markets economy. Moreover, the corresponding utilities are close, even when we
take default penalties into account. The precise statement is a bit clumsy, since we must
account for the dependence on the default penalty as well as on the number of
securities.’®

In what follows, we fix an infinite sequence (An) of securities, assumed to be
linearly independent and span all the uncertainty. (In view of Theorem 2, almost all
sequences of securities satisfy these requirements.) We also fix a set of H consumers,
with utility functions Uh and endowments eh . For 1sN<e and 0 <\ < oo, denote
by GN')‘ the security market (with these consumers) in which the securities (A1 ....,AN}
are available for trade, and the default penalty is A . As before, we let dE be the

h , consumer h’s
h

metric of convergencé in expectation. Recall that, given conjectures K

utility for the consumption plan xh ' pdrchases ~Ph , Sales ~Ph , and delivery plans D fis:

36. As we have noted before, our rationality requirement is weaker than that of Dubey, Geanakoplos
and Shubik (1988) or Dubey and Geanakoplos (1989), so we allow for more default equilibria. In
our framework therefore, that all default equilibria are close to Walrasian equilibria is a
stronger assertion.
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Who e etoM = UM - FA (S $hma w) - Dnw) du”

THEOREM 4: For every € > O there is a A(e) and a function N(g,-) : (A(g),e0) = (0,c0)
such that:

If A >A(e) and (ﬁ.(Kh,xh,'Ph,¢h,Dh)) is a default equilibrium of NN , then

there is a Walrasian equilibrium allocation y of GCH such that, for each h,
|dE(xh,gh)| <¢ and

|whex, 9P, oM - ugM | <e

Thus, default equilibria are close to Walrasian equilibria, provided the default penalty
and number of securities are sufficiently large. If we view the underlying complete
markets economy as the limit of incomplete markets economies, then this resuit -
establishes - in the presence of default - upper hemi-continuity of the equilibrium
correspondences. (Section 3 shows that, in the absence of default, upper hem-continuity
fails to hold.) It is natural to ask about lower hemi-continuity too: are all Walrasian
equilibria approximated by default equilibria? For default e-equilibria, the answer is
yes.’?’ write

AL = max{uh’(0)=h =1,2,...H)

0

As we have noted in Section 4, if A > )‘0 there will be no voluntary default.

THEOREM S: For every € >0 and every A > A, thereis an index N’ such that:

If y is a Walrasian equilibrium allocation of GCM and N > N’ then there is 2

default e-equilibrium (q,(Kh. xh, \Ph,\ﬁh,Dh)) of eNr such that, for each h,

37. This is the most we should expect; exact equilibrium correspondences are usually not lower
hemi-continuous.

27



d (xh.gh) <¢ and
E

|who™, oe"oM - Uiy | <

Note that the conclusions of Theorems 4 and S are not precisely paraliel. In order to
assure that all default equilibrium allocations are close to Walrasian equilibrium
allocations, the default penalty might need to be extremely large. However, in order to

~ assure that each Walrasian equilibrium allocation is close to a default e-equilibrium
allocation, the default penalty will only need to be sufficiently large to discourage
voluntary default.

A final point. In the proof of Theorem 4 we show that, if number of securities and the
default penalty are sufficiently large, then the probability of default and the expected
magnitude of default are both small; in particular, there is no default in most states of
the world. However, we have nothing to say about the magnitude (or fraction) of default,
conditional on the event that default actually occurs. In particular, we do not rule out
the possibility that when default occurs it is total: no deliveries at all are made.

© 38. The e-equilibria we construct have the property that all available securities are traded, so the
rationality requirement does not enter.
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6. PROOFS

We first prove that security market equilibria exist; in our one commodity world, the

argument is quite simpte.>® .

PROOF OF THEOREM 1: There is no loss of generality in assuming that the securities
An have linearly independent returns (since redundant securities can be priced by
arbitrage). We reduce the existence of a security market equilibrium to the existence of a
Walrasian equilibrium for a shadow economy in which the commodity bundles represent
date O consumption and portfolios of securities.

This Walrasian shadow economy is defined in the following way. The commodity space
for the shadow market is IR x IRN (where N is the number of securities). For
(t,0) € R x IRN , we interpret t as date O consumption and © as a portfolio (not
necessarily non-negative) of securities. The consumption set for consumer h is the set
X" of pairs (th,eh) eRx RN such that S (th, returns(eh)) > 0; it is easily seen that
x“‘ is a closed convex subset of IR x IRN , and is bounded below (because security returns
are linearly independent.) The utility function Vh : xh-» IR of consumer h is defined by

v, e = uMe” + (", returnste™)

It is easily seen that Vh is continuous, quasi-concave, and strictly monotone (because
security returns are non-negative). Finallg; consumer h’s endowment is

Eh = (eh(o),O) € R x IF\‘N . (Keep in mind that securities are in zero net supply.) Our
assumption that security returns are bounded and that endowments are bounded away from
0 guarantee that Eh belongs to the interior of -Xh .

It follows that this Walrasian economy has an equilibrium (q, ('t'h,'eh)) . Write ~Ph

for the positive part of 3" and ¢" for the negative part of ", and set

39. .See also Zame (1988) and Green and Spear (1989). Unlike the arguments given in those papers,
the present argument has the virtue that it remains valid with a continuum of states
(maintaining the assumption of a single commodity). With a continuum of states and several
commodities, existence of equilibrium is problematical; the case of separable preferences is
addressed by Hellwig (in progress) and Mas-Colell and Zame (in progress).
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x = of + (Th,returns(éh)) . It is easily checked that the 4-tuple (q.(xh).(‘Ph).OPh)) is
an equilibrium for the security market &, as desired. [

We note that thls'constructio'n provides an equivalence between the equilibria of the
security market & and the equilibria of the Walrasian shadow economy. It follows that
equilibria of the security market & are constrained optimal , in the sense of being Pareto
undominated by any allocation attainable by trading date O consumption and available
securities. This is an observation first made by Diamond (1967), in the context of a finite
state space.

Before embarking on the proof of Theorem 2, it is convenient to collect some notation
and isolate two portions of the argument as lemmas. If e<¢E is an endowment vector,
recall that PO(e) is the set of Pareto optimal allocations from e . For each state w,
set E = (eeE : for every (xh)e PO(e) , there is an h such that
|xM(@)- eMw)| > 173 or [xMw+n)-eMw+1)]| > 1/3). Write E, = UE, . The first
lemma establishes that, for almost all endowments, every Pareto optimal allocation
entails at least one large net trade.

LEMMA A: E. is a dense open subset of E.

0
PROOF: That each E  , and hence E0 , is open follows directly from the definition and
the fact that the Pareto correspondence is compact-valued and upper hemi-continuous. To
see that Eo is dense, fix an endowment vector e€ E and a state w ; define new
endowment vectors e and @ by:

e N L CO NI U T <w
slw) = 8%wen) =

§2(w) = 8l(we) = 1

Mo = 1sen, N = 1/9H otherwise
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The endowment vectors @ and & represent different distributions of the same
aggregate, so PO(e) = PO(8) . Suppose that neither ® or @ belong to E . Then we
could find Pareto optimal allocations (x ), (x ) € PO(®) = PO(8) satisfging all the
following inequalities:

) > 273, flwsy < 172
Rw) < 172, ®w) > 2/3
flw) < 172, flwen > 2/3
§2w) > 23, RAw) < 172

We now use separability of preferences to compare marginal rates of intertemporal
substitution at the allocations (%™ and (x ) : consumer 1’s increases and consumer 2°s
decreases. Since marglnal rates of substitution are equal at a Pareto optimal allocation,
this means that (X ") and (&M cannot both be Pareto optimal allocations. We conclude
that at least one of e, @ belongs to Ew . By choosing w sufficiently large, we can
make € and & as close to e as we like, so it follows that Eo is dense in E, as
asserted. |

For X, ye€ ¢’ , write [x] = sup(x(w)}, and d_(x,y) = Ix-yl . If I isasetof
indices and X € CI , write x[I] for the vector that agrees with x on I andis ©O
elsewhere. We abbreviate x[{1,...,n}] by x[n] and x[In{1,...,n}} by x[Iln]] . If

= (An) is a sequence of securities, we write A[l] = (Anlll} LI A= (An) is a
sequence of securities, write spanA for the linear subspace of l’:1 spanned by A ; i.e,
the set of finite linear combinations of the securities An , or equivalently, the set of
returns on finite portfolios of elements of A . Write ¥ for the set of sequences in C
that are 0 from some point on. If v e %, write Ql(v) for the set of security sequences
A such that d_(vlIl,spanAlI) 2 (1/2)]vlIl]  ; set Q; = NQ(v), the intersection
extending over all v e ¥ . The following lemma is closely related to a result in Zame

1

- (1988). -
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LEMMA B: If 1< (1,2,...) is an infinite set, then QI is a residual subset of 8.

PROOF: We show first that Ql[vl is residual for each v. To this end, let ve 5 ; if

viIl = 0 there is nothing to prove, so assume VI[Il # 0 . Fix integers m , r such that

wWw) = 0 for w>r,andlet k be the first integer such that I n (1,2,...k} has r

elements. write p = (1/2)(1 -2"™), and let Q,(v,r,m) be the set of security sequences
A such that

(1) ‘ A][I[kll....Ar[I[k]] are linearly independent
1) d (Vi1 span(A [1l,...A LD > plvill} ,

It is evident that QIM = nQI(v,r,m) , S0 to show that QI[v] is resfdual, it suffices to
show that each Ql(v.r,m) is a dense open set.

Note first that (i) is equivalent to the non-vanishing of a kxk determinant, and so
remains valid if we replace A by any perturbation that ié small in the first k states
and for the first k terms of the sequence. Hence the set of sequences satisfging' (1) is
dense and open. Note next that if (2) is satisfied there is a state s such that

(3) d“(v[I(sll.span(A1[I[s]l,...Ar[I[sll) >plvall

Since the vectors v(I[s]], An[I[s]] all lie in a finite dimensional space, a simple
continuity argument shows that (3) remains valid if we replace A by any perturbation
that is sufficiently small in the first s states and for the first r terms of the
sequence. Hence the set of security sequences satisfying condition (2) is open.

To see that the set of security sequences satisfying condition (2) is dense, fix 2
sequence A ; we must find arbitrarily small perturbations of A satisfying (ii). Since
the set of sequences satisfying (i) is dense, there is no loss of generality in assuming that
A already satisfies (i). We may also assume without loss that there is a state s > r
such that Ai(t) =0 for tzs. Consider the returns operator R" -» C1 ‘defined by '
9~ EenAn[I] ; since A1[I],...Ar[I] is a linearly independent set, this transformation is
an isomorphism of R™ with a finite dimensional subspace of C1 . Let ® be the set of
portfolios © € R™ such that
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d (20 A VD = plvinl
Since the returns operator is an isomorphism, ® is a compact set.

Fix ©¢€® , and choose any state t > s; define a perturbation A“ of A by
A (w) = A (w) for w =t and A “(t) = 1. The returns of each security A, are non-
negative and bounded by 1,and p < 1/2,s0 [36,|>plvl . Since v(w)=0 for
w >r, it follows that

™ 4 (e A i > pivinl,

Continuity implies that (*) remains valid if we replace © by any portfolio & in some
neighborhood we of ©; moreover, the neighborhood We may be chosen independently of
the choice of the state t. Since ® is compact, we can cover it with a finite number of
these neighborhoods, and make perturbations in different states to achieve a security
sequence A" such that

(*%) d (26 A VD > pivitll

for all © € ® . Since we have made perturbations only in states where v and each A1
vanish, we conclude that (**) holds for all © € R" . since we can make these perturbations
in states with s arbitrarily large, these perturbations are arbitrarily small. Hence
Ql(v,r,m) is a dense set; as we have noted, this implies that Qi(v) is residual.

To see that QI is residual, observe that, if v ,v' € 5 then
d_(v’,spanA) > d_(v,spanA) - d (v,v)
Hence, if A € Q(v) for each ve ¥ having only rational entries, then in fact A € Q (V)
for every ve€ ¥ . Since the subset of ¥ consisting of vectors with only rational entries

is countable, it follows that Q, may in fact be written as the intersection of countably
many residual sets, and is hence residual. i
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With these technical results in hand, we turn to the proof of Theorem 2.

PROOF OF THEOREM 2: (8) See the second paragraph of the proof of Lemma B.

(b) Foreach j let §. € C] be the sequence whose j-th entry is 1 and all of whose
other entries are 0. For each j, k write 41K = (A d (8‘1 ,SpanA) < 1/k} . Evidently,
every sequence in rmj' spans all the uncertainty, so it suffices to show that each .ﬂ-"
is a dense open set. To this end, observe first that every vector in spanA is a linear
combinatfon of a finite number of securities. If d_(é Zo: A;) < 1/k, then
d (8 Z“1A|) < 1/k provided that d (Ai,A) is small enough (for each {). Hence #IK
is an open set. To see that it is dense, fix any sequence of securities A . For each i,
let A be the sequence which is identical to. A except for the i-th security, with

.ls.i = sj . Since A € .dj k and Ai + A in the product topology, we conclude that .ﬂj'

i
is dense, as desired.

(¢) For each w,let E¥ = (e€E : for some t>w, eM(r) < 1/9H for each h); set
E°‘= NEY = (e € E : for infinitely many eh(t) < 1/9H for each h}. It is easily seen
(by arguments such as those above) that each EY is a dense open set, so Eo isa
residual set. Hence E’ = Eo N E0 is also a residual set.

Fix e€eE’; say that e eEw . Set I = (w,w+}u {(v: eh(t) < 1/9H for each h};
this is an infinite set of states. According to Lemma B, the set QI of security sequences
is residual, so it suffices to prove that every sequence A € QI is asymptotically
inefficient for e. Since e € Ew , every Pareto optimal allocation requires a net trade of
at least 1/3, either in state w or in state w+1 . Hence every allocation which is close
to a Pareto optimal allocation requires a net trade of at least 1/4 , either in state w or
in state w+1. We claim that no such allocation (xh) cannot be obtained by trading 2
finite number of the securities An |

To see this, write zh = xh—eh for the net trade of consumer h. For the sake of
" definiteness, assume that consumer 1°s net trade in state w 1is large:
l2'(w)] = |x1(w)-e1'(w)| > 1/4 . 1f (x™ can be obtained by trading n securities,
there is a profile of portfolios 6" ¢ R" such that 2" =
Set v =2zlwl. Since A e Q,

returns(e ) € spanA for each h.
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d_(vlIl,spanAlll) 2 (/v 2 |z'(w)| z1/4

and hence d (vm,z [ll) 2 (1/8) . Since v(w) =2 (w) there is astate vel, v 2w,
such that |z (v)| = 1/8. On the other hand, if tel then e™(z) s 1/9H; since
x"(¥) = 0 for each hand Sz" = 0, this entails |2'(¥)| s 1/9 . This contradiction
shows that (xh) cannot be implemented by trading a finite number of the securities An
and completes the proof. |

PROOF OF THEOREM 3: We have already noted that, if X\ = 0, autarky is an
equilibrium, and if A = o the default model reduces to the usual security market model,
so it suffices to treat the case O <X <o, We construct a default equilibrium for the
security market & as the limit of equilibria in security markets with a finite number of
states.

For each index r, define a security market &[r] by truncating all the data of & to
the first r states (i.e., endowments eMrl defined as above by eiri(w) = oM(w) 1f
wsr, eh[rl(w) =0 if w>r,etc) It follows from work of Dubey, Geanakoplos and
Shubik (1988) and Dubey and Geanakoplos (1989) that &[r] has a default equilibrium
(q[rl,((Kh[rl,xh[rl.‘Ph[r].\#h[rl.Dh[rl))) . We claim that some subsequence of these equilibria
- converge to an equilibrium for & .

To demonstrate this, we need to show first that the components of equilibria lie in
compact sets. Note that boundedness of the set of feasible date O consumptions implies
that marginal utilities for date O consumption (evaluated at feasible consumption
bundies) are bounded away from O . By assumption, marginal utilities for date |
consumption are bounded above. It follows that the security prices qlr] are bounded
(independently of r ), and hence lie in a compact subset of RN . To see that portfolios
lie in a compact set, note first that, since the collection of securities is finite, there is
an index ro‘ with the property that each of the securities yields a strictly positive return
in at least one state w sr,, and that the truncations A [ro,l, cees A [r ] are linearly
independent. If the portfolios of sales ¥ [rl were not bounded (Independentlg of r),
there would be at leas_t one state w s o in which liabilities were unbounded. Since
aggregate consumption is finite in each state, there would be at least one state w < o
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in which default would be unbounded. Since default penalties become unbounded with
unbounded defaults, such actions would be incompatible with lndlvldual rationality, and
hence with equilibrium. It follows that portfolios of sales ¥ [r] are bounded; since
securities are in O net supply, portfolios of purchases ¢ [rl are also bounded. Hence,
portfolios of purchases and sales lle in a compact subset of IRN . It follows that
promises, and hence deliveries D [r] lie in a compact subset of C; we have already
noted that consumption plans lie in a compact subset of C . Of course conjectures also
lie in 2 compact set. Passing to a subsequence lf necessary, we see that equilibria of
&lrl converge to some tuple (q,((K WX ,\P \P ))) which we assert is an equilibrium of
§.

With the exception of individual optimization, verification of the equilibrium
conditions is straightforward and left to the reader. To verify individual optimization,
suppose that p = 9" 36" s an alternative plan for consumer h, which is
feasible and superior to the equilibrium plan p (x P ,\P Dh) (given endowment eh
conjectures Kh , and security prices q ); we find an index s and 2 plan p in the
economy é&ls] which is superior to consumer h‘s equilibrium plan p [sl To this end,
let «x, 8,8 >0 be parameters (to be chosen later) and let s be an integer (also to be
CRERCRC AT AN

chosen later). Define the plan D) in the following way:

*(w) = max(XMw)-«,0) for 0swss
= 0 for w>s

[ = (1-p9"

[ = ¢

nw) = max(6"(n,w)-5,0) for 1swss
= 0 ) for w>s '

If we choose s sufflclentlg large and « , & sufficiently small, the plan p achleves
almost as much utility as p and in particular achieves more utility than p . (Note
that the utility achieved by a plan depends on consumption, on sales, and on deliveries, but
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not on purchases or on conjectures.) Since conjectures Kh[sl converge to conjectures
R'h if we choose § sufficiently small and s sufficiently large, the plan B“ will be
feasible (i.e., meet the non-negativity constraints) in the economy elsl Since prices
qls] converge to q., if we choose s sufficiently large, the plan p will be budget
feasible in &[s] . Finally, if we choose s sufﬁcientlg large, the plans p [s] and p
_achieve almost the same utility, so the plan p will achieve more utility than p [sl
Since this contradicts the equilibrium conditions for the economy &[sl, we conclude that
5“ cannot be supérior to ph , so that (q,((Kh.xh.*Ph,\Ph.Dh)}) is an equi'librium for &, as

desired. B

PROOF OF THEOREM 4: For each A , N consider a default equilibrium mn(N,A) of
GN')‘ s let x(N,A) be the vector of consumption plans. Passing to subsequences if
necessary, we assume that x(N,A) » x(X) (as N~ e ), and that x(\)»x (as A= o).
The desired result follows if we can show that (for all choices just made) x is a

Wwalrasian equilibrium of e and wh(nh(N,)\)) -D'Uh(xh)‘ for each h.

cH ; i.e., that no group of

We show first that x is in the core of the economy ¢&
consumers can improve on X using only their own resources. To see this, suppose not.
Then there is a set of consumers (whom we may suppose to be {1,...,K}) and a vector
y of consumption plans that is feasibie for the group {t,...,K} such that
Uh(gh) > Uh(x) foreach hsK. Let «,$8,9 a § > 0 be real parameters and let r be an
lnteger (all to be chosen later). Define g by y (w) max(x (w) - «, o<} for wsr and

(w) 0 for w >r; define b (w) =@ (w) forwsr and e (w) =0 for
w>r. If « is sufficiently small and r is sufficiently large, then y is feasible for
the group {1,...,K} and Uh(g )>U Nx) for each h < K. Let § be the restriction of

y to Q.

Now let A* be any default penalty so large that, if A = A*,and N {s arbitrary, then
in the security market IGN')‘ there is no default in states w sr. For 1 shsH-1,w
may use the fact that the securities (An) span all the uncertainty to choose a finite

portfolio eh such that:

IKeh(G))+returns(9h)(w)-gh(w)| <«/Kfor 1swsr
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I3 + retuns(e™ - ") < $/K
Set ‘
K-1
oK=-5 o
h=1

Our construction guarantees that 39" = Z*{»h , and that

IeK(w)+retums(eK)-gK(w)| <xfor 1swsr

o<+ retums(eK)-GKIE <$

We now define plans (zh,iPh,\Ph,Dh) (for the security markets eV} as follows.
Consumption plans 2" are given by 2"(0) = gh(O) ' zh(w) = oMw) + returns(eh)(w) for
lswsr ,and zh(w) =0 for w>r. Portfolios \Ph ’ ~Ph of purchases and sales to
defined to be the positive and negative parts of e“ , respectively. Plans of delivery D
are defined by Dh(n,w) = Wh(n)An(w) for wsr, Dh(n,w) =0 for w>0. Ourchoice of
A guarantees that there is no conjectured default in states w <r; it follows that these
plans are feasible (i.e., satisfy the non-negativity constraints). If « is small enough
then UMM > oo™ for hsK. If $ is small enough, these plans all incur very small
default penalties; in particular, if $ is small enough, wh(zh.'Ph.\Ph,Dh) > Uh(xh) for
h s K. On the other hand, continuity of utility functions implies that
UGN » UMD as N and TP » UNGM as A+ e . It follows that, if
A and N are sufficiently large then wh(zh,¢h,9h,0h) > Uh(xh(N.k)) . Since Uh(xh(N,x))-
2z wh(nh(N,)\)) , we conclude that wh(zh.~Ph.~Ph,Dh) > wh(nh(N,k)) , provided that N and

A are sufficiently large. This contradicts individual optimization at equilibrium, so we
CM

h

conclude that x is in the core of ¢ , as asserted.

The same argument shows that (the replication of) x belongs to the core of every
replication of the economy cc” . By a result of Aliprantis, Brown and Burkinshaw (1987),
which is the infinite dimensional version of the Debreu and Scarf (1963) core convergence

theorem, it follows that x is a Walrasian equilibrium allocation of e,

It remains to show that wh(nh(N,)\)) - Uh(xh) for each consumer h . If not we could
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(passing to subsequences it necessarg) find 2 a consumer (say consumer 1) anda (>0
such that W (T\ (N A)sU (x ) - (2/2) for N, A sufficiently large. We may then find
a sufficiently large index r and a feasible profile of consumption plans (gh) such that:

gh(w) =0 for w>r,all h

oM > o™ 2w A for h#1,all N,A
1, 1 1 1 ‘

U'(y ) > W (n (N,A)) for all N, A

Let «,$ > O be parameters. Using the same ideas as above, we may construct
portfolios 9", ¥ such that:

| eh(w)+returns(~Ph)(w)- returns($M(w) - ghfw)l <x for lswsr
|'e'h + returns(9™ - returns(yM - GhIE <§

and Z(\Ph—\Ph) = 0. If A is sufficiently large then there will be no default in states
wsr. If $ is sufficiently small the penalty for default in all other states will aléo be
small. Hence, if we choose « sufficiently small we may construct, just as above, 2
collection of plans that are superior to the equilibrium plans in GN A (provided N is
sufficiently large) and have the property that at least one of them is budget feasible.

This is a contradiction, so we conclude that W (11 (N A)->U Mix hy , as desired. This
completes the proof. il

PROOF OF THEOREM 5: Fix ¢ > 0, the default penalty A > xo , and a Walrasian
equilibrium (1, (xh)) : there is no loss in assuming that the price of date O
consumptionis 1. Let «, §,%¥ >0 be parameters, and let r be an integer (all to be
chosen later). Define consumption plans 'i‘h by:

'ih(w) max{xh(w)-Zu,O) Oswsr

=0 - w>r
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As in the proof of Theorem 4, we may choose a collection (\Ph. w") of finite portfolios of
the securities (A} such that:

0 < oh(w)+ returns(\Ph)(w)-réturns(?h)(w) < Eh(w) +
(for wsr)

|returns(~9h)-returns(\Ph)-?hl <§$
S-9M = o

If we choose r sufficiently large and « sufficiently small then dE(xh .7") <¢/2 and
|Uh(xh)-Uh(§'h)| <¢e/4.

The portfolios (‘Ph, ~Ph) involve only finitely many securities, say Ai yo ..,AN . For
N2 Ng, let GN')‘ be the security market in which the securities A1 ,...,AN are°
available for trade and the default penaity is A ; we construct an e-equilibrium
(q.((Kh.xh.\Phaﬁh.Dh))) for €N . Define security prices qN by qN(n) = q-A, . Let
consumption plans 'ih be as constructed above. For securities A1 ' ...,AN1 ’
conjectures are that there is no default in states w s r and complete default in states
w >r; for securities A with n > Ngo, conjectures are that default is total in all
states. For consumers 1 2,...,H-1, security portfolios \P *ﬁ are as above; we
" require that consumer H purchase (in addition to the portfolio ~P above) and sell (in
addition to the portfolio ~PH above) a small quantity ¥ of each security An with
n > Ng . Finally, we arrange deliveries consistent with no default on securities
A.1 yoo "AN, in states w s r, total default on securities AI ,AN in states w>r,
and total default in all states on securities An with n > Ny. These plans are feasible.
If § is sufficiently small, then default penalties for each consumer do not exceed €/2.
Using this fact, and keeping in mind the conjectures and that A > xo , i1t is easily
checked that (q,((K .‘~P 4* D™)) is an e- equilibrium). Moreover, the fact that defauit
penalties for each consumer do not exceed ¢/2 implies that

WG, 9", 9"0M - U™ | < er2

What we have accomplished is not quite what was called for, since we have chosen the
index Ng in a way that depends on the particular Walrasian equilibrium (11, (x )), while
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the statement of Theorem S calls on us to choose Ny in a way that depends only on A

and ¢, but this is easng arranged. The e-equilibrium we have constructed is close to the
Walrasian allocatlon (x ) and hence close to every Walrasian equilibrium allocation (x )
close to (x ). Since the set of Walrasian equilibrium allocations is compact, uniformity

follows by an obvious compactness argument. B
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