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A companion paper (UCLA WP 586) introduces the proposal-making
model] for NTU games, (a noncooperative bargaining model for
characteristic function games without sidepayments) and charac-
terizes its stationary subgame perfect outcomes. The present
paper shows that in the absence of stationarity, “anything” can
be a bargaining outcome of the proposal-making model.

1. INTRODUCTION

Seiten [1981] presents the following bargaining procedure (the
"proposal-making” procedure) for characteristic function games. Nature
selects a player to be given the initiative. A player with the initiative
can pass the initiative to another player or make a proposal (consisting of
a proposed coalition and a payoff vector for the coalition). Players in
the proposed coalition sequentially consider the proposal; if all of them
accept, the game ends with the formation of the coalition; any player who
rejects the proposal takes the initiative (and can pass the initiative or
make a proposal...). If the games ends with the acceptance of the propos-
al to form the coalition S with the payoff vector qs then the outcome
of the game is that the coalition S forms; players in § obtain their
components of qs while other players obtain nothing. Selten considers
the class of sidepayment games (TU games) and formulates this bargaining
procedure as a recursive game. Bennett [1990] considers the broader class
of nonsidepayment games (NTU games) and formulates the bargaining procedure
as an extensive form game. Both Bennett and Selten characterize the sta-
tionary subgame perfect equilibrium outcomes of this bargaining procedure.
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ments. I would also like to thank William Zame for his extensive comments.
I am grateful to the Center for Interdisciplinary Studies at the University
of Bielefeld for its support and hospitality and to Franz Weissing for his
care and attention. This research was also supported, in part, by the
National Science Foundation grant SES-8706631.



One might expect the restriction to stationary strategies to induce a
certain uniformity across the outcomes of each subgame perfect strategy
profile; this is indeed true. If, in a stationary subgame perfect equilib-
rium, the same coalition is proposed (and accepted) with positive probabil-
ity (at different terminal nodes), then the proposed payoffs must be equal.
Moreover, if the same player appears in two different coalitions that are
accepted with positive probability then the player has the same proposed
payoff. Sets of outcomes that have this uniformity property we call price
generated since each player would appear to have a reservation payoff
level, i.e., a reservation price.

The outcomes of stationary subgame perfect strategy profiles propos-
als are also coalitionally rational; i.e., if the proposal to form S
with payoff vector qS is such an outcome then no subcoalition of § can
unilaterally improve upon its members payoffs.

In the absence of stationarity what can be said about the subgame
perfect outcomes? The present paper shows that neither coalitional ration-
ality nor uniformity of payoffs is maintained. Indeed, we show that nearly
anything can happen. Such results are commonly referred to as folk theo-
rems. Our first folk theorem asserts that any individually rational and
realizable vector can be the price vector of a subgame perfect strategy
profile. In particular, given a coalition S and an individually rational
payoff vector qS which is feasible for S, there is a strategy profile ¢
such that the proposal (S,qs) has a positive probability of occuring,
given that players follow o. Our second folk theorem asserts that given a
coalition S and an individually rational payoff vector qS which is
feasible for S, there is a strategy profile ¢ such that (S,qS) is the
unique outcome with a positive probability of occuring, given ¢ if and
only if 0 1is individually rational for every player not in S. 1In a
concluding example we show that the uniformity of payoffs is also lost; the
outcomes of subgame perfect strategy profiles need not be price-generated.

The paper is organized in the following way. Section 2 provides
basic definitions and presents the bargaining procedure as an extensive
form game. Section 3 presents the folk theorems and example.

2. THE MODEL

NTU Games and Unique Opportunities

A game in characteristic function form without sidepayments (an NTU
game) is a pair <N,V> where N = {1,...,n} 1is a nonempty set of players
and V, the characteristic function, is a function which assigns to each
nonempty subset S of N (a coalition) a compact subset v(s) of R§
which contains the origin and is strongly comprehensive (i.e., if
xS ¢ v(8), yS € Ri, y? < x? for each 1 ¢ § and yS 7 xS, then



y® ¢ INT V(S), the interior of V(S) with respect to Rf). We do not
require that any V(S) be convex or that the game be superadditive. We
use C to denote to set of all coalitions and C; to denote the set of
coalitions in C that contain player i.

If xs, yS are in RS we write xS ¢ yS if xsi < ys- for each
i$: 8; we write xS < yS if xS g yS and x5 # yS, and xk << yS if
x? < y? for each i. For x ¢ RV and s a subset of N, by xS we
mean the restriction of x to S (thinking of vectors in RN as functions

from N to R).

The proposal-making model is appropriate for modeling situations with
a unique opportunity, in the sense that, once a proposal is accepted the
game ends; i.e., no further coalition formation can take place. The
"unique opportunity” assumption imposes no restrictions on NTU games but
instead limits the range of applications of the model.

Let Vi denote the maximum payoff player 1 can obtain on his own,
i.e., Vi =max { t | t e V(i)}. We say that pS < RS s individually
rational if for every player i ¢ S, P 2 Vi.

The Rules of the Game

In the proposal-making model players bargain by making, accepting and
rejecting proposals. A proposal (S,qs) made by player i specifies a
proposed coalition, S (any coalition containing i) and a proposed payoff
distribution, qs , (any individually rational payoff vector qS e V(S)).

Bargaining begins when nature randomly selects a player to have the
initiative. A player with the initiative can either pass the initiative to
another player or else make a proposal, (S,qs) and call on a player in S
to respond to the proposal. A player responds to a proposal by accepting
or rejecting it. If he accepts the proposal, he names the next player to
respond; if he rejects it he takes the initiative and makes an alternative
proposal (or passes the initiative to another player). The game ends when
a proposal is accepted by all the players in the proposed coalition. If
the games ends with the acceptance of (S,qs) then each player j in 8
obtains a payoff of q? and each player not in S obtains a payoff of 0.
Infinite plays result in 0 payoff for all players.

A sketch of the game tree is provided as Figure 1.

Strategies and Equilibria

In this model each player has two types of nodes: nodes at which he
can pass the initiative or make a proposal (initiator nodes), and nodes at
which can accept or reject the current proposal (responder nodes). A
strategy o, for player i specifies for each node a probability distri-



bution with finite support over his possiblie actions at that node. A
strategy profile o specifies a strategy for each player. The strategy
profile ¢ is a Nash equilibrium if, for each player i ¢, s a best
response to o and is a subgame perfect equilibrium if & 1is a Nash
equilibrium in every subgame. We call o, a stationary strategy for
player 1 if o prescribes the same action at every node where he has
the initiative and o, prescribes the same action at every node where he
is to respond to the same proposal made by the same player with the same

set of players having already accepted.

Outcomes and Prices

Each terminal node in the game corresponds to a proposal (S,qs)
which has been made by some player in S and accepted by every player 1in
S. A strategy profile o = (01,...,cn) determines a set (possibly empty)
of proposals P(c) corresponding to the terminal nodes that are reached
with positive probability. We call the proposals in P(c) bargaining out-
cam952 of o.

We say the set P(s) of bargaining outcomes is price generated by
p(o) € RN if for every proposal (S,qs) e P(a), qS H ps(c). We refer to
p(s) as the price vector of o. :

Aspirations

For each player i ¢ N, we say that p ¢ RN is realizable for i if
there is a coalition S with i e § such that ps e V(S). We say that p
is realizable if p 1is realizable for every player 1.

We say that p ¢ RN s maximal for player i if for every coalition
S containing i, and every vector qS € RN such that qs > pS then
qS ¢ V(S). We say that p is maximal if it is maximal for every player
ie N. We say p ¢ RV is an aspiration if it is both realizable and maxi-
mal.

For p ¢ Rﬁ we use C(p) to denote the coalitions in C_ which can
realize p, i.e., C(p) = { Se C| pS e V(S)}. We use C,(p) to denocte
those coalitions of C(p) that contain player 1i. Notice that when p is
realizable, ci(p) is nonempty for each player 1.

Bennett [1990] shows that, for every NTU game and every stationary
subgame perfect strategy profile o, the set of bargaining outcomes P(s)
is price generated and that such price vectors are aspirations. Moreover,
every aspiration is the price vector of a stationary subgame perfect
strategy profile.

2. 1In Bennett [1990] P(¢) 1is referred to as the set of possible outcomes.



3. FOLK THEOREMS

By tradition, the term “folk theorem” has come to mean a proposition
that "anything conceivable can happen”. In this context there are two
possible folk theorems: (1) that "anything” can be the price vector of a
subgame perfect strategy profile or (2) that "any” payoff vector for any
coalition can be a subgame perfect bargaining outcome. In this section we
prove versions of each. In the first folk theorem, we show that any real-
jzable and individually rational payoff vector can be the price vector of a
subgame perfect strategy profile. (Conversely: price vectors are realiza-
ble by definition; equilibrium behavior implies that they are individually
rational.) It follows as a simple corollary that any individually rational
payoff vector for any coalition occurs with positive probability as a
bargaining outcome; this is a weak form of the second folk theorem. A
stronger form of the folk theorem answers the question: Given an outcome
(S,qs), when is there a subgame perfect strategy profile such that (S,qs)
is its only bargaining outcome? The answer is: if and only if qS is
individually rational for players in S and ON'S is individually ration-
al for players not in S.

we conclude the section by turning our attention to the question of
whether all subgame perfect strategy profiles are price-generated. Al-
though all stationary subgame perfect strategy profiles are price-generat-
ed, and the strategy profiles we construct to prove the folk theorems are
price-generated, we show that some subgame perfect strategy profiles are
not price-generated.

The basic building block of the strategies to follow are “price
strategies”. Let p € RE. We say that aE is a price strategy (with
parameter p) for player 1 if:

1. At each of i’s initiator nodes, <P assigns 0 probability to

i
passing the initiative to another player.

2. At each of 1i’s initiator nodes, if c? assigns a nonzero proba-
biTity to making the proposal (S,qs) then qS = ps. (Wwe do not
insist that of assigns positive probability to all proposals
($,q5) with q° = pS.)

3. At eaoch of his responder nodes, player i responds to the proposal
(S,qs) by accepting whenever qs P Py for every player j of S
(including 1) who has not yet accepted the proposal and rejecting
otherwise.

We say that oP ¢ T is a price strategy profile (with parameter p ) if

for every player 1, c? is a price strategy with parameter p. For each
D e RN, let £P denote the set of all price strategy profiles correspond-



ing to the vector p. Notice that many price strategy profiles correspond
to a single parameter; they differ by the probabilities assigned to pro-
posing the various coalitions.

The following is our first version of the folk theorem.

Theorem 1: Every individually rational and realizable payoff vector is the
price vector of a subgame perfect equilibrium strategy profile.

Proof: Outline of the proof. Let r be individually rational and realiz-
able. We construct a strategy profile ¥  with price vector r, (i.e.,
r = p(c*)) and prove that it is subgame perfect. The construction pro-
ceeds in two steps. In the first step, for every proposer and every pro-
posal, we find a "punishment” aspiration with the property that any price
strategy profile with that parameter “punishes” the player for making the
proposal. In the second step we select a price strategy for r and for
each punishment aspiration and label every nonterminal node with either r
or the appropriate punishment aspiration. For each node v, the desired
strategy profile ¥ s given by c*(n) = ap*(n) where p* 1is the label
of the node v , i.e., if it is i's turn to move at =, o¥ pre-
scribes the action specified by the price strategy for player i with

parameter p* at the node m. Three lemmas are then used to show that this

¥ s subgame perfect.

Step 1: For each proposer 1 and each proposal (S,qs) we construct a
punishment aspiration b(S,qs,1) such that: (1) bﬁ(s,qs,ﬁ) = Vﬁ; (2)
there is a player i% in & with bi*(s,qS,T) 2 q§* (such a player
would not lose by rejecting (S,qs) and enforcing the punishment aspira-
tion B(S,q5,1); and (3) if S # [1] and q° {is individually rational for
player 1 then ix # 1.

For each coalition S and each player k « S we define a function

St R - R, by

¥S(X) = 0, 1F (XqseuesXymqs 05 XppqreseiXg)® £ V(S);

Yﬁ(x) sup{ t | (x1,...,xk_1, t, xk+1,...,xn)s e V(8)} otherwise.

We define vy : Rﬁ + R, by:

Tk(X) = sup{ 7ﬁ(x) | ke$S, Sin N}.

Tk(X) is the largest value for t consistent with the vector
(Xqseve1Xgaqs ts Xgaqre--2Xp) being realizable for player k. (Keep in

mind that 0 e V(k) so that (Xq,...,Xx-1>, 0, xk+1,...,xn) is always
realizable for player k.)



For each player k let ¢k(x) be the vector obtained from x by
replacing X, by 7 (X); d.e., d(x) = (XqseeeyXpoqs 7K (XD, XpaqreXp)e
Thus each ¢, is a map from RE onto itself.

Each map ¢ enjoys the following properties:

(i) ¢, (x) s realizable and maximal for player k.

(i1) if x 1is realizable for player k, then ¢k(x) 70X
(iii) if x is maximal for player k, then ¢k(x) < X3

(iv) if x 1is maximal for player &, then ¢k(x) is
maximal for player 2 (whether 2 = k or 2 # k).

The first three properties are easily checked. To see that the fourth is
true, write vy = ¢k(x) and suppose that y is not maximal for 2. Then
there is a coalition S containing player £ with yS e INT V(8). 1If
k ¢ 8§, this implies that y is not maximal for player k, which contra-
dicts property (i). On the other hand, since applying ¢, to Xx alters
at most the k-th component, if k ¢ S then yS = xS which means that
xS ¢ V(S) and this contradicts the assumption that x 1is maximal for
player 4.

For each k = 1, 2,...,n define gK. RE -+ RE as follows:
gk = P O d—q O...0p O b,
Let M e R, be a number sufficiently large that each V(S) fits in a

cube with a diagonal of length m. For each coalition § let mS (e RS)
denote the vector which assigns m to each player in S .

Let (S,qs) be a proposal of player i and set s = |{§]. We
renumber the players (if necessary) so that 1 = s, S = {1,2,...,s}, and
N-S = {s+1,...,n}.

Define x e RN by x4 = q? for 1= 1,...,8=1, Xg = Vi and
Xj = m for 1= s+1,...,n. Set 2z = $%(x). By repeated application of

properties (i) and (iv) (above) we see that z 1is maximal for all
i €S and realizable for s.

We first prove that player s = § is limited to his individually
rational payoff, 1fe., zgy = Vs. Suppose not; then, since 2z is maximal
for s, zg > xg = Vg. By (1), z= #5(x) is realizable for s; let &
be a coalition containing s with 25 . V(S8"). Clearly S" cannot
contain a player from N-S (since each player in N-S demands m). Thus
S§" s a subset of S. Since z, > Vs, s" # [s]. Let i # s be a player
of S". Repeated applications of (i) and (iv) show that ¢3'1(x) s
maximal for player i hence ((¢S'1(x))su's, Vg ) —- an element of RS --
is not in the interior of V(S"). Since 1z > VS, the vector



S = (( $S~1 )S -8 Zs) cannot be in V(S"), a contradiction. This
contradiction establishes that zg = Vs.

We now select a player to fill the rdle of 1ix. There are two cases
to consider.

Case 1: q? 2 Vﬁ and S # [i]. Then xS ¢ v(S) and by property (ii),
there is at least one player i # § 1in S such that Zi 2 Xy Let 1%
be the last such player. By property (i), @1*(x) is realizable for
player 1ix. Let S%* be a coalition for which @‘*(x) is realizable.
Since player i* was the last player with zZ; 2 X3 and Zg = Vs and
since each ¢j only changes player j’s component, z5%c V(8*).

Case 2: Either q? < vq or (S,qs) = ([1],v;). For either possibility
zg 2 q?. Let ix* = 1 and let S* = [s].

Renumbering the players, if necessary, we assume that i* = 1. We
next show that @"(z) is an aspiration. Repeated applications of proper-
ties (i) and (iv) proves that 1z = $5(x) is maximal for every player in
S. By construction of m, 2z 1is maximal for every player in N-S. Since
z 1is realizable and maximal for 1ix = 1, properties (ii) and (iii)
imply ¢1(z) =z sO @1(2) is realizable for player 1. By property
(iv), &1(2) is maximal for player 1. By (iii), éz(z) < ¢1(z) = ¢1(z)
$0 éz(z) is also realizable for player 1. Continuing in this way, we
see that @k(z) is realizable and maximal for all players with indices k
and below. Hence &"(z) 1is realizable and maximal for all players and
therefore an aspiration. Set b(S,qs,?) =f = $"(z). By construction
Bix # Xjx and therefore By 2 q?*. An argument similar to the one above
shows that if 1 £ ix, b? = 2q = Vﬁ. By construction p satisfies (1)
61 = Vﬁ, (2) there exists an i* ¢ S with ﬁi* 2 q§*, and (3) if qS
is individually rational for i and S # [1] then ix # §. Hence P is
the desired aspiration. We will say that p = b(S,qS,T) is the punishment
aspiration for the proposal (S,qs) by player i. This completes step 1.

Step 2: Loosely speaking we can describe the strategy profile that imple-
ments the price vector r 1in the following way. Every player makes pro-
posals and accepts proposals consistent with r until a player, call him
i, deviates by making a proposal (S,qs) which is not consistent with r
(all other deviations from the prescribed strategy are ignored). Then all
players make proposals and accept proposals consistent with the punishment
aspiration b(s,qs,i) until a player, call him i’ deviates by making a
proposal (S’,qs') which is not consistent with ﬁ(s,qs,i). Then all
players make proposa]s and accept proposals consistent with the punishment
aspiration b(S’,qS ,17). The play continues in this way with the last
deviator (if any) being punished until the end (if it ends) of the game.

In order to make this precise we next label every node n with a
vector px(n) € RN  which we refer to as the "required" payoff vector at



that node. Fix a node % 1in the tree. We label v by labeling every
node in the path from the initial node to w. The initial node is labeled
r and every subsequent node on the path is labeled r wuntil we come to n
or to a node m; where some player, call him 11 makes a proposal, call
it (S,qs), such that qS ¥ rS. The node ny s labeled r and the
following node is labeled b(s,qs,11). Every subsequent node is labeled
b(s,qs,11) until we come a node m, at whigh a player, call her i,,
makes a proposal, call it (S’,qS ) with qs # p? . In this case the
node M2 is labeled ﬁ(s,qs,11) and the following node is labeled
ﬁ(S’,qS y1p).  Continuing in this way, we eventually reach and label the
node +w. In this way we label each node =+ with the required payoff
vector, p*(v).

For each p ¢ RN, fix a price strategy profiie oP ¢ £P. Dpefine oF
by cf(n) = a?(n) for p = px(n) for every player i and every node for
player 1i. We assert that ¥ is a subgame perfect strategy profile with a
price vector of r.

To see that o* implements r notice that each player’s first initi-
ator node is labeled r, so each player is to play according to o' and
therefore make proposals of the form (S,rs). Given these actions, the
succeeding responder nodes are all labeled r so each responder is to play
according to o' and therefore accepts the proposal (S,rs). Continuing in
this way, it is clear that all nodes along the equilibrium path are labeled
r so every proposal made with positive probability is form (S,rs). Hence

r is the price vector of o'.

To show that o* is subgame perfect, we show that for each player 1,
and each decision node of player i, a: is a best response to “;1(' The
proof proceeds in three Lemmas. The first asserts that if i makes an
acceptable proposal then his payoff is no more than his component of the
node-label. The second asserts that c: is a best response to “;1( at
i’s 1initiator nodes and the third asserts that c? is a best response at

i’s responder nodes.

Lemma 1: If 1 makes a proposal (S,qs) that has a positive probability
of being accepted given ’*)i(' then q? < pf(n).

Proof of Lemma 1: Suppose first that S = [i]. Since every label is
individually rational (all aspirations are individually rational and r 1is
individually rational) q? < p§(n) as desired. (Recall that all proposed
payoff vectors must be feasible for their coalitions.) Suppose next that
player i makes the proposal (S,qs) at the (initiator) node % with the
label p*(n) and designates player j # i as the responder (either as
part of the proposal or else after responding himself) and that this action
leads to the node nj, a responder node for player Jj. If qS = p*(n)S



then clearly q; < pj*(n). If qs 7 p*(n)s, then p*(nj) = B(S,qs,i) is
a punishment asp1rat1on Since player j follows c*j, j accepts only
if qs 1 2 p*(n ) . Since p*(n ) 1is an aspiration and therefore
maximal, if J accepts the proposal w1th positive probability, it must be
that q1 < p1*(n :). Since p*(nJ) is a punishment aspiration for player
i, Py *k(ms) = Vi Since every label, and in particular p*(nj), is indi-

vidua11y rational, § < p1*(n3) so q? p1*(n), as desired.m

Lemma 2: The strategy a? is a best response to d*)i( at every initia-
tor node for player i.

Proof of Lemma 2: Consider any ¢’ ¢ 21 and consider any terminal node

$ that is reached from ny with positive probability given a*/c’. Let

(s,q ) be the proposal made by player k at node vw whose acceptance

leads to . As we have shown in the previous lemma, if k = i then

q% < p¥(n). If k7Fi, he follows «* so qS = px(7). Hence

hi(¢) = pj*(n) if ie$S and hi(¢) = 0 otherwise.

However since every player j # i is following ¥ if the node "
has positive probability of being reached from ny given c*/c’, then the
1a§e1 of m is either p*(“i) or b(S’,qS ,i) for some §' « Ci, and some
qS € vV(s’). In either case *(n) < p*(nj) Hence
Ei(ni|o*/e’) < pi*(ny) = Ej(nila*), SO c? is a best response to o¥ )i (
at the initiator node nj. ®

Lemma 3: The strategy a? is a best response to ‘;1( at every respon-
der node for player i.

Proof of Lemma 3: At the node w, 1i 1is to respond to a proposal (S,qs);
let S’ be the set of players 1in S (including player i) who have not
yet accepted the proposal. In order to see that 6*1 is a best response
to “31( at w, it is convenient to consider three cases.

Case 1: q§ p,(n) for every jesS. 1In th1s case, ¥ calls for every

player in S' to accept (S,q Sy so E (n | o) = ? 2 p*i(n). On the
other hand, if player 1 rejects (S,q ), then he becomes the initiator at
a node 7w’ that is an immediate successor to . By Lemma 2, cf is a
best response to a*} at the node +v’, so player 1i’s expected payoff
at n’ 1is at most p (n’). However, given our labeling, p*(n’) = p*(n),
so i’s expected payoff at v’ is at most pﬁ(n). We conclude that if
player i deviates from aﬁ and rejects (S qs), then his expected
payoff is at most p:(n). Therefore Eij(n | o] ) < pi(n) q? = Ej(n | s%);
i.e., c: is a best response to 0)1( at .

S

Case 2: q? < p*i(“) and aj 2 Py (n) for every j e 8'-[i]. 1In this case,

b

7 calls for player i to reJect (S,q ) and make some (counter) propos-

10



al consistent with p*(n). Since this counter proposal will certainly be

accepted (given that all other players follow ¥ ), Ej(n | ¥y = p?(n).
On the other hand, if player i deviates from c*i and accepts (S,qs),
so will all players in §8’-[il], so player i’s expected payoff will be

q?. Since q? < p*(n) = Ei(ﬂ ] a*), it is again the case that cf is a
best response to Ty)4i( at 7.

Case 3: q% < paE for some j = S’- [i]. 1In this case, o§ calls for
player i to reject (S,qs) so Ei(“ ] a*) = p*(n). If player i devi-
ates from oF be accepting the proposal (S,qé), it will certainly be
rejected by some player k ¢ S$’-[i]. (Indeed it will be rejected by whom-
ever 1 designates as the next respondent.) Player Kk will then become
initiator and, playing according to s* will make a proposal of the form
(T, p*(n)T). If i ¢ T, then this proposal will certainly be accepted by
all players in T, so 1i’s payoff will be 0 < p?(n). If ie T, then
this proposal will be accepted by all players in T-[i}, so it follows
from cases 1 and 2 that 1i’s expected payoff will be at most
p?(n) = E1(n | c*). Once again, a? is a best response to 031( at n.
This completes the proof of Lemma 3 and with it the proof of Theorem 1.®
We now turn to our second version of the folk theorem.

Theorem 2: Let (S,rs) be a proposal. There exist a subgame perfect
strategy profile o¥ such that (S,rs) is the unique bargaining
outcome for o , if and only if r = (rs,ON's) is individually
rational for all players.

Proof: To show that there is a subgame perfect strategy profile for which
(S,rs) is the unique bargaining outcome, we alter players’ price strate-
gies and then follow the arguments in the proof of Theorem 1.

In Step 2 of the proof of Theorem 1, we associated to each p ¢ RN ,
an arbitrary price strategy profile sP. We alter the assignment in the
following ways: (1) For p = r and for each player i in S, we select
the particular price strategy for player i that assigns probability 1
to proposing (S,rs) whenever i has the initiative. (2) For every
parameter p and every player i not in S we alter player i’s strate-
gy so that whenever player i has the initiative, he passes the initiative
to one of the players in s.3  With these alterations, we may continue as
in Theorem 1 to define the composite strategy s*. Notice first that
(S,rs) is the unique bargaining outcome of o¢* -- since (S,rs) is the

3. More formally, player i8S assigns 0 probability to making any
proposal and positive probability to passing the initiative to player
only if j ¢ S.

1"



only proposal made with positive probability along the equilibrium path.
To show that oF s subgame perfect, follow the proofs of the Lemmas keep-
ing the following points in mind. The altered strategies for players
i ¢ S are "as good" as the unaltered strategies, since either way (given
the strategies of other players) player i’s expected payoff is his
individually rational level 0. No player (in or not in S) can take advan-
tage of these altered strategies in order to improve his payoff because any
proposal made which would give the proposer a payoff higher than his com-
ponenet of the current node label will be punished.

To complete the proof, we show why (rS,ON'S) must be individually
rational. If (S,rs) is the unique bargaining outcome of a strategy
profile o , then each player i ¢ S obtains exactly r% when nature
selects him as initiator and each player i ¢ N-S obtains 0 when nature
selects him as initiator. Since player 1 can always obtain at least V1
when his is the initiator (by proposing ([i],v;)) and nature selects each
player to the initiator with positive probability, in order for 9 to be
a best response to Tyi( we must have that r% PARY for 1 ¢ S and

0 2 Vi for i ¢ S.sm

i

The first folk theorem asserts that every individually rational and
realizable vector is the price vector of a subgame perfect strategy pro-
file. It is easy to construct subgame perfect strategy profiles that
aren’t price-generated. For example, for each player 1, choose a price
vector s(i) ¢ RV that is individually rational and realizable. Consider
the strategy profile which is identical to the one constructed in Theorem
1 except that the price vector to be supported (i.e., the vector "“r") de-
pends on the player initially chosen by nature, i.e., in the subgame in
which the i-th player is chosen, all players follow the strategy construct-
ed in Theorem 1 for r = s(i). Since no player controls the choice of
nature, this composite strategy profile is also subgame perfect. Since
different subgames have different price vectors, no single price vector
generates its bargaining outcomes.
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FIGURE 1: The Game Tree of the Proposal-Making Model



