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ABSTRACT

In many situations, there are gains from forming coalitions but
conflict over which coalitions to forms and how the gains should be
distributed. The distribution of gains presents each potential coalition
with a bargaining problem, but the presence of conflicts over which
coalitions to form means that these bargaining problems cannot be
treated in isolation. This paper presents an approach to such
multilateral bargaining problems . A solution to such a multilateral
bargaining problem consists of an agreement in each coalition which is
consistent with the bargaining process in every coalition. We show
that, under mild conditions, solutions exist and are determined by

reservation prices, and characterize the range of possible solutions.
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1. INTRODUCTION

In many situations in Economics and Political Science, there are
gains from forming various coalitions but conflicts about which
coalitions should be formed and how the gains should be shared.
Examples abound: the formation of a government by political parties in
a parliamentary system, trade in an exchange economy, the formation
of jurisdictions and the production of public goods in a local public
goods economy, etc. In these and many other situations, we would like
to predict the coalitions that are likely to form and the rewards that

agents are likely to receive for their participation in these coalitions.

In such situations, the distribution of gains within each coalition is
determined by bargaining within the coalition. If - as is the case in
many situations of interest - each agent can actually participate in at
most one coalition, participation in a particular coalition entails an
opportunity cost: the foregone rewards the agent could have received
from participating in another coalition. Assuming that the bargaining
within each coalition takes these opportunity costs into account, the
bargaining problem of each coalition is related to the bargaining
problem of every other coalition. We call such an interrelated set of

bargaining problems a multilateral bargaining problem .

The class of multilateral bargaining problems includes situations in
which there is a unique coalition whose formation can yield positive
gains, so that the only conflict is over the distribution of these gains.

Such situations amount to simpie bargaining problems, and have been



extensively studied by Nash [1950] and many subsequent writers. In
this paper, our interest is in situations in which there are many
coalitions whose formation would yield positive gains. In such
situations, there will typically be conflict over which coalitions to
form, as well as over the distribution of gains. The object of this

paper is to examine the effects of these interrelated conflicts.

The ingredients of a multilateral bargaining problem are: a set of
agents (players) and, for each coalition of players, a description of the
potential gains that can be realized by the coalition and a summary of
the bargaining process within the coalition. We formalize the
potential gains that can be realized by a coalition as a set of
attainable utility vectors; a decision about the distribution of gains
within the coalition is thus a choice of a'single vector from this set of
attainable utility vectors. We formally summarize the bargaining
process within the coalition by a bargaining function, a mapping from
opportunity costs to agreement vector for the coalition. We view the
sets of attainable utility vectors and the bargaining functions as parts
of the description of a multilateral bargaining problem, in much the
same way that endowments and utility functions are part of the

description of an exchange economy. 1

A solution to a multilateral bargaining problem specifies an
agreement utility vector for each coalition which is consistent with
the bargaining within every coalition. We think of a multilateral
solution as a set of consistent conjectures players hold about the
"market"; i.e., a set of rational expectations about the eventual

outcomes of bargaining within and across coalitions.



The agreements of a multilateral bargaining solution are feasible
distributions of gains for some, but not necessarily all, coalitions. For
“affluent” coalitions (those coalitions whose agreements are feasible),
the agreement represents the agreed-upon distribution of gains from
forming the coalition, conditional on the actual formation of the
coalition. For "less affluent” coalitons (those whose agreements are
infeasible), the agreement represents a vector of final demands which

are mutually incompatible.

It might appear that at this level of generality, nothing could be
said about the nature of‘solutions to multilateral bargaining problems,
but this is not so. In Section 2, we show that multilateral bargaining
problems always have solutions (using very weak and standard
assumptions about sets of attainable utility vectors and bargaining
functions). In Section 3, we show that the competition between
coalitions enforces a homogeneity of payoffs across coalitions: At any
solution, the agreement utilities for each player are the same in every
(potential) coalition of which he is a member. As a consequence, each
multilateral bargaining solution can be characterized by a “reservation
price” for each player. In Section 4, we characterize the range of
possible multilateral solutions by showing that the reservation price
vector of every multilateral bargaining solution is an aspiration (in the
sense of Bennett and Zame [1988]), and conversely, that every
aspiration is the reservation price vector of a multilateral bargaining

solution for some specification of (admissible) bargaining functions.

In Section 5 we present a number of examples to develop some

intuition about multilateral bargaining problems and solutions. Finally,



Section 6 concludes the paper by discussing related cooperative and

noncooperative models.



2. ELEMENTS OF MULTILATERAL BARGAINING

In this section we give a formal description of multilateral
bargaining problems and their solutions, and establish the existence of

solutions.

The set of players (agents) is a finite set N = {1, 2,...n}. We
write C for the set of nonempty subsets of N (the set of
coalitions). For each SeC, V(S) ¢ RS, is the set of attainable
utility vectors for the coalition S . Throughout, we assume that V(S)
is a compact, strongly comprehensive2 subset of RS, that contains

the origin.

In our approach to multilateral bargaining problems, the
agreements within a coalition and the opportunities available outside 3a
coalition are interdependent. The agreement reached in the coalition S
depends on the opportunities of its players in other coalitions, and
these opportunities depend in turn on the opportunities of their players
in their other coalitions, including the coalition S . We first discuss
how agreements are reached within a coalition, given an "outside
option vector” which reflects the opportunities available to the

members of the coalition in other coalitions.

BARGAINING FUNCTIONS

A coalition’s bargaining function specifies the agreement utility



vector which is the result of bargaining within the coalition, given
players’ potential gains within the coalition and their opportunities in
other coalitions. A coalition’s bargaining function may reflect the
coalition’s standards of fair division, the institutional rules governing
bargaining in the coalition, or the relative bargaining skills of its

members. 3

For the coalition S, we summarize its players opportunities in
other coalitions by a single “outside option vector® dS ¢ RS, . (Since
one opportunity available to each player is that of remaining alone and
since V(i) is a subset of IR+, each player’s outside option value is
non-negative.) Agreements will always be non-negative (by individual
rationality), so the bargaining function for the coalition S is a
function 15 : RS, » RS, . We assume that it enjoys the following

properties:

1. For each outside option vector dSe V(S), the agreement

vector xS = 15(dS) satisfies:

(a) Individual rationality: x5 = dS;

(b) Pareto optimality: x5 is on the Pareto frontier4 of
V(S) .

2. Agreeing to disagree: For each (infeasible) outside
option vector dS ¢ V(S) , the agreement vector is the
outside option vector; i.e., xS = 15(dS) = dS .

3. Continuity: The function fS is a continuous function (of

the outside option vector dS ).

These assumptions require some explanation. If the outside option



vector dS belongs to V(S) then there are attainable utility vectors
for the coalition which allocate to each member of the coalition at
least the utility of his outside opportunities; i.e., there are gains from
making an agreement. In this case, the first assumption requires that
the agreement tS(dS) be efficient and allocate to each member of the
coalition at least as much as he could obtain by not participating. In
this case, the agreement tS(dS) has the usual interpretation as the

division of the gains, conditional on the formation of the coalition S.

The case dSe V(S) is the only one considered in traditional
bargaining theory. We allow for the possibility that the outside option
vector d5 does not belong to V(S), because the outside option vector
dS represents the opportunities of members of S in other coalitions,
and it is certainly possible that these opportunities might be more
attractive than any possibilities available within S . In this case, the
second assumption says that the members of S “agree to disagree;”

i.e. they agree to settie for their outside opportunities.

We view this agreement to disagree as the outcome of 2 bargaining
process; the players of S negotiate, but their "final demands” are
incompatible (given the resources of the coalition). Implicit here is
the assumption that each member i of S would be willing to
participate in S for a payoff of dS; if some other player(s) would

take the necessary loss. O

Finally, the third assumption requires that small changes in

players’ outside options lead to small changes in the agreement.



Note that the Nash bargaining solution (and most traditional
solutions to the simple bargaining problem), when extended to allow

for infeasible outside option vectors, enjoys these properties.

For notational convenience, we let Q be an index set that contains
a distinct index for each occurrence of a player in one of his coalitions
(i.e., for each player position). 6 we identify an element xe€ RQ with
a set of vectors, one for each coalition: (xS:5€C), where xS eRS.
If f={(fS:5€eC) is the set of bargaining functions, it is convenient

to regard f as a function from RQ to RQ (with f(x) = {fS(x5) ).

OUTSIDE OPTIONS

We turn now to the question of how “outside options™ are
determined. In this context, if players in one coalition fail to reach an
agreement, they have opportunities in other coalitions. Thus, for each
coalition S and each player i€ S, we want to use as i’s component
of the outside option vector dS the utility he would obtain if he broke
off negotiations in S and took the initiative to form his best
alternative coalition. Of course, i‘s alternatives depend on the
agreements that will be reached in other coalitions. We assume that
the players in S make accurate (and therefore identical) conjectures
about these agreements. To see what this implies, fix a (conjectured)
agreement xT for each coalition T # S; given these conjectured

agreements, what are the utilities of player i’s alternatives?

If ieT and the agreement xT is a feasible utility vector for the



coalition T (i.e., xT € V(T) ), then player i can certainly obtain XV i

in T.

If ieT and the agreement xT is not feasible for T (i.e.,
xT ¢V(T) ), plager i cannnot obtain xTj. In view of our previous
discussion about the meaning of "agreeing to disagre,” the most that
player i can obtain in T is the largest utility which allows all of
the other members of T to obtain their agreement utilities. That is,
the utility to player i of the unattainable agreement xT in the
coalition T is max(tj:xT/tje V(T)} . (We use xT/tj to denote the
vector obtained from x1 by replacing the i-th component by tj J It
there is no value of tj for which xT/tj € V(T) , then the infeasible
agreement xT has no utility for player i; by convention, we take O

to be the maximum in this case. ?

Formally, given agreements {xT : T#S} in all other coalitions, we
define the outside option vector dS({xT : T#S}) for the coalition S
in the following way. For each i€ S and each coalition T #3 with

ieT, set:
xTy if xT e V()
uli(xT) =
max{0,tj : xT/tj e V(T)} otherwise

and

dSi({xT : T#5)) = max{uTj(xT):ieT and T #S5}.



By definition, dS is a function from collections {xT :T#S} to
RS, ; however, it is convenient to view dS as a function defined on
collections of agreement vectors for all coalitions (although dS will
not depend on x5 ), so that dS is a function from RQ, to RS, . We
refer to the function dS as the outside option function for the
coalition S. We write d = {d5:SeC}, and view d as a function

from RQ, to RQ,.

MULTILATERAL SOLUTIONS

A multilateral bargaining problem <N,V,f> specifies a set N of
players and for each coalition SeC, a strongly comprehensive set

V(S) of attainable utilities and a bargaining function 1S .

A solution for a multilateral bargaining problem specifies an
agreement payoff vector for each coaltion which is consistent with the
description of bargaining in every coalition. Formally, X = {xS:5¢€¢C)
is a solution to the multilateral bargaining problem <N,V,f> if

xS = £S(dS(x)) for every coalition SeC.

A solution is a stable set of conjectures about the outcomes of the
multilateral bargaining because, given the nature of bargaining in each
coalition, no player can improve his payoff in any coalition by

renegotiating an agreement.

10



THEOREM 1: Every multilateral bargaining problem has 2

solution.

PROOF: Fix the multilateral bargaining problem <N,V,f> . We first
show that the outside option function dS of each coalition S is
continuous. (This depends on the fact that each V(S) is strongly

comprehensive.)

The function dS is continuous if each dS; is continuous. For

each coalition S’ # S with ieS”, define hS" :RQ.> R by
hS’(x) = max({tj:tje V(i) or x37/tj e V(5))}

Notice that dSi(x) = max{hS'(x) : §* # S}, so we need only show that

each function hS’ is continuous.

Fix a coalition T with ieT . Let {xN) be a sequence in RQ,
converging to x ; we show that the sequence hT(xN) converges to X .
Since h! is a bounded function, we may assume (passing to a
subsequence if necessary) that hT(xN") converges, to w, say; we
wish to show that w = hT(x) . For notational convenience, renumber
the players in T with player i = 0 and the remaining members of T
as 1,2,...k. Set vo = max{t:teV(d}, 2" = (xMT and z = xT .

Clearly, zn-»2z. If hT(x) # w , there are two cases to consider.
Case 1: hT(x) <w = 1imhT(xN) . By definition, hT(y) = vo =0 for

every y,so limhT(xM) > hT(x) = vo and hence hT(xM) >vo for n

sufficiently large. Hence, (hT(xN),zM) € V(T) for n sufficiently

11



large. Since V(T) is closed, we conclude that (w,2z) € V(T) . But this

implies that hT(x) = w , a contradiction.

Case 2: hT(x) > w . By definition, hT(xN) 2 vo 2 O for each n.
Hence hT(x) > vo, so (hT(x),z) € V(T) . Since hT(x) > w > 0, strong
comprehensiveness guarantees that (w,z) is in the interior of V(T).
This means that there is an e€-ball around (w,2) contained in V(T)
for some € > 0. In particular, (w +¢/2,2") e V(T) for n
sufficiently large. This implies that hT(xN) = w +€/2 for n

sufficiently large, again a contradiciton.

we conclude that hT(x) = w, so that hT is a continuous function
for each T . Consequently, the outside option function dS is

continuous, for each S.

Let m be a number sufficiently large that each V(S) fits inside a
cube with diagonal of length m . Let Y be the Q-fold Cartesian
product of [0,m]. The functions f and d both map Y into itself.
By Brouwer’s fixed point theorem, the mapping fod has a fixed point
x = {x5:5€¢C). Foreach SeC, x5 = f5(dS(x)), so x is a solution
to the multilateral bargaining problem <N,V,f> , as desired.. I

The definition of a solution leaves open the possibility that all
agreements are infeasible (i.e., that all coalitions agree to disagree).
As we shall see, this is never the case: each player belongs to at
least one coalition whose agreement vector is feasible. We defer the

proof of this fact to Section 4.
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3. RESERVATION PRICES

In this paper we are primarily interested in situations in which
there are gains from forming many different coalitions, but conflicts
over which coalitions to form. In such a situation, one potential
source of conflict is that the members of a coalition, having agreed on
the division of gains within the coalition, would not all want to form
the coalition. This would be the case if forming this coalition would
maximize the rewards of some, but not all, members of the coalition.
In this section, we show that, becasue of the competition among
coalitions, this potentiali source of conflict does not in fact exist: at
any solution to a multilateral bargaining problem, if participation in a
particular coalition maximizes the rewards of one player, it maximizes

the rewards of all members of the coalition.

It is natural to state and view this result in terms of (reservation)
prices. Given a multilateral bargaining problem <N,V,f> and a
solution X , we say that player i has the reservation price pj at X
if he obtains precisely the payoff pj in each coalition in which he can
participate; i.e., pj = x5 for each coalition Se C for which
ieC. Avector pe RN of reservation prices generates the solution
X if pj = xsi for every coalition S and every player i€ S. (We

usually refer to p as the reservation price vector of the solution X .

THEOREM 2: Every multilateral solution is generated by 2

vector of reservation prices.



PROOF: Consider the multilateral bargaining problem {N,V,f> . Fix
any plager i. Let vj = max{t:te V(i)} denote the maximum utility
player i can obtain on his own. Let S be a coalition for which i’s
component of the agreement yector is maximal; i.e., XS 2 xTi for
cach T . We wish to show that in fact x5 = xT; for each T. We

fix T and distinguish three cases.

Case 1: xS e V(S). Since xS is a feasible utility allocation for S,
i‘s outside option value dTj in T must be at least as large as x9j .
Individual rationality implies that i’s agreement value xTyin T
must satisfy xTj z dTj. Hence xTj =2 x5;. Since xS is maximal,

we conclude that x5; = xTj .

Case 2: x5 ¢ V(S) and x5i>vj. Let W be a coalition from which
the outside option value dS; is obtained, and set

t* = max{tj : xW/tj € V(W)} . Note that r* = xW; . Since x5 ¢ V(9),
members of S agree to disagree, and dS = x5 . Thus, if ¥ < xWi ,
then t* = dS; = xS; and xW; > x5;, contradicting maximality. Hence
t* = xW; , so that xW e V(W) and xW; = dS; = xS; . We can now
apply Case 1 (with W playing the role of S ) to conclude that

Case 3: xS ¢ V(S) and x5 = vj . By definition, dTi 2 vj . Since
agreements are individually rational, xTi = dTy . Since x5j is
maximal and x5; = vj , we have vj 2 XT{2 dTj = vj . Hence

xTi = vj = x5 .
In every case, player i receives the same agreement value in each

14



coalition of which he is a member. Let this common value be p;j .
Clearly, the vector p = (py,...pp) of reservation prices defined in

this way generates the solution X . [ |

Since, at a solution, a player’s agreement utility is the same in
each coalition in which he can participate, each player is indifferent
between any two coalitions for which the agreement vector is feasible;
these are the coalitions in which he can “obtain his price.” This
means that coalitions fall into two categories: coalitions in which
players agree to disagree, and coalitions in which players can obtain
their prices. Players uniformly agree that coalitions in the first
category are undesirable and that coalitions in the 'second category are
“equally desirable.” In this way, a multilateral solution determines the
coalitions that are unlikely and likely to form in a multilateral

bargaining problem.

15



4. CHARACTERIZATION OF MULTILATERAL SOLUTIONS

Underlying the multilateral bargaining problem <N,V,f> is a
cooperative game in characteristic function form without
sidepayments, <N,V> with the same players, coalitions and sets of
attainable utility vectors. We might view a cooperative game as the
result of omitting the bargaining functions from the description of the
multilateral bargaining problem; alternatively, we might view a
multilateral bargaining problem as the result of adding the
specification of bargaining functions to the description of a
cooperative game. It is important to keep in mind that a single
cooperative game underlies many different multilateral bargaining

problems.

In this Section, we describe the possible range of multilateral
solutions in terms of the underlying cooperative game. We show that,
for every multilateral solution to the problem <N,V,f>, the
corresponding vector of reservation prices is an aspiration (definition
below) for the underiying game {N,V> . (As a consequence, we fulfill
a promise made at the end of Section 2 by showing that the agreements
of a multilateral solution are not all infeasible.) Conversely, every
aspiration for the underlying cooperative game is the vector of
reservation prices for a multilateral solution corresponding to some

specification of admissible bargaining functions.

For a multilateral bargaining problem {N,V,f> (and for the

underlying cooperative game {N,V> ), we say that a vector p¢€ RN,

16



(of reservation prices) is realizable if for each player i€ N there is
a coalition S with ie€S and pSe V(S) (where pdS is the restiction
of p to S). We say that p is coalitionally efficient if, for each
coalition S, p9 is not in the interior of V(S) (with respect to
RS, ). The vector p is an aspiration if it is both realizable and
coalitionally efficient (see Bennett and Zame [1988]). (Note that the
definitions of realizability and coalitional efficiency do not depend on
the bargaining functions; realizability and coalitional efficiency are

entirely properties of p relative to the underlying cooperative game.)

THEOREM 3: The vector of reservation prices of any

multilateral solution is an aspiration.

This result (together with the existence of reservation prices)
implies that the agreement vectors of a multilateral solution cannot
all be infeasible. Indeed, let X € IRQ be a multilateral solution and
let p e RN be the corresponding vector of reservation prices; by
definition, xS = pS for each coalition SCN. Since p is realizable,
for each player i€ N, we can find a coalition S with i€3S such
that xS = pSe V(S); i.e., the agreement vector xS is feasible for
the coalition S . Moreover, since p is coalitionally efficient, there
does not exist any coalition T for which xT = pT lies in the interior

of V(T); so none of the agreements are Pareto inefficient.

PROOF OF THEOREM 3: Let x be a solution for the multilateral

17



bargaining problem <N,V)> , and let p be the corresponding vector of
reservation prices. We first show that p is realizable. If not, there
is a player i such that pS ¢ V(S) for every coalition S containing

i . Since pS = x5, this means that players in S agree to diasagree.
Hence dS = x5 for every coalition S containing i. Now, fix a
coalition T containing i, and let W be any coalition from which the
outside option value dTj is obtained. Then xW/dTje V(W) . On the
other hand, dTj = pTj = pj = p¥; = xW;, so this tells us that

xW ¢ V(W) , a contradiction. We conclude that p is realizable.

To see that p is coalitionally efficient, note that the assumptions
on bargaining functions (Pareto optimality when the outside option
vector is feasible, agreeing to disagree when it is not) guarantee that
no agreement vector xS lies in the interior (relative to RS, ) of the
feasible set V(S). Since xS = pS, we conclude that pS cannot lie
in the interior of the feasible set V(S); i.e.,, p is coalitionally
efficient. Since p is both realizable and coalitionally efficient, it is

an aspiration. [

Theorem 3 tells us that the vector of reservation prices
corresponding to a solution of a multilateral bargaining problem
{N,V,f> is an aspiration for the underlying cooperative game <N,V> .
The converse (Theorem 4 below) tells us that all aspirations of the
cooperative game <N,V> arise in this way. More precisely, for every
aspiration p of the cooperative game <N,V> , there is a set f of
(admissible) bargaining functions such that p is the vector of

reservation prices corresponding to a solution of the multilateral

18



bargaining problem <N,V,f> .

THEOREM 4: Every aspiration is the vector of reservation
prices of a muiltilateral solution for some specification of

bargaining functions.

PROOF: Let p be an aspiration for the game <N,V> , and set

x = {pS:5eC). We construct a set f = {fS:5eC} of bargaining
functions, and show that x is a solution for the multilateral
bargaining problem <N,V,f> . (It is clear that p is the vector of

reservation prices corresponding to X .)

Fix a coalition S, and consider the vector dS(x) ; since x is
fixed, dS(x) is a fixed vector in RS, . We wish to define a
bargaining function S . For z ¢ V(S), define 3(z) =z. For

2 € V(S) , we distinguish two cases:

Case 1: dS(x) is in the interior (relative to RS ) of V(5). We
consider the ray {z + A(pS - dS(x)): A 2 0} . Since dS;=xTj =pj for
each i, the vector (pS -dS(x)) is strictly positive (i.e., all of its
coordinates are strictly positive). Hence this ray is strictly increasing
in A . Comprehensiveness of V(S) implies that this ray meets the
boundary of V(S) at a unique point, which we define to be £5(z) . It
is easily checked that the function S : RS, » RS, defined in this
way satisfies our requirements for a bargaining function. (Pareto
optimality of fS(z) when z € V(S) follows from the strong

comprehensiveness of V(S) .)



Case 2: dS(x) is not in the interior (relative to RS, ) of V(S).
Consider the ray {z + Apd : A 20} . As before, this ray meets to
boundary of V(S) in a unique point, which we define to be 3(2) .
Again, it is easily checked that the function S : RS, » RS, defined

in this way satisfies our requirements for a bargaining function.

By construction, the functions fS satisfy our requirements for
bargaining functions, so taking f = {(fS:5€eC)} yields a multilateral
bargaining problem <N,V,f> . It is easily checked that x is a fixed

point of the mapping fed, and so is 2 solution, as required. B

It is easily checked that any vector in the core of a cooperative
game is an aspiration; hence we have the following special case of

Theorem 4.

COROLLARY 5: Every vector in the core of a cooperative game
is the vector of reservation prices corresponding to a
multilateral solution for some specification of bargaining

functions.
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5. EXAMPLES

In this Section, we present a few examples to give some insight
into the nature of multilateral solutions. The data of a multilateral
bargaining problem includes the specification of a bargaining function
for each coalition. The most natural choices of bargaining functions
are the solutions to the simple bargaining problem, such as the Nash
bargaining solution (Nash [1950]), extended to allow for outside option

vectors which are infeasible.

For instance, given the coalition S and the feasible setd v(s),
we define the (extended) Nash bargaining function NS :RS, > RS, in
the following way: For dSe V(S), NS(dS) is the vector x5 € V(S)
which maximizes the Nash product T e5(ySj - d5¢) , over all
ySe v(S); for dS ¢V(S), NS(dS) = dS. Anticipating the discussion
below, we define the constrained Nash bargaining function 9
CNS : RS, » RS, in the following way: For dSe V(S), CNS(dS) is
the vector x5 e V(S) which maximizes the Nash product T ;csyS; over
all ySe V(S) with yS2dS; for dS¢V(s), CNS(dS) = d5. The
egalitarian ES and Kalai-Smorodinsky KS bargaining functions are
defined by similarly extending the egalitarian and Kalai-Smorodinsky

bargaining solutions (see Roth [1979] or Kalai [1985)).
If all coalitions use the Nash bargaining function, we frequently

refer to the associated multilateral bargaining problem as a

multilateral Nash bargaining problem , and to a solution as a

21



multilateral Nash solution . Analogously, a multilateral egalitarian
(Kalai-Smorodinsky, constrained Nash) solution is a solution to a

multilateral bargaining problem in which each coalition’s bargaining
function is the extended egalitarian (Kalai-Smorodinsky, constrained

Nash) bargaining function.

EXAMPLE 1: (See Figure 1, p. 24.) We consider a simple 4-player

multilateral Nash bargaining problem <N,V,f> with sidepayments: the

player set is N = {1,2,3,4}, the feasible sets V(S) for coalitions

are:

vi1,21 = {(Yq1,y2): Y41 20,y2 2.0,g1+92‘s40)
VI1,4] = {(y1,44): Y1 20,y4=0,yq+yq <34}
V3,41 = {(yz,44): yz=0,y4=0,y3z+yq=20}
VI3,21 = {(yz,y2): yz=20,y220,y3+ys =34}
Vv(S) = {0} for all other coalitions SCN,

and the bargaining functions fS for coalitions are the Nash bargaining
functions defined above. (Note that the Nash, egalitarian, and
Kalai-Smorodinsky solutions coincide in the sidepayment case). It is
not hard to see that there is a unique multilateral Nash solution for
this problem; the vector of reservation prices is p = (22, 22,12, 12),

and the agreement and disagreement vectors for the four relevant
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coalitions are:

x1h2l = (22,22) dl,2l = (22,22)
x11,4] = (22,12) al,4l = (18,8)
x[3,4] = (12,12) dl3,4] = (12,12)
x[3,2] = (12,22) dl3,21 = (s,18)

Note that, at the (unique) solution, the agreements are feasible for the

coalitions [2,3] and [1,4]; all other coalitions agree to disagree.
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EXAMPLE 2 (3-player/3-cake problems): Perhaps the simplest
interesting class of multilateral bargaining problems arise in three
player situations in which the coalition of the whole earns nothing,
individuals earn nothing, and so the only profitable coalitions are the
three 2-player coalitions. The coalition [i,jl has the "cake” VI[i,jl to
divide, but only one of these three cakes can actually be divided. (This
class of problems was discussed by Binmore [1985]; see also Section
6.) In such problems, there are three possibilities for the underlying

game <N,V>:

Case 1: the core of <N,V)> is empty. In this case, there is a unique
vector qe€R3 such that qS is on the Pareto efficient boundary of
v(s) for S =[1,2],12,3],[1,3]; i.e., there is a unique vector q
such that all three coalitions can afford to pay their members exactly
their components of q . For every choice of bargaining functions,
this vector q is the vector of reservation prices of a multilateral
solution. For the Nash, or egalitarian, or Kalai-Smorodinsky bargaining
functions, or indeed for any bargaining functions that satisfy strict
individual rationality!9, this vector q is the vector of reservation
prices of the uniqgue multilateral solution. For bargaining functions
(such as constrained Nash) which do not satisfy strict individual
rationality, there will generally be other multilateral constrained Nash

solutions. (We give an illustration below.)

Case 2: the core of <N,V> contains a unique point q¢€ IR3 . This
core point is supported by a partition of coalitions, say {I1,21, (31} .
Hence q3 = O and (qq,q2) € VI1,2]. It follows from strong

comprehensiveness of V[1,2] and the fact that q is the unique point

25



in the core that (q2,q3) € VI2,3] and (qq,q3) € V[1,3]. As in Case 1
above, it follows that, for every choice of bargaining functions, g
generates a multilateral solution. For any bargaining functions that
satisfy strict individual rationality, q generates the unique
multilateral solution. For bargaining functions which do not satisfy
strict individual rationality (such as the constrained Nash bargaining

functions), there will generally be other multilateral solutions.

Case 3: the core of <N,VD> contains more than one point. It is not
hard to see that all points in the core are supported by the same
partition of coalitions, say {[1,2],[3)}. For i=1,2 let

Fi = max{rj: (rj,0) € V[i,3]1} . The fact that the core of <N,V>
contains more than one point implies that the point (ry,rp) lies in
the interior of V[1,2]. Let r = N[1,2I(F{,F2) be the Nash solution in
the coalition [1,2], given the outside option vector (Fy,r2). Then
(r,0) € R3 is the price vector of the unique multilateral Nash solution.
similarly, (E[1,2l(F;,F5),0) is the price vector of the unique
multilateral egalitarian solution, and (K[1,2(Fy,r2), 0) is the price
vector of the unique multilateral Kalai-Smorodinsky solution. Indeed,
whenever the bargaining functions fS satisfy strict individual
rationality, (f[1,2I(Fy,F2), 0) is the price vector of the unique
multilateral solution. On the other hand, although (CNI1:2l(Fy,F2), 0)
is the price vector of a multilateral constrained Nash solution, there
will (as we show below) generally be many other multilaterai

constrained Nash solutions.

It may be useful to apply the above analysis in a particular

problem. For M a parameter in the range 0 <M = 20, consider the

26



3-player/3-cake (transferable utility) problem with feasible sets:

VI1,2] = {(y1,42): y120,y220,y1+yz <40}
VI2,3] = {(y2,y3): Yy220,yz=0,y2+yz =30}
VI3l = {(Y1,y3): Y1 20,yz=0,yy+yz <M}
V(S) = {0} for all other coalitions 5.

For 10 <M < 20, the core is empty and the unique multilateral Nash
solution is generated by the price vector |
(5+M/2,35-M/2,-5+M/2). For M= 10, the core consists of the
single point (10,30,0) , which generates the unique multilateral Nash
solution. For 0 < M < 10, the core contains many points, but
(10,30,0) continues to generate the unique multilateral Nash solution.
If we consider the constrained Nash bargaining functions however, the
situation is quite different. For 10 <M =< 20, the price vectors of

multilateral constrained Nash solutions comprise the interval:
{(10+X,30-A,A) : -5+M/2sA=<10}.

For M= 10 and for 0 < M < 10, the price vectors of multilateral

constrained Nash solutions comprise the interval:

{(10+A,30-A,A):0sAs10)}
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(Note that, in all cases, the unique multilateral Nash solution is an

endpoint of the interval of multilateral constrained Nash solutions.)

The reader should not be misled. In the 3-player/3-cake case,
strict individual rationality of bargaining functions is enough to
guarantee uniqueness of the multilateral solution. For more general
multilateral bargaining problems, strict individual rationality of
bargaining functions substantially restricts the range of possible
multilateral solutions, but is not generally enough to guarantee

uniqueness.
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6. RELATED NONCOOPERATIVE AND COOPERATIVE MODELS

The Proposal-Making Model

The Nash program is to provide noncooperative justification for
cooperative solutions, in the sense of obtaining cooperative solutions
as equilibria of appropriate noncooperative models. Bennett [1988d]
takes a step in this direction by providing an extensive form model for
the play of certain multilateral bargaining problems (those in which
there are no remaining gains from coalition formation once the first
coalition has formed), whose outcomes are consistent with the

solutions described here.

Bennett’s "proposal-making model” is inspired by Seiten’s [1981]
model of the play of cooperative games with sidepayments. The game
begins when nature chooses a player to have the initiative. A player
with the initiative can pass the initiative or make a proposal
(consisting of a coalition and a feasible payoff distribution for that
coalition) and name a respondent. A respondent can accept the
proposal and name the next respondent, or reject the proposal and
assume the initiative. The game ends when a proposal is accepted by
every member of the coalition; players in the coaltion receive their

proposed payoffs, other players receive nothing.
Bennett [1988d] shows that the outcomes of each stationary

subgame perfect equilibrium of this noncooperative game are generated

by vectors of reservation prices (in the same sense as in Section 4),
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that these reservation prices are aspirations, and that every aspiration

is the "price vector” of a stationary subgame perfect equilibrium.

The predicted set of coalitions of a stationary subgame perfect
equilibrium may be a proper subset of those in the corresponding
multilateral solution; when there are many "affluent” coalitions, a
stationary subgame perfect equilibrium need not assign all of them
positive probability. However, if the stationary subgame perfect
equilibrium strategies assign positive probability to all best replies,

then the predicted sets of coalitions will coincide.

Binmore [1985]

Binmore [1985] presents a multilateral bargaining model for the
3-player/3-cake division problem discussed in Section 5, based
fundamental ideas are quite similar to those presented here.
Binmore’s multilateral solution!! specifies an agreement for each
player in each coalition (corresponding to which player has the
“initiative"). For coalitions whose outside option vectors are feasible,
these agreements coincide - and coincide with the agreements of the
corresponding multilateral constrained Nash solution. However,
coalitions whose outside option vectors are infeasible do not agree to
disagree. They agree to different agreement vectors, depending on who
has the initiative; these vectors are the projections of the outside
option vector onto the coalition’s attainable utility frontier. These
“projected” utility levels appear in the model presented here, not as

agreements but in the calculation of outside option vectors (as the
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utilities players can obtain from infeasible agreements). As we saw in
Section S, there can be many multilateral constrained Nash solutions;
to each of them corresponds a multilateral solution in Binmore’s
model. Binmore applies additional criteria (which eliminate this
multiplicity) to select his unique cooperative solution for the

3-player/3-cake problem.

Binmore [1985] also presents an extensive form model (the "market
model”) to support his cooperative solution. it is not difficult to show
that the predicted outcomes of the subgame perfect equilibria of
Binmore’s model are price generated, and that the generating price

vectors are price vectors of multilateral constrained Nash solutions.

The Monotonic Solution

Kalai and Samet’s [1985] monotonic solution for cooperative games
can be interpreted as an alternative model of multilateral bargaining in
which there is less competition among coalitions. It can be described
in the following way: '2 Each coalition uses the egalitarian bargaining
function, modified so that agreements are always feasible. (When the
outside option vector is not feasible, the agreement is the largest
feasible utility vector which gives the players equal losses from their
outside option.) Each coalition’s dividend is the vector difference
between its agreement vector and its outside option vector. (The
empty set’s dividend is 0.) In each coalition, a player’s outside
option utility is the sum of his dividends from his coalitions which are

proper subsets of the coalition. The monotonic multilateral solution
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(which is unique) is an agreement for each coalition which is
consistent with this determination of ageements, dividends, and
outside options; the monotonic solution is the agreement utility for

the coalition of the whole.

The monotonic multilateral bargaining model differs from the one
presented here in two essential ways: First, the monotonic model
insists that all agreements be feasible, while the model presented here
allows coalitions to agree to disagree; Second, the monotonic model
computes outside options for each coalition based solely on players”’
opportunities in subcoalitions , while the model presented here
computes outside options based on players’ opportunities in all other

coalitions.

The differences in the way outside options are arrived at suggests
that the monotonic model assumes far less competition among
coalitions than is assumed in the model presented here. To see the
difference this makes, we consider the following situation: the set of

players is N = {1,2,3}, and the feasible sets V(S) for coalitions are:

VI1,2] ={(y1,Y2) :y120,y220, yy+yz =18}

vi2,3] = {(y2,y3) : y220,yz =0, yo +yz < 12}
VI1,3] = {(y1,y3) 1 y120,y320, Yy +ys=s12)
VI1,2,3]1= ((y1,Y2,Y3) 141 20,y220, Y320,y +yz +y3z=21)
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vii) = {0} for i=1,2,3

The agreements yS of the monotonic multilateral solution are:

yi = O for each i
g“'3] = (6,6)

yl2,3] = (6,6)

ylt2l = (9,9)
ylh2,31 = (8,8,5)

By contrast, the agreements of the unique multilateral egalitarian

solution (see Section 5) are:

w1 = O for each i
L3l = (9,3)

x[2,3] = (9,3)

1,21 = (9,9)
x[1,2,31 = (9,9,3)

If player beliefs are based on the monotonic multilateral solution,
players 1 and 2 would prefer to form the coalition {1,2] , and
playjer 3 would prefer to form either [1,2] or [2,3], rather than the

coalition [1,2,3] . As we have noted, this source of conflict among

33



players does not exist for multilateral bargaining solutions (and in
particular for the multilateral egalitarian solution). For this reason,
the monotonic solution can best be regarded as (and indeed was
proposed as) an arbitration scheme (for the coalition of the whole) for
situations in which players are not free to form alternative coalitions.
By contrast, the multilateral egalitarian solution should not be
regarded as an arbitration scheme (for the coalition of the whole),
since the agreement vector for the coalition of the whole will not

generally be feasible.

34



FOOTNOTES

Our purpose here is to study how the interrelationships among
the coalitions’ bargaining problems affect the bargaining
outcomes, not the bargaining within individual coalitions.
Determining which bargaining function is appropriate is the
domain of traditional bargaining theory (see for example Roth
[1979] or Kalai [1985]) and of more recent noncooperative models

of the bargaining process (see Sutton [1986]).

We say that V(S) is strongly comprehensive if, whenever
xeV(S),y#x isin RS, and y =< x, then y is in the interior

of V(S) (relative to RS, ).

The assumption that the bargaining process within each coalition
can be summarized by a function is merely the assumption that
there is no indeterminacy: from the same data, the bargaining

process always leads to the same result.

Recall that the weak and strong Pareto boundaries of V(S)

coincide when V(S) is strongly comprehensive.

For example if the coalition [1,2] can divide 3 in any way it
chooses, and has an outside option vector of (2,2), agreeing to
disagree here means that each player would be willing to form the

coalition [1,2] for a payoff of 2 if the other player would
accept a payoff of 1.
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10.

11,

12.

Since each player position is distinct, |Q| = n2n-1.

This is harmless because 0 € V(i) for each i.

The Nash bargaining solution is defined only for convex sets of
attainable utility vectors. When using the Nash (or constrained
Nash) bargaining function for a coalition S, we will consider only

situations in which V(S) is convex.

For discussion of whether the Nash or constrained Nash bargaining

solution is appropriate, see Binmore et al [1986].

The bargaining function 1S is strictly individually rational if

1S(¢S) >> d5 whenever dS is in the interior of V(S).

Binmore’s multilateral solution is {gCiP}; see Binmore [1985],

pp. 276-277.

We consider only the symmetric monotonic solution; similar

comments hold for nonsymmetric monotonic solutions.
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