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THREE APPROACHES TO BARGAINING IN NTU GAMES'

Elaine Bennett

This paper presents a noncooperative model of bargaining in
characteristic function games and relates its outcomes to those
of a cooperative mode] and a bargaining theory model. Despite
the differences in the approach of these three models and the
resulting differences in the nature of their solutions, all
three models make similar predictions of bargaining outcomes.

1. INTRODUCTION

In many situations in Economics, there are gains from cooperation and
conflict over how these gains should be shared. Examples include trade in
an exchange economy, firm formation and profit sharing in a production
economy, and formation of jurisdictions and production of public goods in a
local public good economy. For each of these situations we would like to
predict the coalitions that are likely to form and the rewards that agents
are likely to receive for their participation.

These and many other situations can be modeled as characteristic
function games with sidepayments (TU games) or without sidepayments (NTU
games). An NTU game specifies for each potential coalition the set of
attainable utility vectors available to it. Since each coalition can
select only one utility vector from this set, there is conflict over which
utility vector will be chosen. In the situations we consider, each agent
can participate in at most one coalition “at a time", so participation in a
particular coalition entails a cost: the foregone opportunity to partici-
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pate in another coalition. Hence, players in each coalition must bargain
over the distribution of gains within the coalition and one important ele-
ment in the bargaining will be the players’ opportunities in other coali-

tions.

This paper presents a noncooperative model and an overview of two
other models of bargaining in NTU games, a cooperative model and a "bar-
gaining theory” model. These models represent three very different ideas
about how to model bargaining in NTU games. Despite the differences in
their approach and the resulting differences in the very nature of what is
considered a solution, all three models make similar predictions of the
bargaining outcomes.

The aspiration model takes a cooperative game theory approach. The
focus here is on the problem each player faces in setting an appropriate
reservation price for his coalitional participation. This approach assumes
that each player sets a price for his coalitional participation and that
the bargaining that takes place within coalitions is bargaining over the
“reasonableness” of these prices. A solution in the aspiration model is a
price vector that satisfies certain bargaining criteria.

The multilateral bargaining model takes a bargaining theory approach.
The focus here is on the problem each potential coalition faces in deciding
on the distribution of payoff within the coalition. This approach assumes
that each coalition, given a disagreement vector, bargains systematically
to an agreement utility vector; and that given agreements in all other
coalitions, each coalition systematically determines its disagreement
vector. A solution in the multilateral bargaining problem is a specifica-
tion of an agreement payoff vector for each coalition which is consistent
with the bargaining in every coalition.

The proposal-making model takes a noncooperative approach. The focus
here is to make explicit each step in the bargaining process. The bargain-
ing process begins when nature randomly selects the first player to have
the initiative. A player with the initiative can propose a coalition, a
payoff vector, and a member of the coalition to respond to the proposal (or
else pass the initiative to another player). A player responding to a
proposal can either accept the proposal and pass it on for consideration by
another member of the coalition, or else reject the proposal and take the
initiative to make an alternative proposal and select a player to
respond.... A solution in the proposal-making model is a strategy for each
- player which is “"rational™ given the strategies of others and given the
rules of the bargaining procedure. The rationality notion we adopt is that
of stationary subgame perfection.

The solutions of each of these models make predictions about the
likely coalitions and the payoff distributions that result from each char-



acteristic function game. In the aspiration model the solution is a price
vector. Given such a price vector, the coalitions that are likely to form
are those that can afford their players’ prices; within each coalition,
payoff is distributed according to their players’ prices. In the multilat-
eral bargaining model, a solution is a consistent set of agreements, only
some of which are feasible. Given such agreements, the coalitions that are
likely to form are the coalitions whose agreements are feasible; within
each coalition, payoff is distributed according to these agreements. In
the proposal-making model a solution is a strategy profile. Given such a
strategy profile, the likely coalitions and payoff distributions are those
corresponding to proposals that are made and accepted with positive proba-
bility.

We show that, in all three models, underlying each solution is a price
vector, i.e., a specification of a reservation price (in utility terms) for
each player. In the aspiration model the price vector /s the solution.
The price vectors underlying solutions of the multilateral bargaining model
and the proposal-making model are less obvious. In multilateral bargaining
models, we call p the price vector of a multilateral bargaining solution
if, in every "possible" coalition, every player’s agreement payoff is his
price. In the proposal-making model we call p the price vector of a
solution if, in every proposal that has positive probability of occurring,
each player is paid his price.

The common feature of these models is that, despite the differences in
approach and the nature of solutions, all three agree on the range of
possible price vectors and possible coalitions which are the outcomes of
bargaining.

The paper is organized in the following way. Following the Introduc-
tion, Section 2 provides basic notation and definitions. Sections 3 and
4 provide overviews of the cooperative and the bargaining theory approach-
es: Section 3 describes the aspiration model and Section 4 the multi-
lateral bargaining model. Section 5 presents a noncooperative model of
bargaining called the proposal-making model, while Section 6 characterizes
its stationary subgame perfect outcomes. A discussion of related litera-
ture in Section 7 completes the paper.

2. UNIQUE OPPORTUNITIES AND NTU GAMES

Unique Opportunities

In this paper we focus attention on situations in which there is a
unique opportunity in the sense that, once a set of players commits them-
selves to forming a coalition (for a stated distribution of payoff), no
additional gains from any further coalition formation remain. For example:



- after elections in parliamentary systems where no party obtains a
majority of the seats, various coalitions of parties can form a
government, but only one government can form,

- various consortiums of companies can launch a communications
satellite, but currently there is only demand for one
geostationary satellite.

In the first example, the characteristic function will refiect the fact
that no two disjoint coalitions can both form a (majority) government. In
the second example, however, disjoint coalitions could be profitable even
though only the first coalition to form will actually reap the rewards.
The limitations implied by having a "unique opportunity” are restrictions
not on the class NTU games to be considered but rather on the class of
environments to which the theory applies. The unique opportunity assump-
tion is crucial to the description of the proposal-making model, but not
for the description of the aspiration or multilateral bargaining models.
However, the interpretation of their solutions would be different in the
absence of the unique opportunity assumption.

NTU Games

A game in characteristic function form with nontransferable utility
(an NTU game or nonsidepayment game) is a pair <N,v> where N = {1,...,n}
is a nonempty set of players and V, the characteristic function, assigns
to each nonempty subset S of N (a coalition) a convex, compact subset
v(8) of R§ which contains the origin and is strongly comprehensive
(e, If x e V(S), y e R, v € x foreach i< S and y £x then
y € V(S), the interior of V(S) with respect to Rf. Let € denote the
set of coalitions. It is convenient to O-normalize the game by requiring
V([i]) = { 0} for each player i ¢ N. We do not require that the game be
superadditive.

If x, y arein RS we write x < y if X < Y for each i ¢ S;
we write x <y if x<y and x £y, and x <y if x5 <y for each
i. If T is a subset of S, then by xV we mean the restriction of x
to T (thinking of vectors in RS as functions from S to R).

We interpret a vector in V(S) as a vector of utilities which the
coalition S can achieve without the cooperation of players not in S.
Strong comprehensiveness aliows for free disposal of utility and means that
for each feasible utility vector for a coalition, any player receiving a
nonzero utility can improve the utility of all other players by sacrificing
some of his own utility. That is, if x ¢ V(S) and there is a vector
y ¢ V(S) such that y > x then there exists a vector z ¢ V(S) such that
z >> x. When V(S) is strongly comprehensive the weak and strong Pareto
efficient boundaries of V(S) coincide.



3. THE ASPIRATION MODEL

In situations where the agreement to form a coalition is a binding
commitment, members of a coalition are unlikely to make such a commitment
without a parallel commitment to the choice of a utility vector (from the
coalition’s attainable utility vectors) which each member finds "accept-
able” in light of his other opportunities in other coalitions. As Shapley
and Shubik (1972, p. 116) put it,

"A prudent ’economic’ man playing this game would be loath to
enter a partnership for a stated share of the proceeds until he
had satisfied himself that more favorable terms could not be
obtained elsewhere. We can imagine that each player would set
a price on his participation, and that no contracts would be
signed until the prices on both sides of each partnership
formed are in harmony...”

The aspiration approach to bargaining assumes that each player sets a
reservation utility level (his “price"”) for his coalitional participation,
and that the bargaining that takes place is bargaining over the “reasona-
bleness” of these prices.

Each player sets his price with some knowledge or expectation of the
prices that other players demand. We expect players to lower their prices
whenever they must and raise their prices whenever they can. The aspira-
tion approach assumes that a player lowers his prices when no coalition can
afford to pay him and his partners their prices; and that a player in a
coalition will raise his price if the coalition can afford to pay its
players their prices and still have payoff leftover.

Formally, we regard vectors p « R§ as vectors of prices and p; as
player 1i’s price. We say that player i’s price is realizable at p if
there exists a coalition S containing player i such that ps e V(8).
If every player’s price is realizable at p we call P realizable. We
say player i’'s price is maximal if for every coalition § containing i ,
and every vector qs in V(S) it is not the case that qS > ps. If every
player’s price is maximal at p we say that p is maximal. (A price
vector is maximal if no player can raise his payoff demand in any coalition
without making his price "unrealizable”.) If a vector p 1is both realiza-
ble and maximal we call p an aspiration. Bennett and Zame [1988] prove
that the set of aspirations is nonempty for every NTU game.

Realizability and maximality are minimal desiderata for "reasonable”
reservation prices. Several authors have imposed additional desiderata in
order to make more precise predictions of bargaining outcomes. See, for
example, Albers [1974, 1980] for TU games or Bennett and Zame [1988] for
NTU games.



Outcomes

For each price vector p ¢ Rﬁ, define O(p) to be the set of coali-
tions that can afford to pay their players their prices, i.e.,

cp) = {sec 1 pSeV(s)}.

For each player i ¢ N, we define Ci(p) to be the set of coalitions in
¢(p) which contain 1i. For some values of p, c(p) or Ci(p) may be
empty; however if p 1is realizable then every Ci(p) (and therefore C(p))
is nonempty. If the price vector p is maximal then each player i finds
the coalitions in his Ci(p) equally desirable because he can obtain his
price from any coalition in Ci(p) and, given the prices of other players,
he can’t obtain more. Hence, whenever p is an aspiration, all players
can agree that all the “desirable" coalitions to form are those in C(p).

The selection of a particular aspiration p 1is the prediction that
one of the coalitions in €(p) 1is likely to form and that each player in
the coalition is paid his price.

4. THE MULTILATERAL BARGAINING MODEL

The multilateral bargaining approach views an NTU game as a set of
interrelated bargaining problems. This approach decomposes the factors
that lead to the choice of a particular payoff vector in each coalition
into internal considerations (such as the coalition’s standards of fair
division) and external considerations (such as the opportunities available
to each of its members in other coalitions). This approach assumes that
the effects of these factors can be summarized by two functions; the first
takes players’ outside opportunities and produces a utility vector referred
to as the "outside option vector"; the second takes outside option vector,
and produces an agreement utility vector. (That these effects are summa-
rized by functions simply means that the same data always lead to the same
resolution.) These functions are viewed as part of the description of the
problem just as the initial endowments and utility functions are part of
the description of an exchange economy.

Given an outside option vector, a coalition’s bargaining function
reflects the coalition’s standards of fair division, the institutional
rules for bargaining within the coalition, and the bargaining skills of its
members. Let £ . RS - RS, denote the bargaining function for S.

We assume that the bargaining function for each coalition S:=C satis-
fies the following conditions:

1. For each S and each outside option vector dS ¢ V(S), the agree-
ment vector for S, xS = fs(ds) satisfies:



a. Individual Rationality: xS 2 ds, and

b. Pareto Optimality: xS is on the Pareto optimal front1er2 of
vV(S).

2. continuity: For each S, the bargaining function, fs, is a

continuous function of its outside option vector.

3. Agreeing to Disagree: If for S the outside option vector
dS ¢ V(8), then the agreement vector for S 1is the outside option
vector, i.e., xS = fs(ds) = dS,

Given ds, the pair (V(S),ds) is a "bargaining problem” in the
sense of Nash [1950]. For dS V(S) the conditions given above are
minimal requirements for solutions to the bargaining problem and fs(ds)
has the usual interpretation as the agreement utility vector that results
from bargaining within the coalition. In condition 3, we have extended
each bargaining solution to allow for outside option vectors outside the
attainable set because we are going to determine an outside option vector
dS for each coalition S, to reflect its members’ opportunities in other
coalitions. The outside option vector determined in this way will lie
outside V(S) if, for members of S, the opportunities available in other
coalitions are more attractive than those available in S. In this case,
the members of S “agree to disagree”, i.e., they agree to settle for
their outside opportunities. We view the agreement to disagree as the
result of bargaining; the players of S negotiate but their "final of-
fers" aren’t compatible given the resources S. In setting the agreement
vector equal to the outside option vector we are assuming that, as a result
of bargaining, each player would be willing to form the coalition for his
component of the outside option vector if some other player would take the
necessary loss to make the utility vector feasible for the coalition.3
(For example, if the coalition [1,2] can divide 3 1in any way it chooses
and the outside option vector is (2,2), agreeing to disagree here means
that each player would be willing to form the coalition if he could obtain
2 (i.e., if the other player would accept a payoff of only 1.)

2. Strong comprehensiveness implies that the weak and strong Pareto frontiers
of each V(S) coincide.

3. The assumption that players will settle for their ouside options when
their outside option vector is infeasible is in keeping with the usual
assumptions of solution concepts for the simple bargaining problem. Virtu-
ally every solution concept for the simple bargaining problem (e.g., the
Nash bargaining solution) requires players to settle for their outside
option utility levels whenever the outside option vector is on the Pareto
boundary of V(8).



We now turn to the question of how outside options are determined. In
multilateral bargaining, if the players in one coalition fail to reach an
agreement may enter into other coalitions. Thus, for each coalition S
and for each player i ¢ S, we want to use as i's component of the
outside option vector, ds, the utility he would receive if he broke off
negotiations in S and took the initiative to form his best alternative
coalition. Of course, 1i’'s alternatives depend on the agreements that
will be reached in other coalitions. We assume that the players in S
make accurate (and therefore identical) conjectures about these agreements.
To see what this implies, fix a (conjectured) agreement vector x1  for
each coalition T # S; given these conjectured agreement vectors what are
the utilities of player i's alternatives? If i e T and the agreement
vector xT is attainable for the coalition T , then player i can cer-
tainly obtain x¥ in the coalition T. However, if the agreement vector
x! is not attainable for T, player i cannot obtain as much as xg.
In view of our previous discussion about the meaning of "agreeing to disa-
gree", the most that player i can obtain in T is the largest utility
which allows all of the other members of T to obtain their agreement
utilities. That is, the utility to p]ayer i of the unattainable agreement
x! in the coalition T 1is max { pﬁ T/t.i ¢ V(T)}. (We use xT/t to
denote the vector obtained from x by rep]acing the i-th component by
ti)' If there is no value of t; for which X /t1 ¢ V(T), then the
unattainable agreement x! has no utility for player 1; by convention
we agree to take 0 to be the maximum in this case.

Formally, given agreements {x }T § in all other coalitions, we
define the outside option vector d ({x }Tﬂs) for the coalition S in
the following way. For each 1 ¢ S and each coalition T # § with
ieT, set:

xI if xT e W(T)
ug(xT) =
xT/ti ¢ V(T) }, otherwise.

and
d?(x) = max { ug(xT) | ieT and T # S}.

By definition, dS is a function from collections {XT}T#S to R§;
however it is convenient to view dS as a function def1ned over collec-
t1ons of agreement vectors for all coalitions (although d won't depend
on X ). We refer to the function dS as the outside option function for

the coalition S.



Although we allow different coalitions to have different bargaining
functions, we assume that all coalitions use the same outside option func-
tion. Hence, a complete description of a multilateral bargaining problem
specifies a set of coalitions C, and for each coalition S ¢ C, an attain-
able utility set V(S) and a bargaining function £S. We refer to the
triple <N,V,f> as a multilateral bargaining problem.

A solution for the multilateral bargaining problem is a agreement
payoff vector for each coalition which is consistent with the description
of bargaining in every coalition. Formally, the vector x = {xs}séc, is a
consistent conjecture (or simply a solution) for bargaining problem
¢<N,V,f> if for every coalition S ¢ C, xS = fs( ds(x) ).

A consistent conjecture is a stable set of beliefs about the outcomes
of the bargaining because, given the nature of bargaining in each coali-
tion, no player can improve his payoff in any coalition by renegotiating
his utility allocation.

Prices

Let x be a consistent conjecture for the bargaining problem <N,V,f>.
We say that player i's price is p; if he obtains exactly p; as his
agreement utility from every one of his coalitions. We say that the price
vector p generates x, if for every player i and for every coalition
§ containing player i, we have Xxj = pj.

Bennett [1985] shows that for every bargaining problem <NV, >

1. There exists a consistent conjecture for <N,V,f>;

2. Every consistent conjecture is price generated;

3. Every price vector that generates a consistent conjecture is an
aspiration.

Moreover, for every NTU game <N,V> and every aspiration p for <N,V>,
there exists a bargaining rule f and a vector x = {xs}séc such that x
is a consistent conjecture for <N,V,f> and p generates x.

Outcomes

Given a multilateral solution x = {xs}sec , the "possible” coali-
tions to form are those with feasible agreement vectors (i.e., coalitions
that don’t agree to disagree). If the multilateral solution x has the
price vector p, the coalitions that are likely to form are precisely the
coalitions in C(p).

The selection of a particular multilateral solution x , with price
vector p is the prediction that one of the coalitions in C(p) will form
and that within the coalition that forms, each player is paid his price.

10



5. THE PROPOSAL-MAKING MODEL

The proposal-making model takes a noncooperative approach to modeling
bargaining in NTU games. The proposal-making model specifies a particular
bargaining procedure as an extensive form game with perfect information.

In this model players bargain by making, accepting and rejecting
proposals. A proposal (S,qs) made by player 1 specifies a proposed
coalition, § (any coalition in C containing i) and a proposed payoff
distribution, qs , (any payoff vector qS e V(8)).

The game is played according to the following rules:

0. Nature has the first move. Nature selects each player i« N with
probability ao(i) > 0. The selected player has the initiative at
the next move and follows rule 1.

1. The Initiator Role. The player with the initiative, call him i,
can either pass the initiative or make a proposal and name a respon-
der. If i passes the initiative to Jj, player j will have the
initiative at the next move and follow rule 1. If player i
makes the proposal (S,qs), he also designates a player in S to
respond to the proposal. The next move is made by the designated
responder who follows rule 2.

2. The Responder Role. The designated responder, call her j, either
accepts or rejects the proposal. If j accepts the proposal
(S,qs) and every other player in S has already accepted then the
game ends (see 3.), otherwise J designates any player in S who
has not yet accepted as the next responder (this player then follows
rule 2). If j rejects the proposal she takes the initiative and
follows rule 1.

3. Game’s End. If a proposal, call it (S,qS), is accepted by every
player in S, the game ends. The players in S obtain their compo-
nents of qS and players not in § obtain nothing.

4. Infinite plays result in a payoff of 0 for each player.

A sketch of the game tree is provided as Figure 1.

Nodes and Actions

After the initial move by nature, at each nonterminal node there is a
player whose turn it is to move. Let no denote the node at which it is
nature’s move (the initial node). For each player i let ¥y denote the
set of nodes where it is player i’s turn to move. At m e ¥y either i
has the initiative or is responding to a proposal made by another player.
Let N% be the set of nodes at which i has the initiative and let X

11



be the set of nodes at which i responds to a proposal. Let Z denote
the set of terminal nodes.

For each player i, and each node mn ¢ x&, let A;(n) denote the set
of actions available to 1 at =n. At n ¢ ¥j player i has the initia-
tive and Ai(“) contains two type of actions: player 1 can designate
which player j € N will have the initiative (and the next move), or else
player 1 can make a proposal, call it (S,qs), and designate a player
j e S, to respond to the proposal (this responder will have the next
move). At m « H% player 1 is responding to a proposal, call it
(S,qs), and Ai(“) again contains two types of actions: player i can
reject the proposal (this action leads to a node where player i has the
initiative) or else player i can accept the proposal and designate a
player k ¢ S who has not yet accepted to be the next responder. (If, at
n, every other player in S has already accepted the proposal, acceptance
of the proposal leads to a terminal node { where the game ends with the
formation of the coalition S.)

Strategies and Stationarity

A behavioral strategy for player 1, vy, specifies for each node 1
in ¥ a probability distribution Gi(“) with finite carrier over the
actions in Ai(“) i.e., at each node in ¥, °1(“) assigns a positive
probability to at most a finite number of actions in Ai(“)' Let
s = (61,...,Gn) denote a strategy profile, i.e., a strategy for each
player, let Tyi( © (61,...,01_1,01+1,...,Gn) denote a strategy for every-
one except 1. Let I; denote the set of strategies for player i, and
let T denote the set of all strategy profiles.

Informally, the strategy o is a stationary strategy for player i
if it is independent of the history of the game. By this we mean that o,
makes the same prescription at every node at which player i has the
initiative and that o makes the same prescription at every node at
which player i 1is responding to the same proposal by the same proposer
with the same set of players having already accepted the proposal. -

To formalize this notion let xq(s,qs,j,T) denote the set of nodes
at which player i 1is to respond to the proposal (s,qs) made by player
j and already accepted by the players in T. We say o4y is a stationary
strategy for i if:

1. For =n, m' € 5":1;, G-i("‘l) = 01(*\’)-
2. For =, "1' € H?(qusvjs.r): 01'("\) = G.i(‘\“").

The profile o 1is a stationary strategy profile if for each player i, o,
is a stationary strategy for 1.

12



Expected Payoffs and Equilibria

Given a strategy profile ¢, a nonterminal node v and a terminal
node 3, we let Pr (3 | n) be the probability that 3 is reached start-
ing from = given that players follow the strategy profile o. Since we
have required strategies to have finite carrier at each node, it is easily
seen that Pr (s | n) is well defined. (Notice, that in particular, that
Pro(3 | m) =0 if does not follow +w.) For the probability that,
starting from 7, the game does not terminate4, given that players follow
s, we write Pr (= | n) = 1- 23 Pro(s | n).

The payoff function h specifies the payoff each player receives at
each terminal node. If acceptance of the proposal (S,qs) leads to the
terminal node ¢, h specifies that each player in 8 receives his compo-
nent of qS and each player who is left out receives 0. Formally, we
define the payoff function h : Z =~ RN by hi(f) = q? for i ¢« § and
hij(s) = 0 for i€ S where (S,qs) is the proposal whose acceptance led
to ¢.

Since hj(z) is the payoff to player 1 at the terminal node ¢ ‘and
0 is the payoff to player i if the game does not terminate, player i’s
expected payoff at w given the strategy profile o , Ei(“ | ¢) 1is given
by E-i(“"l | o) = Zg hi(f) Prc(f | m).

We say that the terminal node { has a positive probability of occur-
ring given ¢ if Pr (¢ | no) > 0. We say the proposal (S,qs) has a
positive probability of acceptance given o 1if acceptance of (S$,9°)
Jeads to a terminal node ¢ that has a positive probability of occurring
given o. (Recall that no is the initial node of the game.)

The strategy o4 is a best reply to Y4 ( at v if for every
strategy ¢'; € i, Eq(n | @) 2 Ej(n | o/s’y). The strategy profile ¢
is a Nash equilibrium if for every player ie N, oy is a best reply to «

at the initial node, no.

The strategy profile ¢ is a subgame perfect equilibrium if for every
player 1, and every nonterminal node v, the strategy o is a best
reply to IY4( starting at n. (Since every nonterminal node in the game
is the initial node of a subgame, this definition agrees with the usual
notion of subgame perfection.)

4. Although the sum I, Pr (S | n) extends over an uncountable set of
terminal nodes, at most countably many terms are non-zero; this point is
made clear in the Appendix.

13



6. STATIONARY SUBGAME PERFECT EQUILIBRIUM OUTCOMES

According to the rules of the game, any player who is responding to a
proposal can take the initiative by simply rejecting the current proposal.
For a proposal to be “acceptable” every player in the proposed coalition
must be offered a utility at least as high as his expected payoff as an
initiator; we therefore refer to player’s expected payoff as initiator as
his "reservation price”. Formally, for o; a stationary strategy for
player 1, and my e X be a node at which player i has the initiative,
we define player 1i’s reservation price pi(°) to be 1i's expected
payoff as an initiator, pi(c) = Ei(“i | ¢). (Since ¢ is a stationary
strategy p; is independent of the choice of initiator node.) We refer to
p(s) = (py(s),...,pu(e)) as the reservation price vector of o.

In the following we use (p/ti)S to denote the vector containing one
component for each player in S whose components are the components of p
except for player i whose component is t;.

Theorem 6.1: If p = (p,,...,pn) is the reservation price vector of a
stationary subgame perfect strategy profile, then for each player
i, pj = max { us(p_ :) ] s € C; } where ug(p_j) is given by
Blo_y) = max { t; 1 (/t)S € V(S) .

Proof: We first show that player i’s reservation price is at least the
value P given above. Player i can ensure the cooperation of each
partner j € S by proposing a payoff q% which is strictly greater than
j’s expected payoff if his refuses, i.e., Jj’s reservation price (other-
wise backward induction would show that the strategy of one of the players
in S was not subgame perfect). Since player 1 has a strategy, which
for any € > 0 guarantees player i a payoff of
max { t; | (p/t; ) e V(8) } - €, his utility for forming the coalition
S, us(p_ ), must be at least max { t; | (p/ti)s ¢ V(8)}. (If the set
{ty 1 (p/t ) e V(S) } is empty p1ayer i will not propose the coalition
S since i can obtain 0 without the cooperation of other players; in
this case for simplicity we set u?(p_i) = 0.) Since player i can
propose any coa11t1on S «C; his reservation price must be at least
uj(p_yj) = max { 3 (p_ ) | S e Cy }. Since any proposal that assigns a
player j ¢ S 7ess than his reservat1on price will be rejected, ui(p_i)
is also the largest payoff player i can obtain by making an acceptable

proposal.

h

To show that u; (p_ ) is 1i’s reservation price we must show that
i’s expected ut111ty wou1d not be higher if he either passed the initia-
tive or made an unacceptable proposal. Consider any subgame that follows
player i passing the initiative or having his proposal rejected and
consider any terminal node that is reached with positive probability (given
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SSP strategies in the subgame) in which player i participates in the
successful coalition. Let j be the player who made the successful
proposal. If i = j the previous argument shows that his payoff is no
more than u;(p_;). For J 4 i to be willing to make the proposal, say
(s,q5) , his payoff must be at least his reservation price, i.e.,
qjs 2 Py- For the other players k # i to be willing to accept the
proposal, qﬁ 2 pk- Hence player i’'s reservation price p; = ui(p_i).l

Theorem 6.2: The reservation price vector of every stationary subgame
perfect SSP strategy profile is an aspiration.

Proof: We show that if p 1is a reservation price vector of a SSP strategy
profile then p 1is realizable and maximal for each player i. By Theorem
6.1, we have that player i’s price p; satisfies py = max { u? | S e Cy
} where u? = max { ty | (p/ti)s e V(S) }. If p; >0, p is realizable
for player i 1in any coalition s¥ in which the maximum u? is obtained;
if p; =0 then p ijs realizable the coalition [i]. The vector p s
maximal for player i because for each coalition S = C; ¢ is the
largest feasible residual in the coalition § and uj is the largest of
these values. Since p is realizable for each player i, »p is an aspi-

ration.s

Theorem 6.3: Every aspiration p 1is the reservation price vector of an
stationary subgame perfect strategy profile.

Proof: For each vector p ¢ RN we describe a class of stationary strategy
profiles such that each strategy profile in the class has a reservation
price vector equal to p and show that if p is an aspiration then these
strategy profiles are subgame perfect.

Let p ¢ Rﬁ. We say that c? is a price strategy (for the price
vector p) for player i if:

1. When i has the initiative he assigns O probability to passing
the initiative and assigns positive probability to making a proposal
(S,qs) only when qS = ps.

2. When player i responds to the proposal (S,qs) he accepts if
qs 2 Pj for every player j of § (including i) who has not yet
accepted the proposal and rejects the proposal otherwise.

We say that oP ¢ T is a price strategy profile if for every player
i, of 1is a price strategy. For each p ¢ RN, let P denote the set of
all price strategy profiles corresponding to the vector p. Notice that
each strategy supports only one price vector p but many strategies sup-
port that same p; these strategies differ by the probabilities that
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players with the initiative assign to making various proposals (i.e., for
player i the probabilities he assigns to making each of the proposals in
the set { (8,0%) | S ¢;(p) 1.

It is easy to see that for any price strategy profile P, p is its
reservation price vector of oP since only proposals made with positive
probability given osP are of the form (S,ps) and every player accepts
such a proposal.

Now fix an aspiration p, and fix any <P ¢ IP. To show that oP
is subgame perfect we show that for every player i, c? is a best re-
sponse to ‘gi(’ starting at any decision node for 1i. This requires
three lemmas (below). Lemma 6.4 shows that if i makes an "acceptable”
proposal at any of his initiator nodes, then his proposed payoff is not
greater than p;. Lemma 6.5 shows that of s a best response to °§1(
at any of his initiator nodes. Lemma 6.6 completes the proof by showing

that a? is a best response to agi( at any of his responder nodes.

Lemma 6.4: If player i, makes a proposal (s,qs) that has a posiiive
probability of being accepted given cp)i(, then q? <€ Py

Proof of Lemma 6.4: Suppose player 1 makes the proposal (S,qs). (The
vector qs need not be compatible with c?.) Since (S,qs) is a propos-
al, qs e V(S). Suppose first that S = [i]. By maximality of aspirations
q? < py. Suppose instead S # [i]. If (S,qs) has a positive probability
of acceptance by the first responder (# i) (who by assumption is following
a price strategy for p) then 571 pS=1. By maximality it must be the
case that q? < py.o

Lemma 6.5: For every player i, og is a best response to ap)i(, at any
initiator node n; ¢ ;.

Proof of Lemma 6.5: For any o' € T and let o’ = oP/s’. Consider any
terminal node { that is reached from m; with positive probability given
s’. Let (S,qs) be the proposal made by player k at node v whose
acceptance leads to . If k = 1, then Lemma 6.4 implies that
hi(§) = q? < p. If k=/i, then (since k 1is following ), q° = pS.
In this case h;(3) = py if ie S and hy(§) = 0 < py if i ¢ S. Since
the choice of $ was arbitrary, we conclude that
Ei(ay | ¢’) < py = Ej(ng | oP). Hence of is a best response to agi( at
every mj € Hj.m

Levma 6.6: For every player 1, a@ is a best response to ag,( at any
responder node %; € ¥j.
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Proof of Lemma 6.6: We first show that if 1 accepts the proposal (S,qs)
which is rejected with probability 1 by some future respondent (call her
j), then 1i’s expected payoff (given °§1‘() is at most py. To see why
this is true notice that player j, having rejected the proposal will
follow <R, and make a proposal (S“,qs ) with qS = pS and this propos-
al will accepted for certain if i ¢ 8". This would result in a payoff to
i of 0< py. If ieS", and 1 accepts, so will everyone else, so
i’s payoff is p; for certain. If 1 rejects (S",qs ), Lemma 6.5
implies that his expected payoff is at most py.

To complete the proof, let =y e Nﬁ and suppose at +j player i
is responding to a proposal (S,qs) and the players in §' (a subset of §)
have nog yet accepted it. We considgr three cases depending on whether or
not qS is at least as large as pS

case 1: ¢° » pS’. 1In this case Es(ny | oP) = q?. 1f player i accepts

the proposal she obtains q?, if she reiects the proposal, her expected
payoff is (by Lemma 6.5) at most py < qsi. Hence a? is a best response
to O'p).i( at Ny '

Case 2: qS; < Pk for some k ¢ S’-i. In this case Ei(“i | oP) = Py If
player i rejects the proposal, she takes the initiative and Lemma 6.5
guarantees her expected payoff to be at most pj;; if she accepts the
proposal, player k will certainly reject the proposal and, as we earlier
argued, 1i’'s expected payoff is at most p; = Ei(ni | oP), so c? is a
best response.

Case 3: qs"i 2 ps"i and qs; < pj. In this case Ey(ny | oP) = p%. If
player i accepts the proposal she obtains q% < Py; if she rejects the
proposal, her expected payoff is (by Lemma 6.5) at most pj < qsi. Hence
oP is a best response to cp)i( at n;.

Since in each case of is a best reply to °§1(’ sP is a best reply
at every responder node -- this completes the proof of Lemma 6.6. Lemmas
6.5 and 6.6, together prove that a? is a best response at every node for
player 1, --this completes the proof of Lemma 6.6, and with it. the proof

of Theorem 6.3.m

Prices

Associated with each strategy profile ¢ 1is a set of proposals, call
it P(s), corresponding to the terminal nodes that have positive probabil-
ity of being reached given o. The proposals in P(s) are the proposals
that have a positive probability of being made and accepted given o. We
call the proposals in P(s¢) the acceptable proposals given o.

We say that the vector p generates the set of acceptable proposals
P(¢) if in every acceptable proposal every player is paid according to p.

16



Formally, the vector p ¢ RN generates P(s) if for every (S,qs) e P(s),

QS = DS-

Theorem 6.7: The reservation price vector of each stationary subgame
perfect strategy profile generates its set of acceptable proposals.

Proof: To see that the reservation price vector p = p(s) of each SSP o
generates P(s) we first note that each player’s expected payoff is at
least as high when he has the initiative as when any other player has the
jnitiative (otherwise he would pass the initiative to this other player);

i.e., for mesd, myesd, Eylng 1 o) 2 Eylny | o).

Ltet ¢ be any terminal node that occurs with positive probability
given o. (There is a terminal node with positive probability since a
strategy profile that leads only to infinite plays cannot be subgame per-
fect.) Let 1 be the proposer and let (S,qs) be the proposal whose
acceptance led to ¢ and let = be the node at which i makes this
proposal. Consider the path from = to . Since (S,qs) is accepted
with positive probability q? 2 pj for every j # i in S. We claim that
q? 2 Pi» also. To see this, note that, since i made the proposal (S,qs)
(with positive probability) at m, his expected payoff given this action
must be at least Py- However, his expected payoff given this action is a
weighted average of his payoff given that his proposal is accepted (which
is q?) and his expected payoff given that his proposal is rejected. If the
proposal were rejected by responder j, player i would expect to obtain
Ei(“j|°) for nj € ! which, as we have noted above is at most p;. So
i’s expected payoff is a weighted average of q? and a number no larger
than p;. Hence for i’'s expectation to be Pi> q% 2 py. Hence
qS 2 ps. Since p is maximal, qS e V(S), and V(S) 1is strongly compre-
hensive, ps = qs. Hence p is the price vector of o .m

We have proved that the set of all reservation price vectors of sta-
tionary subgame perfect equilibria is the set of aspirations; it follows
that the set of all price vectors that generate SSP possible outcomes is
also the set of aspirations.

Outcomes

For each SSP strategy profile o, let C(s) be the set of coalitions

that have a positive probability of being formed given o, i.e.,
Cs) = { S| (5,a5) ¢ Plo) for g5 ¢ RS }.

One might expect that if p generates P(s) then C(s¢) = C(p). However
this is not the case. While C(s) 1is always a subset of C(p), when
there are "many" coalitions in C(p) players can discriminate against a
particular coalition by never proposing it. If players do not discriminate
(i.e., each player as initiator assigns positive probability to proposing
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every coalition in C;(p)), then C(s) = C(p) and the three models agree on
the entire set of predicted coalitions.

7. RELATED LITERATURE

1. Selten [1981] presented the proposal-making model for TU games (modeled
as a recursive rather than an extensive form game) and proved the analog of
the Section 6 results. After showing that equilibrium points are aspira-
tions (Selten calls them semistable demand vectors), he uses equilibrium
selection arguments to isolate a particular set of aspirations, which he
refers to as the set of stable demand vectors. Selten’s equilibrium
selection arguments could be carried over directly to the NTU case; the
analog of Selten’s stable demand vectors are the bargaining aspirations of
Bennett and Zame [1988].

2. One way to avoid the multiplicity of equilibria in noncooperative
bargaining models is to introduce friction into the bargaining procedure.
For instance, following Rubinstein [1981], one might assume that drawing up
a proposal takes time and that time matters (i.e., players discount the
utility of future agreements). This is the approach taken by Binmore
[1985] and by Chatterjee et al [1987].

Binmore [1985] presents a noncooperative model and a bargaining theory
model for a limited class of 3-player NTU games (games in which the coali-
tion on the whole earns nothing). Binmore discusses several alternative
noncooperative models for this class of games including one he calls the
"telephone” bargaining model. Apart from details, the telephone bargaining
model is the proposal-making model with discounting. Binmore “tests"” this
model on a particular 3-player TU example and finds its (unique) outcome
“unintuitive”. Binmore then dismisses the model and goes on to the "market
demand” model -- a model unrelated to the model presented here. (Binmore
[1985] also presents a bargaining theory model which is quite similar in
spirit to the multilateral bargaining model presented here.)

Chatterjee et al [1987] presents a noncooperative model for the class
of TU games, which, apart from details, is again the proposal-making model
with discounting. Although differences in "detail"” can result in substan-
tive differences in the equilibria of the model, we believe their results
to be suggestive of the type of results that would obtained (for the class
of TU games) if this friction were introduced into the proposal-making
model. In the model of Chatterjee et al, the bargaining outcomes for each
TU game are generated by a unique price vector; and this price vector is an
aspiration. Unfortunately the unique aspiration chosen is often not the
most intuitively plausible price vector for the game.

Although the nonuniqueness of the equilibrium of the proposal-making
model is unsatisfying, the results of Chatterjee et al and Binmore suggest

18



that time pressure is not the “right"” friction in this context. Other
frictions and other ways of selecting among price vectors in the proposal-
making model should be investigated.

3. Bennett [1990] shows that, in the absence of stationarity "anything”
can happen in the proposal-making model-- i.e., any individually rational
payoff distribution for any coalition is a possible outcome of subgame
perfect equilibrium strategies.

4, Various solution concepts on the space of aspirations have been pro-
posed, independently and in various guises, by a number of authors. The
aspiration core for TU games was first identified by Cross [1967]; it was
later proposed independently by Albers [1974], by Turbay [1977], and by
Bennett and Wooders [1979]. Bennett [1980] recognized it as the extension
of the core solution concept to the space of aspirations. The aspiration
bargaining set for TU games was first proposed by Albers [1974], and inde-
pendently by Bennett [1980, 1983], who recognized it as the extension of
the bargaining set to the space of aspirations. The extension of the
aspiration bargaining set to the class of NTU games is in Bennett and Zame
[1988]. Other aspiration solutions (kernel and nucleolus variants, in
particular) are described in Albers [1980] and Bennett [1980].
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APPENDIX

For each node n , let T(n) be the set of nodes that follow = .
Write T1(n) for the subset of T(w) consisting of immediate successors
of v, Tz(n) for the immediate successors of elements of T,(n) , etc.
Note that T(w) 1is the union over all Ti(n) .

Fix a strategy profile « ; recall that we require & to have a
finite support at each node. For =’ ¢ T1(n) , Write Prc(n’ | m) for the
conditional probability that m’ 1is reached from =« given that players
follow the strategy profile o . This defines a probability measure on
T1(n) with finite support. Hence, we may define for =" « Tz(n) the
conditional probability Pra(n" | m) that =" is reached from = given
that players follow the strategy profile o , obtaining a probability
measure on Tz(n) with finite support. Continuing in this way, we obtain,
for each n , a probability measure on Tn(n) with finite support.

Let 2 be the set of terminal nodes. Write Z(n) for the set of
terminal nodes in T(n) and Zn(n) for the set of terminal nodes in
To(n) . Note that :

P
€621(n)r0(€ I m)

is the probability that the game terminates in one step, beginning from n ,
that

= Pr (¢ | m)
Eézg(ﬂ) G i

is the probability that the game terminates in two steps, beginning from =,
etc. (Note that each of these sums is in fact finite, since each of the
probability measures we have constructed has finite support.)

For ¢ a terminal node not following = , set Pro(¢ | m) =0 . The
probability that the game terminates, starting from = , is

= P
gez(n)r“(§ I m)

£ Pro(s | )

X X Pr(t|n)
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N §<Z,(n)

The last double sum is countable, since each of the measures Pr_(- | y)

has finite support. Thus Pre(e | ) = 1 - ¢ Pre(¢ | m), the probability
that the game does not terminate (i.e., that the strategy o leads to an
infinite play), beginning from v » is clearly well-defined.
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