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Abstract

We formulate a model with a continuum of individuals to be assigned to a continuum
of different positions which is an extension of the finite housing market version due
to Shapley and Shubik. We show that optimal solutions to such a model exist and
have properties similar to those established for finite models, namely, an equivalence
among the following: (i) optimal solutions to the linear programming problem (and
its dual) associated with the assignment model; (ii) the core of of the associated
market game: (iii) the Walrasian equilibria of the associated market economy.



The assignment model was the subject of the first application, after Edgeworth
[1881], of the core to an economic model (Shapley [1955]); and a close relative of the
assignment model, the transportation problem, was the subject of one of the earliest
developments in linear programming (Kantorovich [1942]). The links between the core
of an assignment model and its formulation as a linear programming problem have
been established by several authors, notably Shapley and Shubik [1972]. They estab-
lished one of the first equivalence theorems between the core and Walrasian equilibria,
for the assignment model consisting of a finite number of individuals exchanging a
finite number of commodities.

In this paper we extend the Shapley and Shubik “housing market” version of the
assignment model to one with a large number of buyers and a large number of sellers
(literally a continuum) each having a distinct house. The analysis is divided into
three parts, corresponding to the following alternative formulations of the problem:

(1) As a linear programming problem.
(2) As a market game.

(3) As an exchange economy.
We show that under suitable conditions:

(1) There exist optimal solutions to the linear programming problem and its dual.
(2’) The dual solutions are equivalent to the core of the associated market game.

(3’) There is an equivalence between the set of solutions to the primal and dual
linear programming problems and the Walrasian equilibria of the associated
exchange economy.

The conjunction of (1’) - (3’) extend the Shapley-Shubik result on core equivalence
for finite models to the case of a continuum of individuals and a continuum of com-
modities.

The equivalence of the core and Walrasian equilibria for the assignment model
is remarkably different from the equivalence theorems for other economic models
demonstrated by, for example, Debreu and Scarf [1963] and Aumann [1964]. In these
other models, the core is typically a superset of Walrasian equilibria, and it is only
with large numbers of individuals that the core coincides with Walrasian equilibria.
Thus, core equivalence typically occurs because the core “shrinks” to the Walrasian

1This is not to suggest that large numbers, i.e., a nonatomic continuum of individuals, necessarily
implies core equivalence. See Gretsky and Ostroy [1985] and Ostroy and Zame [1988].
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equilibria as the number of individuals increases. However, in assignment models the
core exhibits no discriminatory power in separating competitive from non-competitive
housing markets since no matter what the numbers of individuals and commodities,
the core always coincides with Walrasian equilibrium. In a follow-up paper, we shall
provide an alternative test of competitivity in assignment models based on the no-
surplus definition of perfect competition (Ostroy [1980, 1984], Makowski [1980]) and
exhibit conditions such that housing markets with a large number of buyers and
differentiated commodities (i.e., houses) will or will not be perfectly competitive.

There is a little known but remarkable list of papers related to the nonatomic
assignment model. The paper by Kantorovich cited in the first paragraph (translated
and reprinted in Kantorovich [1958]) is a nonatomic version of the transportation
problem and its dual. Kantorovich and Akilov [1982, p.225-237] summarize several
of the contributions of the first-named author and his co-workers to the study of
“the translocation of masses”.? In common with their work, our formulation uses
measures on the set of buyer-seller pairs to describe an assignment. Unlike their
work, however, we consider a more general class of objective functions as well as the
connections among the linear programming, core and market equilibrium problems. In
the literature on nonatomic games, the general version of the assignment problem does
not appear to have been treated. However, Kaneko and Wooders [1986] have treated
a special version. They represent assignments by measure-preserving mappings from
buyers to sellers and focus their attention on the non-emptiness of a modification of
the core that is particularly suitable for assignment-type models.

In Section 1, the nonatomic version of the assignment problem is formulated and
its connection to linear programming, market games and exchange economies is elab-
orated. We conclude Section 1 with a Portmanteau Theorem summarizing the rela-
tionship among the alternative characterizations of the model. In Section 2, we give
several examples illustrating the Theorem and the need for its qualifying hypotheses.
Finally, more precise statements of the results, along with their proofs, are given in
Section 3.

1 Alternative Formulations

1.1 Preliminaries

For a compact metric space X, define

2While possibly familiar to those well-acquainted with Russian mathematics, we discovered this
work by accident after failing to find any references in standard sources (e.g., Krabs [1979]) and
after independently formulating the problem.



e C(X) to be the Banach space of continuous functions on X equipped with the
supremum norm; i.e., || f|| = sup,ex |f(2)]

e M(X) to be the Banach space of countably additive Borel measures on X
equipped with the total variation norm; i.e., ||v|| = sup, Yg, |v(E;)| over all
finite measurable partitions 7 of X and

e B(X) to be the Banach space of bounded measurable functions on X equipped
with the supremum norm.

Recall that M(X) is the space of continuous linear functionals on C(X), with the
pairing given by integration: (f,v) = [ fdv. Of course every element of C(X) gives
rise to a continuous linear functional on M(X), via the same pairing. More generally,
every function in B(X') gives rise to a continuous linear functional via the pairing
(9,v) = [gdv. We shall make particular use of the weak topology ¢(M(X),B(X))
on M(X) that comes from this pairing; convergence of the net {v,} to v in this
topology means that [gdv, — [ gdv for every g € B(X).

If (T, T, ) is a measure space, then a map h : T — M(X) is (Gelfand) measurable
if the real-valued function t — (f, h(t)) is measurable for each f € C(X). Similarly,
we say that h is (Gelfand) integrable if is (Gelfand) measurable and for each To € T,
there is a measure vz, = [r, hdr € M(X) such that

(fovm) = [ (F.h(0)dr(0),

for each f € C(X).

1.2 Initial Statement of the Problem

There are two classes of individuals, the set B of buyers and the set S of sellers.
Denote the Cartesian product of pairs of buyers and sellers as P = B x S and the
disjoint union of individuals as I = B U S. Each of the classes B and S will be
a compact metric space (usually the unit interval [0,1]) with a population measure
defined on the Borel sigma-algebra of the underlying set; denote these two measures
as up and ps respectively. The combined measure on I will be called simply p. Each
seller s € S is identified as having a house of type s and a reservation value o(s)
indicating the minimum amount of money that s would be willing to accept to sell
his house. The list of all seller reservation values is given by the function o : S — R.
Each buyer b € B has a reservation value 3(b, s) indicating the maximum amount of
money he would pay to obtain the house s. The list of all buyer reservation values is

given by the function 8: P — Ry.



In summary, the data for the problem are:

o agents—the set of buyers B and the set of the sellers S
e population measure—u on BU S

e agents’ characteristics—(3,0) where 3 : Bx S — Rand o : S — R are
reservation values.

Since B and S are tacitly understood to be fixed, we may describe the problem as
given by (1, 8,0).

If buyer b and seller s were to transfer ownership of house s, the monetary value
of this transfer between the pair (b,s) would be 3

V(b,s) = B(b, s) — a(s).

Thus, if b and s were paired they would not voluntarily make the exchange if the
seller’s reservation price exceeded that of the buyer. Alternatively, V(b,s) is the
profit available to the pair (,s). In most instances, the assignment problem can be
defined in summary form by the pair (g, V).

The goal of the assignment problem is to match buyers and sellers so as to max-
imize the total available profit. We define an assignment of buyers to sellers (i.e.,
houses) as a measure on P = B x §. To this end, let M(P) be the countably additive
Borel measures on P. Interpret the measure = in the assignment model as a statisti-
cal summary of activities in the housing market, i.e., z(E x F) is the distribution of
buyers in E purchasing from sellers of houses in F. The question arises whether this
statistical distribution has a representation in terms of pairs of individual buyers and
sellers and whether this individualistic representation preserves the implicit feature of
the assignment model that each buyer is assigned to at most one seller and conversely,
so that fractional assignments are ignored. This issue will be addressed in Sections

1.2.1 and 1.5.1, below.

Definition: The assignment z € M(P) is feasible for the population yx if £ > 0
and z(E x S) < pp(FE) and z(B x F) < ps(F) for all Borel sets £ in B and F in S.

Given the definition of feasible assignments, we can state:

3The definition given in Shapley and Shubik [1972] makes V non-negative for all (b, s). This has
the unfortunate feature of allowing players to appear to trade when they should not. Our definition
of V does not change the values computed below but merely rules out the need to extract non-trading

players from the solutions.



Definition: The assignment problem given by the pair (g, V), where V(b,s) =
B(b,s) — a(s), is: find £ € M(P) to attain

g(u) = sup{/P V (b, s)dz(b, s)|z is feasible for u}.

Call g(p) the optimal value of the assignment model as a function of the population
measure of buyers and sellers, holding V' fixed. The function g is readily shown to
be both positively homogeneous (g(tu) = tg(u), ¢ > 0) and concave on the set of
_ positive measures in M(I). The subdifferential of the value function plays a key role
in uniting the various solution concepts, below.

Definition: The subdifferential Og(u) of the value function g at p is the collection
of ¢ € B(I) such that [qdy = (q,p) = g(p) and (g, ') 2 g(4') for all p’ > 0.

1.2.1 Finite Assignment Models and Integral Assignments

In the finite assignment model, the statistical interpretation of an optimal assignment
z also yields an individualistic interpretation as a matching of buyers and sellers. In
the finite model, B = {1,...,m} and S = {1,...,n} and p(C) equals the cardinality
of C, a subset of BU S. Therefore, a feasible assignment can be written as

Yz, < 1, for all b,

be, <1, for all s,
b

where zy, = z({b} x {s}). It is known that optimal assignments include those in
which u(By) = p(So) = k < min{m,n}. When the inequalities above are replaced
by equalities involving k buyers and k sellers, the constraint set is the set of doubly-
stochastic matrices (of order k). Since the objective function of the assignment model
(i.e., Ty S5 VsaZss) is linear and the constraint set is convex, an optimal solution will
occur at an extreme point of the set of doubly-stochastic matrices. These extreme
points are known to be precisely those z in the constraint set such that z,, € {0,1},
the set of permutation matrices of order k. Thus, there exists a permutation 7 : By —
So such that z;, = 1 if and only if #(d) = s, i.e., there is always an integral optimal
assignment.

In the nonatomic extension of the assignment model, let (B, ug) and (S, us) be

measure spaces. Recall that a measure v on B x S is called doubly stochastic if
v(ExS) = ug(E) for all measurable E C B and v(B x F) = ps(F) for all measurable



F C S. A feasible measure for the linear programming formulation of the assignment
problem is doubly stochastic precisely when there is equality in the constraints and
every doubly stochastic measure (with respect to (up, ps)) is feasible.

Define 7 : B — S to be a measure-preserving isomorphism if = a one-to-one
measurable map of B onto S and pg(FE) = ps(w[E]). Then we can construct a
doubly stochastic measure v with v(E x F) = v(E,r(E) N F) whose support is
{(b.s)|s = 7(b)}. Such a measure v is singular with respect to up x ps. A theorem of
Lindenstrauss [1965] asserts that every extreme doubly stochastic measure on B x S
is singular with respect to up X ps. Unlike the situation in the finite case however,
not all such extreme measures arise from a measure-preserving isomorphism. (See
Example 5, below, for an extreme point which cannot be so represented.) Therefore,
there is no guarantee that there is an integral optimal assignment when the set of
individual buyers and sellers is taken to be B and S. This conclusion agrees with
previous results on the difficulties of providing an individualistic representation of
economies in distribution form. In the analysis of the assignment problem as a Wal-
rasian equilibrium in Section 1.5.1, we shall use a device from the theory of economies
in distribution form (Hildenbrand [1974]) to provide an integral representation of an
assignment based on an alternative description of the set of buyers and sellers.

1.3 The Assignment Problem as a Linear Program

In this section we treat the assignment problem as a linear program. The dual of this
problem will be of primary interest.

The condition on the feasibility of an assignment can also be described in an
operator-theoretic way useful for a linear programming description of the assignment
problem. Define the coordinate projections (mz)(U) = z(U x §) for all Borel sets
U in B and (mz)(V) = z(B x V) for all Borel sets V in S. Define the bounded
linear operator A : M(P) — M(I) by Az = (mz,7,z). Feasibility becomes the
condition that Az < p. In keeping with the finite agent version of the assignment
problem, it’s appropriate that A : §,) + & + 6, where 6, denotes the unit point
mass at the point z. Moreover, A is the dual of the operator A* : C(I) — C(P)
given by (A*q)(b, s) = ¢(b) + q(s). Consequently, the operator A is weak”- to weak™-
continuous. Since the unit point masses are the extreme points of the unit ball of
M(P) and the unit ball is weak*-compact, it follows that every element in the unit
ball is in the weak*closed convex hull of the collection of the unit point masses. Thus,
from the values of A on the unit point masses M(P) we can extend A by linearity
and weak*-continuity to the unit ball and thence to the whole space, and the values of
this extension agree with the values given by the definition of A via the projections.



The problem of finding a solution to the assignment game can be recast in linear
programming terms.

The primal problem is: find £ € M(P) so as to achieve

9(h) = sup{(V,2) = [ V(bs)da(b,s) | Az < p, =2 0}.
The dual problem is to find a function ¢ € B([) so as to achieve
A(V) = inf{(g. ) = [ adu = [ a®dun(®) + [ als)dus(s)l 47 2 V, ¢ 20},
As in any (infinite-dimensional) linear programming problem, the basic issues are:

e existence of primal solutions, i.e., feasible z such that (V, z) = g(u),
e existence of dual solutions, i.e., feasible ¢ such that (g, u) = h(V),

e no gap between the primal and dual values, i.e., g(¢) = k(V).

1.4 The Assignment Problem as a Market Game

A game which is closely related to the assignment problem can be defined by specifying
its (game-theoretic) characteristic function. The core of this game has an intimate
connection via the Radon-Nikodym theorem to the (dual) solutions of the linear
programming problem. In the finite player case a result of Shapley and Shubik [1972]
tells us that the core is precisely the set of solutions to the dual problem. In the
present context, there are two possible definitions of the core corresponding to two
possible interpretations of the set of coalitions. We shall see that under the restriction
that the valuation function V is continuous, the two different sets of coalitions yield
the same conclusions with respect to assignments in the core. However, when V' is
not continuous, to capture the desired equivalence between the dual and the core,
“distributional” coalitions are essential.

We begin with the standard formulation of a nonatomic game (see Aumann and
Shapley [1974] based on the assignment model in which the coalitions are the Borel
subsets B of I = BU S. The characteristic function w of the assignment game is
defined on B as the maximum profit available to the coalition C for each Borel set
C € B, viz.

w(C) = sup{ [ Vdele 20, Az < o} = gluc),

where pc = (gcnB, kens)-



Definition: The core of the game given by characteristic function w is defined to
be C(w) = {v : B — R|v is a finitely additive set function with v(C) > w(C) for all
C € B and v(I) = w(I)}.

To enlarge the family of coalitions, first identify the elements C of B with their
indicator functions 1c € B(I). Then, denote by I the set of those C € B(I) such
that 0 < C < 1y, i.e., C represents a “fractional group of buyers and sellers” in C.
In Aumann and Shapley [1974], these coalitions are called ideal sets. Each C yields
a population measure i defined by () = Jo) Cdu

Since we have placed no restrictions on the measure p in the definition of an
assignment problem, it is indistinguishable from a ji. Therefore, the optimal value
associated with the population measure j is g(f). This permits the extension of the
game-theoretic characteristic function w from elements of B to Z via the function
1D(C ) = g(ji). The distributional coalitions associated with the nonatomic game w
are the functions C' which include not only those ideal sets taking values in {0,1} but

also those C taking values in [0, 1] and identified with all the measures i < p.

Call 7 : T — R an ideal set function if it is finitely additive in the sense that
5(Cy + Cs) = #(Cy) + #(Cs) whenever Cy + Cy < 1r.

Definition: The distributional core D(w) of the market game determined by the
characteristic function w, or equivalently by the assignment model (i, V), is defined

to consist of all ideal set functions # such that #(C) = w(C) for all C € I and
(1) = w(1r).

1.5 The Assignment Problem as a Market Economy

The assignment problem can also be formulated as taking place in a market economy.
To place the problem in this context, it is necessary to explicitly give the endowments
and preferences of the agents and to emphasize the description of the problem in terms
of the individual components 3 and o rather than the summary term V used in the

linear programming and core approaches.

There are two classes of goods: houses and money. Each seller s has an initial
endowment of one house identified with his name. In describing allocations, we face
a difficulty here parallel to the discussion of integral assignments in Section 1.2.1,
namely the possibility that allocations may not be integral. There are at least two
ways of treating this problem: to allow individuals to buy and sell fractional houses
or to permit only integral allocations, but to view elements of B and S as types
rather than individuals. The second of these is more consistent with the spirit of the



assignment problem and we shall describe it in Section 1.5.1, below. Here, however,
it is convenient to adopt the first interpretation.

The preferences of buyers and sellers are given by utility functions. Buyer b has
a feasible trading set Dj consisting of all non-negative measures on S with variation
norm less than or equal to 1. The utility of buyer b for ¥ € D, is given by us(v) =
(Bs, ) where By(s) = B(b,s). Seller s has a feasible trading set D, consisting of all
non-positive measures on S of the form ad, where —1 < a < 0. The utility of seller
s for aé, € D, is given by u,(ab,) = ao(s).

An equilibrium will be described by a price function for houses such that when
buyer and seller types make purchase and sale decisions by maximizing their utility
taking those prices as given, there is an allocation of buyers to houses which is market-

clearing.

An allocation for a market economy is a Gelfand measurable map y : BU S —
M(S) where y(b) indicates what houses buyer b buys and y(s) indicates what (portion
of) the house 6, seller s sells. A feasible allocation for the market economy with

population measure g is an allocation such that

/Iydp=0.

(The integral is taken in the Gelfand sense.) A price system is a measurable function
p € B(S) where p(s) indicates the price of the house s.

Definition: An allocation and price system (y, p) is a Walrasian equilibrium for
the market economy (8,0, u) if y is a feasible allocation for and

ui(y(3)) — (p, y(i)) = max{ui(7) = (p, )7 € D}, p —ae.

The above condition is the requirement that y() be a utility maximizing choice
when prices are given by p. If we define u; on all of M(S) by saying that it agrees
with the above definition on the feasible set D; and is —oco elsewhere, the condition
that y(i) is utility-maximizing for ¢ at prices p is evidently equivalent to the condition
that p € Jui(y(7)).

1.5.1 Representations of Integral Allocations

Let A = {6, : s € S}uU{0}. Define y to be an integral allocation if, u-a.e. on I, y(b) €
A and y(s) € —A. Note that if y is a Walrasian allocation for prices p, and s and s’

are in the support of y(b), then u(y()) — (p,y(b)) = B(b,5) = p(s) = B(b, ) = p(s);
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i.e., an houses in the support of y(b). Similarly, if y(s) = aé,, where 0 < a < 1, then
o(s) — p(s) = 0 and any seller with utility function u, is indifferent between selling
and not selling. Thus, the Walrasian equilibrium (y, p) would itself be an integral
assignment if p-a.e. the utility-maximizating choice at p were unique.

In the absence of uniqueness, we face a problem related to that raised in Section
1.2.1 on the inability to guarantee an integral assignment among the optimal solutions
of the nonatomic assignment model. When the set of individuals is constrained to be
I, there is no guarantee of an integral Walrasian allocation in the above description of
a market economy. (See Example 5, below.) However, there is a representation of a
Walrasian allocation as an integral assignment if the space of individuals is expanded
to I x[0,1]. (Note the similarity between this expansion and the construction of ideal

sets in Section 1.4.)

Consider an allocation y. Regard y(:) € M(S) as a summary statistical description
of the average behavior of all the individuals of type i, of whom there are nonatomic
continuum represented by Lebesgue measure on [0,1]. In effect, the allocation y is
an intermediate level description of economic activity which lies between the purely
statistical description of z as a measure on types of buyers and types of houses and
the following description in terms of individual members of each type.

Define z = (zg, 25), where z5 : B x [0,1] = A and z5: S x [0,1] — —A with the
additional stipulation that for each s, zs(s,t) € {0,—6,} for all t. By construction,
the mapping z represents an integral allocation among the individuals in I x [0,1]
since it requires each buyer to purchase either no house or exactly one integral house
and each seller to sell either all or nothing of his/her house.

If z is 4 X A measurable, then it is integrable and we may define y :  — M(S) by
(%) y(i) = [ 2, 0)dA(0).

Conversely, if y : I — M(S) is a p-integrable function such that for each ¢,
y(i) € D;, there is a z satisfying (*). (This is a result on the disintegration of
measures. See Bourbaki [1959].)

1.6 Solutions and Equivalences

The point of this paper and its main theorem is that under suitable hypotheses
all these ways of looking at the assignment problem are soluble and that within
reasonable equivalences the solutions are the same. In terms of the data of the
problem, no restrictions are made on g, but we do assume B3 is upper semi-continuous
on P and ¢ is lower semi-continuous on S, making V = § — o upper semi-continuous.

10



PORTMANTEAU THEOREM Assume that the population measure u € M(I)
is given and that the valuation function V € B(B x S) is upper semi-continuous.

Then

o The assignment problem has a solution (Theorem 2).

o The linear programming problem has both primal and dual solutions and there
is no gap in their values (Theorems ! and 2).

o The distributional core (and hence the core) is non-empty (Theorem 3).
e Walrasian equilibria ezist (Theorem §).

The subdifferential of the value function is non-empty (Theorem 5).

All the solution concepts are effectively equivalent (Theorem 1 - 5).

In addition, we shall establish some stronger conclusions when V € C(B x §)
(Theorems 6 - 8).

2 Examples

In the following examples, B and S are each taken to be the unit interval [0,1].
- The population measures up and us are each taken to be Lebesgue measure on the
Borel sets of [0,1], i.e. u on I is taken to be p = (u,pus) = (A, A). Also we take
o(s) = 0 for all s € S. Thus, in these examples, the assignment model is defined by
V(b,s) = B(b,s) — a(s) = B(b,s).

Let us recall the distinctions among the following: A solution to the dual problem
is a ¢ € B(I), whereas a Walrasian price system is a p € B(S). Define the conjugate
of the utility function u;, or the indirect utility function, as u}(p) = sup{u:(y) —
(p,7) | 7 € D;}. Taking advantage of the linearity of utility in the assignment model
as well as the additional restrictions imposed above, we have

ooy _ [ sup,{B(b,s) —p(s)} ifi=0b
u'(p)-{p(s) ifi = s,
as long as p > 0. The relation between (the canonical representative of the equivalence
class of) dual solutions and Walrasian prices is given by the one-to-one mapping
q(1) = u}(p).

The first example illustrates a “typical” case when V' is continuous.

11



Example 1. Bigger is better. Let V(b,s) = bs. In this example, the primal and
dual linear programs each have a unique solution, and the dual solution lies in C(S).

Let z be an optimal primal solution. In this case, any optimal solution must
achieve equality in the constraint conditions. Let ¢ be any optimal dual solution
in C(I). Notice that z has support on the main diagonal. To see this, note that
q(b) + g(s) > V/(b,s) for all (b,s) and that q(b) + g(s) = V(b,s) for (b,s) in the
support of z. Now, take any two points (bo, so) and (b, s1) in the support of z. Then,

q(bo) + q(s0) = boso
q(b) +q(s1) = b
q(bo) + q(s1) = bosy
q(b) +q(s0) = biso

Adding the two inequalities and then subtracting boso + 6151 yields

bos1 + b1so — boso — bisy < q(Bo) + q(s1) + q(b1) + q(S0) — boso — b1s1
Substituting in the two equalities the expression becomes 0 < (by —bo)(s1 — so). Thus
either (bg, s0) < (by,31) or (g, o) = (b1, 51)-

Now suppose that (by, so) is in the support of z. Then boso = ¢(bo) +9(so) and the
support of z lies in the set ([0, bo) x [0, so}) U ([bo, 1] X [0, 1]). Since, however, there
is equality in the constraint condition, it follows that

z([0,b0] x [0,50]) = z([0,50] x ) = A0, bo] = bo
.T([O, bo] X [0, 80]) = :t(B X [0,80]) = /\[0,80] = S0
i.e. bp = o so that (b, so) does indeed lie on the main diagonal of the square. There is

only one measure on B x S with support on the main diagonal and Lebesgue measure
as its two co-ordinate functions, i.e.  is unique.

For a continuous optimal dual solution ¢ on I, as above, g(b) + ¢(s) = V/(b,s)
for all (b,s), g(b) + g(s) = bs for b = s, and ¢ > 0. (Recall that the function ¢ on
B is distinct from the function q on S.) The obvious candidates for solutions are
q(b) = b*/2 and ¢(s) = s?/2. A simple application of the arithmetic-geometric mean

inequality gives
q(b) + q(s) = b%/2 + s%/2 > (b*s*)'/% = bs
A moment’s reflection with small perturbations yields the conclusion that this solution

is unique.

The Walrasian allocation corresponding to the optimal solution of the linear pro-
gramming problem is the integral allocation y(b) = & and y(s) = —6,. Walrasian
prices are obtained from the dual solution simply by setting p(s) = q(s).

12



The second example illustrates why uniqueness of dual solutions for a continuous
valuation function can be only a generic, rather than a global, result. This example
is equivalent to the well-known “glove market” which, in turn, is equivalent to the
“master-servant” example Edgeworth [1881] used to illustrate how large numbers by
itself does not suffice to guarantee what he called determinacy, i.e., unicity of the
core.

Example 2. Glove Market. Let V(b,s) = 1 for all (b,s) so that V is certainly
a continuous function on B x S. There are many primal solutions; any measurable
automorphism on [0,1] describes a matching of buyers and sellers that is optimal.
There is also a multiplicity of dual solutions; fix 0 < a < 1 and let ¢(b) = « and
g(s) =1 -a.

Note that this example has a unstable core in the following sense. If a small
coalition of buyers (sellers) reduces (increases) their reservation prices, there will be a
reduction in the highest equilibrium price (increase in the lowest equilibrium price).
In particular, let the buyers in [0,1/n] announce the reservation values 3(b,s) = ¢
so that V(b,s) = € if b < 1/n. Then the set of dual solution becomes q(b) = a and
q(S) =1 —a for @ € [1 — ¢1]. This illustrates the instability/manipulability of the

core when it is not a singleton.

Example 3. Diagonal. Let V(b,s) =1if b= sand 0 otherwise. Evidently, V
is not continuous, but it is upper semi-continuous. The primal solution is unique:
each buyer b is matched with the seller s of the same name. The multiplicity of dual
solution is, however, enormous. Let ¢ be defined on B as any measurable function
with values between 0 and 1. Then define g(s) = 1 — q(b) for b = 5. These are all
dual solutions. Notice that unlike the previous example, where the price of any house
could be any number between 0 and 1 but the prices of all houses had to be the same,
here the price of any house is between 0 and 1 but there is no relation between the
price of one house and another. This is because the example essentially depicts a
continuum of isolated “Edgeworth boxes”.

The next example shows the need for the valuation function to be upper semi-
continuous in order for there to be an optimal solution to the primal problem.

Example 4. Snob. In this example every buyer likes equally well any house strictly
above his own name. Let 8(b,s) = 1 if s > b and = 0 otherwise. By reasoning similar
to the previous case, one sees that the primal solution “wants” to be the uniform
measure of mass 1 supported on the diagonal of the square (or at least arbitrarily
close to that from above); unfortunately, this is not a possible solution since the
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valuation function vanishes on the main diagonal. The dual problem has multiple
solutions,viz. for each o € [0,1] the distribution of a to each buyer and 1 — « to
each seller provides the collection of dual solutions. Note that there is no gap in this
problem since both values are 1.

If the valuation function is changed to become upper semi-continuous by setting
B(b,s) = 1 if s > b and = 0 otherwise, then the measure mentioned in the above
paragraph is indeed the unique primal solution.

The next example illustrates two related points: (i) there need not exist an integral
Walrasian allocation y, i.e., the range of which lies in A, and (ii) the core and the

distributional core need not coincide.

Example 5. Double Your Pleasure. Let V(b,s) =1 if s > 2b and be 0 otherwise.
This function is upper semi-continuous (it is the characteristic function of a closed
set). The primal solution is unique: the measure z is supported on the line s = 2b
and carries mass 1/2. The dual solution is also unique: for b € [0,1/2], ¢(b) = 1,
whereas for the remaining b and all s, ¢(b) = ¢(s) = 0.

The price system associated with this q is p = 0. At zero prices, the buyers in
[0,1/2] are each able to purchase one house for free and the remaining buyers are
content not to purchase since there is nothing in the market they like. The sellers,
having zero reservation values, are indifferent between supplying and not supplying.

The associated Walrasian allocation y has y(b) = &3 for b € [0,1/2], y(b) = 0 for
b€ (1/2,1] and y(s) = (1/2)é, for all s. If we interpret the individuals in the model
as consisting of I x [0, 1], so that there is a continuum of each type b € B and s € S,
then there is an integral z = (z,2s) given by z(b,t) equal to y(b) in the previous
sentence and, for example,

o [6 ifte(01/2]
A6 =10 ifte /2 1)

With this z there is an integral allocation over the individuals in I x [0, 1] leading

to the summary statistical description y of the allocation over types, i.e., y(i) =
[ z(z,t)dA(t).

If, however, we regard I as itself the set of (indivisible) individuals, then there is
no integral Walrasian allocation. Further, if we similarly regard the set of coalitions
in the definition of the core as the Borel sets of I, the core is much bigger than the
unique ¢ given above. In fact it is readily verified that the characteristic function w
for the market game associated with this problem is w(C') = min{A\(C N [0,1/2] N
B),\M(CNS)}. The set of core solutions v are given by v(C) = J¢ qa(i)dA(z) where for
each a € [0,1] set gq(b) = a if 0 < b < 1/2 and = 0 elsewhere, and set go(8) =1 —a
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for all s.

There are neither Walrasian allocations of the market economy nor dual solutions
of the linear programming problem that correspond to these core solutions. Thus,
the example shows that if we are to obtain core equivalence as one of the alternative
characterizations of the assignment problem, it will be necessary to consider the dis-
tributional core. However, as shown in Section 3.5, if V' is restricted to be continuous,
the complications found in this example disappear in the sense that the core and the
distributional core coincide.

As we have noted, optimal assignments need not be matchings. When the valua-
tion V is continuous, it can be shown that every optimal assignment can be approxi-
mated by matchings which come arbitrarily close to realizing the optimal value. The
last example shows, however, that assignments which are the limits of matchings need
not be matchings, and that — even when V is continuous — it may not be possible
to realize the value via a matching.

Example 6. Almost a matching. Let D denote the main diagonal {(b,s) € B x §':
b= s} and denote the distance from a point (b,s) to D by d((b,s), D). Define

1 ifs=2b
V(b,s) =4 1-d((bs),D) ifs>2b

otherwise

Fix a positive integer n. Define f,(b) to be the piecewise linear function taking the
intervals [(k — 1)/n, k/n] to [(2k — 1)/n,2k/n] for k = 1,...,n. Note that each f, is
indeed a matching and is uniformly within 1/n of the function f(z) = 2z which is
not a matching. In fact, f, converges uniformly to f which is not a matching. The
(unique) optimal solution here is normalized arc length on the line s = 2b.

3 Statements and Proofs of the Theorems

3.1 The Linear Program and Its Dual

We must be more explicit about the spaces to be paired in duality with M(P) and
M(I). The simplest choice of pairings would use the duality pairing (M(X),C(X))
given by M(X) being the space of continuous linear functionals on C(X). A more
comprehensive choice is the pairing (M(X), B(X)) given by (v, f) = fx fdv. In this
Section, we shall proceed with an analysis in the more comprehensive setting and
specialize to examine the special properties of the simpler case in Section 3.5.
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A minor difficulty in adopting the (M, B) pairing is that dual solutions which
are really the same (i.e., which are equal to each other y-almost everywhere) are
regarded as distinct. To adopt a suitable LP framework we will make appropriate
equivalence class identifications. Denote by M, (I) the set of u-absolutely continuous
measures on I and (in a slight mangling of notation) by M,(P) the pre-image of
M, (/) under the map A. By the Radon-Nikodym Theorem, for every v € M, (1),
there is an integrable function f € B([) (its Radon-Nikodym derivative) such that
v(C) = f, fdv. As usual, we equate integrable functions on I which are equal y-
almost everywhere. Write L!(u) for the space of equivalence classes of integrable
functions. Let ¢ : M,(I) — L(u) be the map which assigns to v (the class of) its

Radon-Nikodym derivative, j—;.

Writing L°°(u) for the space of equivalences classes of bounded measurable func-

tions on I, we have:

M,(P) & M,(I) = L}(p)

with dual

M,(P)" & M,(I)" & L®(n)

and second dual 4

M,(P)™ &5 M,(I)"" % ba(y)

Now the primal constraint Az < p which holds in M,(I) can be written as
d—f;a:(- x S) <1 up-a.e. and ﬁx(B x -) € 1 ps-a.e. The dual constraint is a
little less obvious. Let Fy be the linear functional on M,(P) defined by integration
against the valuation V. Define a set U in B x § as M,(P)-null if z(U) = 0 for all
z € M, (P). The condition A*q > Fy in M,(P)" means that q(b) + q(s) > V(b,s)

for all (b,s) € B x S except for a M,(P)-null set.

Lemma 1 A Borel set U in B x S is M,(P)-null if and only if U may be written as
U = U, UU,; with ug(rg(U;)) = 0 and ps(rs(Uz)) = 0.

Proof: Let U C B x S be a M,(P)-null Borel set. Definel/ = {T C U | pg(rs(T)) =
0} and, for T € U, let o(T) = ps(ws(T)). Note that U is a monotone class in U and
that o is an increasing function on . Thus o attains its maximum, say at T, on
U. Now repeat the process with the roles of B and S reversed to get the set T,. Set
To = T — Ty — Ty. The claim is that both coordinate projections of Ty have measure

0.

To see this, suppose that up(mg(U)) > 0. (The argument for pg is entirely
similar.) Let f : mg(U) — U be a (Borel) measurable selection of 77!, i.e., a

4ba(u), the set of bounded additive set functions which vanish on pu-null sets, is the dual of L™ (u)
and therefore ba(u) = L(p)**.

16



measurable map such that mg o f = try(E), p-almost everywhere. Then, on the one
hand, f*(i|rg(v)) is a measure on B x S whose B-marginal measure is dominated by
g and whose S-marginal measure is dominated by us, i.e., f*(g|rgu)) is a member
of M,(P). On the other hand, f*(i|rzw)) assigns positive measure to the set U.
This contradicts the hypothesis that U is a M,(P)-null set. O

Theorem 1 The linear programming problem has a dual solution and there is no gap
between the primal and dual values.

Proof: We begin by viewing the primal LP problem in the space M, (P), as above.
The constraint subset for the dual LP problem is a subset of L>°(x) and may be taken,
without loss of generality to be bounded. Since the Banach space L*(u) is the norm
dual of the space L'(x) the constraint set is weak”-compact by the Banach-Alaoglu
theorem. Thus the dual objective function, which is weak™-continuous, attains its
minimum on this set, i.e. the dual problem has a solution.

Now let ¢ : I — R be any Borel function whose L!(u) class is a dual solution in
the sense above. By construction, q(b) + ¢(s) > V(b,s), except on aset U C B x §
which is M,-null. By Lemma 1, we can write U = U, U U; where ug(rp(Uy)) =
ps(ws(Uz)) = 0. Set

—(Z) _ q(l) if 2 ¢ U1 U U2
= sup V(b,s) otherwise.

Then § = ¢ p-almost everywhere and ¢(b) + ¢(s) > V/(b,s) everywhere, so § is a dual
solution to the original LP problem. We shall return to extraction of a the point
function solution from its equivalence class in Section 3.5.

In order to see that there is no duality gap, we will apply to the current dual
problem a fundamental theorem of infinite-dimensional linear programming which is
due to R.J. Duffin, L.A. Karlovitz, and K.S. Kretschmer and may be found in Krabs
[1979]. To apply this theorem, we must first ensure that the positive cone of M,(P)"
has a non-empty interior. Note that M,,(P) is a Banach space in its own right and
that the lattice operations defined in M(P) are still lattice operations when restricted
to M, (P). Thus M,(P) is a Banach lattice. Moreover, ||z +y|| = ||z]| + llyl| for any
0 > z,y € M,(P) so that M,(P) is an AL-space in the sense of G. Birkhoff and
S. Kakutani (see Dunford and Schwartz [1958]). Hence, by a theorem of Kakutani,
M, (P)" is an AM-space whose positive cone has interior. Consequently, Duffin’s
theorem applies and this problem (i.e. the current dual) and its dual (i.e. the current
double dual) have no duality gap between their values and, moreover, the dual (i.e.
the current double dual) has a solution. The second dual M, (P)™ is again an AL-
space and has a norm 1 positive projection onto M,(P) which undoes the canonical
injection of M, (P) into its second dual. Consequently, the value for the double dual
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is equal to the value for the primal LP problem and there is no gap for the primal
and dual values. O

A stronger hypothesis is needed for the existence of primal solutions as is indicated
by Example 5 which has no primal solutions.

Theorem 2 If the valuation function V is upper semi-continuous then the LP as-
signment problem has a primal solution.

Proof: Define the linear functional f(z) = [pVdz on M(P). By a theorem of
Simon and Zame [1990] f is a weak® upper semi-continuous linear functional on the
positive cone M4 (P). Since the feasible set M, (P) is bounded in M (P) and is
evidently weak* closed, it must be a weak* compact subset. Thus, the functional f
attains its maximum on this set. O

3.2 The Market Game

As described in Section 1.3, w : C — R is the characteristic function of the market
game induced by the LP data (g, V), and @ : T — R is the characteristic function of
that game extended to its ideal sets.

Lemma 2 The distributional core D(w) is a subset of the core C(w).

Proof: Recall that the core C(w) of the game given by characteristic function w
consists of all finitely additive set-functions v (on the Borel coalitions B of I) with
the properties that ¥(C) > w(C) for all C € B and v(I) = w(I).

Moreover, every member of the core is countably additive and u-absolutely con-

tinuous. To see this, compute

w(C) = Sup{-/(CnB)x(CnS) Vdz | z € M.}
< IVllwsup{z(C N B,CNS) |z € M,}

Note, however, that {(CNBx CNS)<z(BxCN S) € ps(C N S) and, similarly,
z(CNBxCNS) < pp(CNB); thus, z(CNBxCNS) < ps(CNS)+pe(CNB) = p(C).
In total, w(C) < ||V|lwp(C). Consequently, w is a u-continuous set function. By a
standard result (Aumann and Shapley [1974]) it follows that every member of C(w)
is countably additive and p-absolutely continuous.

Now, recall that a member of the distributional core D(w) is an additive function
7+ T — R with the property that #(1;) = @(1;) and #(C) > w(C) for all C <
1;. Since w(1;) = w(I) and w(1l¢) = w(C) for every Borel set of I, the set of
inequalities defining the distributional core is strictly larger than those defining the
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core. Therefore, since we can uniquely extend any pu-continuous measure v on the
Borel sets of I in C(w) to a set function 7 on the ideal sets of I via 5(C) = [Cqdp
(where ¢ € L!(y) is the Radon-Nikodym derivative of v), and any member of the core
of w is y-continuous, the distributional core can be no larger than the core. O

Note that Example 5 illustrates a case in which the distributional core is a proper
subset of the core. In Section 3.5 we show that when the valuation function is con-
tinuous the two coincide.

Theorem 3 Up to equivalence almost everywhere, the collection of dual LP solutions
coincides (via Radon-Nikodym identification) with the distributional core.

Proof: First, we show that every LP dual solution induces (via identification) a
member of the distributional core. Let g be a dual solution for the linear programming
problem; set HC)=[ Cqdp for each ideal set C. Then 7 is an ideal set function and
5(1;) = [;qdu = g(p) = w(I). For any other ideal coalition C' (< 1;) representing
the measure u' = (ug, us) (< p), given € > 0 there is a 7, € M, such that

w(C)

sup{ / G(5)C(s)V (b, 3)dz(b, s)|e € M,}
sup{ / Vde|z € M}

/ Vdz, +e€

J (@) + a(s))da(b,9) + ¢

[ a(byz(db, $) + [a(s)zi(B.ds) + ¢
[ a(ouis(as) + [ a(s)s(ds) + ¢

= / qdy’ +¢€

= /éqdy+e
= (C)+e

| I VAN VAN |

IA

Since ¢ > 0 is arbitrary, ®(C) < 7(C) for all ideal coalitions C; thus, i (the corre-
spondent of g) is in the distributional core of w.

Now, let # € D(w). Define »(C) = #(1¢). Since an element of the distributional
core is an element of the core and the latter was shown in the first lemma of this
Section to contain only p-continuous set functions, we may define § € L}(p) as the
Radon-Nikodym derivative of v. In fact, since § is bounded p- a.e. by ||V]|, ¢ is
in L®(u). To see that § is an optimal LP-dual solution, we need only translate the

conditions on ¥ to ones on §.
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The condition that (1) = w(I) is just [ §dp = g(u).l.e., that § attains the optimal
value. The other condition is that #(C) > w(C) for all ideal sets C. Suppose that ¢
is not feasible, i.e., suppose that §(b) + §(s) < V(b,s) for all (b,s) € A where A is a
M,.- non-null set. Then there is a non-negative feasible Borel measure z’on Bx S
such that the carrier of 2’ is A. The corresponding ideal set C is defined on B as
the Radon-Nikodym derivative of mpz’ and, similarly on S as the Radon-Nikodym
derivative of rsz’. (Recall that 7p and 7g are defined in Section 1.3 as projection
mappings.) Thus,

%(C) > / Vds'

which is a contradiction.

Finally, as in the proof of Theorem 1, we obtain a representative § of ¢ which is
the dual solution of our original LP problem. O

3.3 Walrasian Equilibria of an Exchange Economy

The existence of Walrasian equilibrium will follow from its relation to the linear
programming problem. In order to address the question of core equivalence one
must first establish a canonical correspondence between the solution concepts for the
market game and the market economy. Since the solution concepts for the market
economy correspond to those for the linear programming problem, it will be enough to
establish an identification between pairs (z, q) of LP solutions, where ¢ is the canonical
representative of the equivalence class, and Walrasian equilibria (y,p). Here z is an
optimal (LP primal) measure of correspondence between buyers and sellers, ¢ is a
optimal (LP dual) distribution of profit (i.e. gains from trade) to the agents, y is a
Walrasian allocation and p is a Walrasian price system.

We have given above the agents, endowments, and preferences (via utility func-
tions) for the formulation of the assignment problem as a market economy. Our goal
is to establish the canonical correspondence between the solution concepts for the
LP problem and the market economy. First, given feasible z and ¢, construct the
allocation y and the price system p. For any Borel subset E of B and Borel subset F
of S define the set function (Yz(E))(F) = z(E x F). Then Y : B(B) — M(S) since
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it is easily verified that (Y(E))(-) is countably additive for each fixed E. Moreover,
Yp is itself also countably additive in the norm topology of M(S) , i.e. Yz is a M(S)-
valued vector measure. Note that if ug(E) = 0 then so is z(E x §) = 0 and ,hence,
so is z(E x F) = 0 for all Borel F C S. Consequently, Yp is pp- continuous. There
is a Gelfand density (i.e. weak*-measurable and weak*-bounded) yg : B — M(S5)
such that [g f(b)Y(db) = [g f(b)ys(b)dup(b) for all f € B(B) (see Diestel and Uhl
[1977]). The allocation to buyer b is then yg(b). Similarly, let Ys(F)(E) = z(E x F)
define a M(B)-valued set function which is gs-continuous on the Borel sets of 5. Call
the Gelfand derivative ys. Since the endowment of a seller s is §,, the trade by sellers
of type s is ys(s) = —z(s) for z(s) € [0,1]. The supporting price p is determined by
noting that, since ¢ on BU S is the profit that each player receives, the price of the
s-th house must be p(s) = ¢(s) + o(s).

Secondly, given an allocation y = (yp,ys) and a price system p, construct a
feasible z and ¢. The profit distribution is given by g(s) = p(s) — o(s). The buyer-
seller measure is given by z(E x F) = [5(ys(b), xr)dus(b).

The following theorem (after the lemma) establishes distributional core equiva-
lence since it states that the above canonical correspondence matches pairs of optimal
solutions to the linear program and Walrasian equilibria of the market economy. It
has already been established that the dual solutions of the program are exactly the
distributional core allocations of the market game.

Lemma 3 Complementary slackness holds: Let z be an optimal primal solution and
q an optimal dual solution so that, in particular, V(b,s) < q(b) + q(s) for all b and s
and V(b,s) = q(b) + q(s) for all b and s in the support of z.

Proof: By the optimality of the solutions, all of the available profit must be
distributed between buyers and sellers, i.e.,

/Q(b)dua + /q(s)dus =g(p) = /de.

Since the marginals of z for the buyers and sellers are at most up and ps, respec-
tively, we have

/ q(b)duyp = / q(b)dz (b, s)
/Q(S)d#s > /q(S)da:(b,s).

Combining this with the fact that g(b) + q(s) > V/(b,s) for all b and s yields the
desired conclusion that g(b) + ¢(s) = V(b,s) except on an z-null set. O
Theorem 4 There is a a one-to-one correspondence between pairs of optimal linear

programming solutions and Walrasian equilibria.
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Proof: Let z and q be optimal solutions to the linear program. Construct y and
p as above. That markets clear will be a consequence of the definition of a feasible
allocation after computing [;y(i)du(i) = [gy(b)dun(b) + [sy(s)dus(s). These latter
two Gelfand integrals will be evaluated separately; it suffices to do so on subsets of
S. Let F be a Borel subset of S. Then for the buyers

([ vs®)dus(bhixr) = [ (v(b)xr)dus()
= (¥(B)xn
(F)

Y(B)
= :v(BxF)

On the other hand, for the sellers

([us(edus(s)x) = ([, =(s) bdus(s), xp)
= (/Sz B)é,dus(s), xr)
= - /s 2(s)(B)(6s, xF)dps(s)
- -/sz(s)(B)xF(S)dus(S)
(

Thus, [, y(i)du(i) = 0 as desired.

The individual support property requires that p € du;(y(2)) for p- -almost all z.
By conjugate duality this is the same as requiring that y(¢) € 0u{(p) where u(p) =
sup{ui(7) — (p,7)|y € Di}. Consider the buyers and sellers separately. Let b be a

fixed buyer. Then us(v) = (B, 7) for any 0 < v € M(S) with v < L. The conjugate
function is u}(p) = sup{Bs — p,7) : 7 € D;}. To find a member of the subdifferential
of u; it thus suffices to find z E D, which maximizes (8 — p,z). The claim is that
any v € Dy with the property that the support of v is contalned among those s for
which (b, s) is in the support of z. Note that y(b) is such a measure by construction.

The proof of the claim is established from the following use of complementary
slackness. For any s’ € S duality gives g(b) + ¢(s') = V(b s") = By(8') — o(s’)
so that g(b) > By(s') — p(s'). If, moreover, (b,s) is in the support of the optimal
z then gq(b) + g(s) = V(b,s) = B(s) — o(s) so that q(b) = Bu(s) — p(s). Thus,
By(s)—p(s) > By(s') — p(s’) for s such that (b,s) is in the support of z and any s’ € 5.
Consequently, the function f; — p is maximized at such s.
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Finally to see that p € Ou,(y(s)) recall that u,(ad,) = ao(s) so that the condition
becomes p(s) > o(s) for almost all s which is true for this p. O

3.4 The Subdifferential of the Value Function

The relationships between the set of optimal solutions for the linear programming
formulation of the assignment problem, Walrasian equilibria, and the distributional
core (as well as the set of core allocations) for the corresponding market game has
been established in previous sections. In order to complete this circle of ideas we will
relate these concepts to the notion of subdifferential of the function which gives the

value of the linear program.

The value function for the assignment problem (u, V) is defined as the optimal
value g(y) = sup{fVdz|Az < p, = > 0} as p varies holding V fixed. It was
observed in Section 1.1 that g is positively homogeneous and concave. Therefore, the

subdifferential dg(x) = {g € B(I)|(g, u) = g(n), (g, #) = g(w"), 4’ 2 0}.

Let Q(u) be the set of dual solutions to the assignment problem (u, V'), where
again we suppress the dependence on V.

Lemma 4 Q(x) C 0g().

Proof: Let q be an optimal dual solution, i.e., 0 < ¢ € B(I) with ¢(b) + ¢(s) 2
V(b,s) such that [;qdp is a minimum among all feasible solutions to the dual. By
duality and the no-gap theorem [;qdp = (g, p) = g(p).

Consider any other y' € My(I). Then g is still feasible for the problem (y', V).
Hence g(y') < (g,4'). Consequently, g(p') — g(p) < (g, 4’ — ) for all y'. Therefore,

g € 9g(p). B

The distributional core D(1) of the game derived from (g, V) consists of ideal
set functions 7 : T — R. For any ¢ € B([), an ideal set function can be obtained

through the Radon-Nikodym correspondence o(C)=[ Cdp.
Lemma 5 dg(p) C D(w).
Proof: Let q € dg(n), i.e. {g,4) = g(p) and (g, p') 2 g(u') for all " € M. (]).

Define #(C) = [ Cqdy for Borel ideal sets C. Then (g, p = g(p) implies that 12(11) =
(q,n) = g(p) = w(I). Furthermore, letting #'(-) = fi,Cdp, then v(C) = [Cqdu =
[yqdp’ > g(p') = sup{fVdz]Az <y, = 2 0} = w(C). Consequently, 7 is in the

distributional core of w as desired. O

Theorem 5 For the assignment model defined by (u,V), there is equality between
the distributional core of the market game, the set of optimal dual solutions, and the
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subdifferential of the value function, i.e., Q(p) = dg(p) = D(w).

Proof: It has just been established that Q(x) < dg(p) € D(w). It is known,
however, from Theorem 4 that the dual coincides with the distributional core. Hence,

there is equality throughout. O

3.5 Continuous Valuations

In the event that the reservation prices 3 and o are continuous functions or, in
particular, that the valuation function V(b,s) = B(b,s) — o(s) is continuous, then
there are many stronger conclusions that can be made: the dual solutions are also
continuous, the set of such solutions is compact, and the distributional core coincides

with the core of the associated market game.

Theorem 6 If the valuation function V : Bx S — R is continuous, then the LP dual
solutions are also continuous (more precisely, each of the L*(u) equivalence classes
which are LP dual solutions contains a continuous representative).

Proof: The proof of Theorem 1 shows how to extract from a dual solution ¢ €
L>®(y) which minimizes [qdp subject to ¢ =2 0 p-a.e. and q(b) + q(s) = V(b,s)
for all (b,s) except in a M,-null set, a ¢ € B(I) such that [gdp = fqdu and
g(b) + G(s) = V(b,s) for all b,s. We need to show that § can be chosen to be
continuous. This will be done by the following “shrink-wrap” argument on 4.

The construction proceeds as follows: Let ¢ be a bounded measurable function
from the equivalence class of the LP dual g, as above.

Define for each b€ B
q1(b) = sup{V (b, s) — §(s)|s € S}

Observe that 0 < g;(b) < §(b) for up-almost all b and that q,(b) + g(s) = V(b,s) for
every b and s. Consequently, ¢; is the B-component of a solution when paired with
the S-component of §. Repeat the process by setting for each s € S

qi(s) = sup{V(b,s) — a1 ()}

The result is a function ¢i € B(I) which satisfies ¢1(b) + q(s) > V(b,s) for every b
and s and [qdpu = [ §dp. Note that up to this point, no assumption on continuity
of V has been used.

We now show that ¢; € C(I). In fact, the proof will be shown for g, restricted to B;
the proof for S is similar. Fix € > 0 and let § > 0 be such that |V (b1, s) =V (be,s)| <€
for all s whenever d(by, b2) < 6. Let by, by be arbitrary such that d(by, b2) < 6. For

24



b, observe that ¢ (b;) > V(by,s) — ¢(s) for almost all s. For b, there is s, such that
q1(by) < V(by,s¢) — q(se) + €. So compute

qi(b) — q1(ba) = sup{V(by,s) — G(s)|s € S} —sup{V (bz, ) — g(s)|s € S}
(V(br,5¢) = q(se) + €) = (V(b2,8c) = §(sc))

= V(b,s) — V(b sc) + €

< 2e

IN

Changing the roles of b, and b, establishes the inequality that [¢:(61) — q1(b2)| < 2e¢
whenever d(by, b;) < 6. Thus ¢, is continuous on B. A similar computation establishes
continuity of ¢; on S. O

Theorem 7 If the valuation function V is continuous, then the set of LP dual solu-
tions is a norm-compact set in C([I).

Proof: Since the set of LP dual solutions is clearly closed, by the Arzela-Ascoli
theorem, it will suffice to show that the set is an equicontinuous family in C(/). This
is easily seen from the observation that in the proof of the above theorem, the choice
of § for a given € in the continuity calculation for ¢; depended only V' and not on the
particular solution. O

We remarked above that the finite assignment model has the remarkable property
that the core coincides with its Walrasian equilibria. Another perspective on this
property is that replication of the model does nothing to shrink the core. Note that
in the finite assignment model, the coalitions present in the distributional core may be
interpreted as those which create an infinite replica of the assignment model. Thus,
the Shapley-Shubik result on the coincidence of the core and Walrasian equilibria for
finite assignment models can be reinterpreted in our terms to say that if the measure
p describing the population of buyers and sellers in the assignment model consists of
a finite number of atoms, each with a mass of unity, the core of this model coincides
with the distributional core (consisting of the infinite replication of the model). The
following shows that this result can be extended to the nonatomic version of the
assignment model provided the valuation function is continuous.

Theorem 8 If yu is nonatomic and the valuation function V is continuous, then the
distributional core of the associated market game is the same as the core of the market

game.

Proof: As observed in the proof of Theorem 2, M, (P) = {z|Az < p, © 2 0}
is weak* compact in M(P). Since V € C(P), then (V,z) is weak® continuous on
M, (P). Therefore, g(u') = sup{(V,z)|Az < p’, z > 0} is weak® continuous on

{10 < ¢’ < p}.
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Define pc as the measure pc(-) = f,) lcdu and ji; as the measure fis(-) = [, Cdp.
The set {uc|C € B} is the range of a nonatomic vector measure. Therefore its weak™
closure is convex (Kluvanek [1973]); so the closure contains {fiz|C € T}.

From Lemma 2, D(w) C C(w), where W(C) = g(fis) and w(C) = g(pc). To show
that the two cores coincide, let » € C(w). From the proof of Lemma 2, there is a
q € L'(p) such that »(C) = (q,pc). Therefore, it suffices to show that if we set
7(C) = (g, i), then 7 € D(w).

Suppose the contrary. Then there exists a C and an € > 0 such that
(t (g, i) + € = #(C) <(C) = glfigs)-

But, by the hypothesis that v € C(w), (g,pc) = g(pc) for all Borel sets C in I
Adding this to the facts that g is weak" continuous and its weak” closure contains
{iz|C € I} leads to a contradiction. O
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