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Abstract

The equivalence in the finite agent model between the families of efficient dominant
strategy and Vickrey-Clarke-Groves mechanisms is extended to continuum economies.
The concept of an individual’s marginal product is used to link the two families of
mechanisms when agents are non-atomic.

Unlike the finite agent model, feasible and efficient dominant strategy mechanims
exist in the continuum, but these mechanisms do not guarantee individual ratio-
nality. For individual rationality to hold, the environment must also satisfy full-
appropriation: each individual receives a payoff exactly equal to his/her marginal
product. Full-appropriation is shown to be equivalent to the condition that each
individual fully internalizes any external effects he/she creates. Environments and
examples are given that exhibit or fail to exhibit full-appropriation.



1 Introduction

There are now many results about designing mechanisms that implement Pareto
optimal allocations, both for private good and for public good economies. Restricting
our attention to dominant strategy implementation, the results vary dramatically with
the size of the economy, with impossibility results prevailing in small economies—
e.g., Hurwicz (1972), Green and Laffont (1978), Laffont and Maskin (1980), Walker
(1980), and Hurwicz and Walker (1983)—and possibility results prevailing when there
is a (nonatomic) continuum of agents—e.g., Hammond (1979), Kleinberg (1980),
Champsaur and Laroque (1981), McLennan (1982), Mas-Colell (1987), and Mas-
Colell and Vives (1989). In this paper we prove no new implementation results, but
we do provide a new path for proving many of the known results about implementation
in the continuum. We believe this path is valuable because it gives some perspective
and unity to the results on dominant strategy implementation—both for small and
large economies. Our path gives a unified perspective because it involves an eztension
of the method used to prove many of the results for finite models, so one can more
clearly see why impossibility in the small numbers case turns into possibility in the
continuum.

Specifically, many of the known small economy results are proved assuming quasi-
linear preferences. For such economies, Vickrey (1961), Groves (1970), and Clarke
(1971) discovered mechanisms that were both dominant strategy incentive compat-
ible and Pareto optimal ezrcept perhaps in achieving budget balance in the money
commodity. Groves identified a whole family of such mechanisms, which were later
shown to be exhaustive (Green and Laffont (1977), (1978), Walker (1978), and most
generally, Holmstrom (1979)). Thus, under quasi-linearity, the existence of a domi-
nant strategy and fully Pareto optimal (DS PO, for short) mechanism is equivalent to
the existence of a balanced mechanism in the Vickrey-Clarke-Groves (VCG) family.

Schematically:
(%) DSPO <= a balanced VCG mechanism exists.

Based on this characterization, it is shown in the literature that in finite economies
with private or public goods, there generally do not exist such mechanisms; for very
general impossibility results see Walker (1980) and Hurwicz and Walker (1983).

We show that in the continuum, under the assumption of quasi-linear prefer-
ences, DSPQO mechanisms are still equivalent to balanced VCG mechanisms. But in
the continuum, both for private and public goods economies, balanced VCG mech-
anisms do exist; indeed, they correspond precisely, respectively, to the Walrasian
and “equal-cost-sharing” mechanisms. (The unique D.SPO mechanism for allocating
public goods is sometimes called the “privately fair Lindahl mechanism” ( Hammond,
1979) or the “fair-efficient mechanism” (Groves and Ledyard, 1987).
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Extending the Vickrey-Clarke-Groves path to the continuum requires solving a
puzzle which is the main mathematical contribution of this paper. At first viewing,
one might conjecture that it is impossible to extend the (small economy) concept
of a VCG mechanism to the continuum. Recall that any mechanism in the Groves
family always rewards each individual with the total gains from trade minus a lump
sum. But in the continuum, the size of each (infinitesimal) individual is of a different
(smaller) order of magnitude than the total gains from trade. Is it possible to make
the units commensurable?

In Makowski and Ostroy (1987a) we showed that in small economies any Vickrey-
Clarke-Groves mechanism is equivalent to a marginal product (MP ) mechanism, i.e.,
one that always rewards each individual with his marginal product to society minus
perhaps a lump sum. Hence, () can be equivalently, schematically expressed as:

(%) DSPO <= a balanced MP mechanism exists.

The equivalence between Vickrey-Clarke-Groves and marginal productivity schemes,
while mathematically trivial in the finite model, turns out to be the key to extending
the concept of VCG mechanisms to the continuum.

More specifically, regarding the total gains from trade as a function of the dis-
tribution of individuals in the economy, in small economies an individual’s marginal
product is defined as the difference between the gains with the individual in the econ-
omy and the gains with the individual out. Because of the “lumpiness” of persons,
in finite models an individual’s marginal product is a finite difference, not a deriva-
tive; but in the continuum, the lumpiness disappears and an individual’s marginal
product is naturally defined as the directional derivative of the gains function, in
the “individual’s” direction. Hence, even in the continuum where each individual is
infinitesimal, an individual’s marginal product is of an order of magnitude commen-
surate with his size, namely, a derivative. So, it is meaningful to reward individuals
with their marginal products in both small and large economies. (Readers familiar
with the value of a nonatomic game (Aumann and Shapley, 1974) will see a connec-
tion here that is described in more detail in Remark 7, below.) Once the concept of
a marginal product mechanism is extended to the continuum, the extension of the
Vickrey-Clarke-Groves characterization (in the form (**)) readily follows.

Extending the Vickrey-Clarke-Groves principles to the continuum allows for at-
tractive intuitions about the similarities and differences between small and large
economies, and between private and public goods economies. These intuitions are
based on the “adding-up properties” of the gains-from-trade function coupled with
Euler Theorem-type considerations familiar from neoclassical production theory un-
der perfect competition (in which all factors are rewarded with their marginal prod-
ucts). Note it is in the continuum, in which an individual’s marginal product is a
derivative rather than a finite difference, that the analogies are most striking. The



possibility of successful implementation—in both small and large economies—is seen
as a variation on the classical question, “When can you successfully reward all factors
with their marginal products?”. This theme will be the subject of Sections 5 and 6
below.

Within the family of MP mechanisms, the central one is what we call the full
appropriation mechanism—the MP mechanism without any lump sum transfers—
which is balanced only if there is exact “adding-up”. This centrality is reinforced in
Section 5. We identify conditions under which a mechanism that is both DSPO and
individually rational (DSPOIR, for short) exists and show that

(% * *) DSPOIR <=> the mechanism exhibits full appropriation.

While the main goal of this paper is an extension of Vickrey-Clarke-Groves mecha-
nisms to the continuum, there is an accompanying secondary theme. It has a Pigovian
spirit. The theme is that (a) rewarding individuals with their (social) marginal prod-
ucts and (b) requiring individuals to internalize any external effects they may impose
on others are two sides of the same coin. This is not an unfamiliar idea: the Clarke
pivot mechanism (a marginal product mechanism) for collective goods is often referred
to as requiring individuals to pay for their externalities. A systematic emphasis of
these “two sides” of the rule for successful DSPQO implementation runs throughout

the paper.

Hammond (1979) followed a different path for proving the possibility of finding
DS PO mechanisms in continuum environments, both for allocating private goods and
collective goods. His results are based on an alternative characterization of DSPO
mechanisms: he shows DSPO mechanisms are equivalent to efficient mechanisms
that are decentralizable under appropriate budget sets. While his alternative char-
acterization result—Ilike the VCG charas-=rization—also applies to large and small
economies, only the continuum version of the concept of decentralizability has been
used to address the possibility question. The consequence is that while Hammond’s
method for addressing the implementation question does help in unifying our knowl-
edge about the similarities and differences between private goods and collective goods
in the continuum, it leads to a compartmentalization of our knowledge about the sim-
ilarities and differences between small and large economies. In this regard, following
the Vickrey-Clarke-Groves path is more unifying since it has been intensively travelled
for proving finite impossibility results.

The sequel is organized as follows. Section 2 presents our model, a continuum-
of-agents extension of a standard demand-revealing model, applicable to private or
public good environments. It also discusses some exigencies of non-atomic models and
introduces regularity conditions on continuum mechanisms, to meet these exigencies.
Section 3 develops the general equilibrium extension of the marginal product concept



that is the key to succesful extension of finite VCG mechanisms to the continuum.
Section 4 then displays our continuum extension of the finite characteriation results
for VCG mechanisms. Section 5 displays a general existence result for DS PO mech-
anisms in the continuum. It also displays some special characterization and existence
results for individually rational mechanisms and for mechanisms on homogeneous en-
vironments. Section 6 discusses related large economy results in the literature. The
proofs of all our results are collected in the final section, Section 7.

(N.B.: The primary purpose of this paper is to extend the characterization of
DS PO mechanisms from finite to nonatomic models, but we are also interested in
showing how these characterizations can be translated to more familiar-looking con-
clusions in terms of their implications for prices and quantities. A consequence of
these priorities is that we shall appear to treat the important case of private goods
exchange economies in an “incidental manner” because that model only appears ex-
plicitly as the subjects of Remarks of 2, 5, and 6, below. Nevertheless, the contents
of these Remarks are representative of the pricing implications of VCG mechanisms

in nonatomic models.)

2 The Model

2.1 Individual Characteristics

Let v : R® = RU {—o0c} be an extended real-valued function with effective domain
Y, = {y : v(y) > —oc}. An individual’s characteristics are completely described by
v: Y, represents his/her individually feasible trading capacities, while the restriction
of v onto Y, represents his/her tastes.

Let V be the set of possible individual characteristics. We shall assume that for
each v eV,

e Y, is non-empty, closed and convex

e v is strictly concave and twice continuously differentiable.

The differentiability of v should be understood as follows. There is a twice continu-
ously differentiable function ¢ : R¢ — R that coincides with v on Y, and is such that
0?*v(y) = 0*(y) whenever y € Y,.

Commodities are divided into two categories: those which are the arguments of
v(+), referred to as y-commodities (y € R’), and the money commodity, denoted by
m. An individual with characteristics v will evaluate (y,m) € R¢ x R according to



the quasi-linear utility function
Uy, m;v) = v(y) + m.

Thus, all individuals have the same characteristics with respect to the money com-
modity: tastes are linear and there is no capacity limitation on supply.

As a common feature of all v € V, we assume
e there is a non-empty, compact set B° C NyevY,.

The set B° is the individually feasible trading capacities that all individuals have in
common. For example, it might include the zero element of R’ in a model where each
individual always has the no-trade option.

It will also be assumed that

e V is a compact metric space.

In particular, we endow the space V with a metric such that if v, — v then there
exists v, and ¢ which are C? extensions of v, and v, respectively, such that v, —
in the (metrizable) C? compact-open topology (Mas-Colell, 1985) and Y,, — Y, in
the (metrizable) closed-convergence topology (Hildenbrand, 1974). The metric is
described in more detail in Remark 8 at the beginning of Section 7.

An economy will be defined by a (positive, finite) Borel measure x on V.

2.2 Allocations

An allocation, denoted by (y(-), m(+)), is a an element of C/(V) x C(V'), where C*(V)
is the set of continuous R‘-valued functions on V' denoting allocations of the y com-
modities and C(V) is the continuous real-valued functions denoting allocations of the
money commodity.

Define Y (u) as that subset of allocations in C*(V) which are feasible in the ag-
gregate for p. The set Y (u) will determine the nature of the economic environment.

For example, in a private goods exchange economy the set of feasible trades would
be described by

Y(u) = {s() : Yo y(v) € Y, and [ y(v)du(v) = 0}.

Alternatively, a public goods environment without any costs of production could be
described by
Y(u) = {y(-) : Yo, y(v) € Y, and y(v) =7 € T},
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where T is a given set of possible, alternative public good projects. Environments
involving public goods with costly production could similarly be defined. To illustrate,
suppose there is just one public good, the ¢* commodity, which is produced using
private goods as inputs, via the concave production funtion ® : R~! — R. Then

Y(g)={y(-): Vv, y(v) €Y, and y(v) = (31(v),---,Ye-1(v), %) € R x R
satisfies yo = ®(— fyidp,. .., — [ye-1dp)}.

In the spirit of mechanism theory, we shall suppress the differences to look for prin-

ciples in common.

We shall assume that whatever its specification,
e Y(u) is convex and only contains allocations y(-) which are individually feasible.

As a separate condition not always imposed, the money allocation, m(-), is said
to be feasible if money transfers balance, i.e.,

/ mdy = 0.
To define optimality for u we introduce the gains function

9() = sup{ [ o(y(v))d(v) : y() € Y (w)}.

It is assumed that this sup exists and is achieved by a y(-) € Y(x).
The allocation y(-) is Y-optimal for p if it belongs to Y (¢) and

[ o(y(@)du(v) = g(u).

The allocation (y(-),m(-)) is fully optimal at p if y(-) is Y-optimal and m(-) is
feasible.

2.3 Mechanisms and their Properties

We will be concerned with characterizing the dominant strategy properties of a fized
economy u. Let N be a set of economies containing u.

Definition: A mechanism is a mapping f : N — C'(V) x C(V)). We shall write
fur(v) = (yu(v), mu(v)) as the allocation to v at y'. For all 4’ € N, it is assumed that
yu () € Y(u'), i.e., there is an aggregate feasibility restriction on the y allocation, but
none on the money allocation.



Definition: A mechanism f is Y-optimal, or POy, if for all p’ € N, y,/(-) satisfies

9') = [0l (v))d (o).

The concept of incentive compatibility for a mechanism is:

Definition: A mechanism f exhibits the dominant strategy (DS) property at pu if
forallwe V,

U(fu(v);v) 2 U(fu(w);v),
for all v € supp p.

Recalling the definition of U, this says that the utility an individual receives from
the allocation mechanism by reporting his characteristics truthfully, v(y,(v))+m,(v),
is at least as large as the utility an agent of that type could obtain by reporting any
other characteristics, v(y,(w)) + m,(w). Therefore, if f satisfies DS at y then v has
no incentive to misrepresent himself as a w, even for w ¢ supp u.

Notice that while DS is defined at p, the mechanism f is defined on a set of
economies containing p—not just at p. This is preparatory for the next subsection
in which the concept of a “regular mechanism at p” will be defined. Basically, we
will restrict ourselves to POy mechanisms whose y-allocation is differentiable at 4 in
the appropriate directions. To make this precise we need to know the behavior of the
mechanism (more specifically, its y-component) not just at g, but in an appropriate
neighborhood N of pu.

Definition: For brevity, a mechanism f will be called DSPOy at p if it is POy
and it exhibits the DS property at g. Similarly, f will be called DSPO at p if it 1s
DSPOy at u and feasible at y, i.e., f mdu = 0.

2.4 Regular Mechanisms

We will restrict our attention to POy mechanisms that are “regular at u”. To define
regularity, it will suffice to consider the behavior of the mechanism in a neighborhood
of u given by

N={y=u+té,:t€(0,1], we V},

where 6, is the Dirac measure of unit mass concentrated at w.

Crucial to the analysis of the mechanism, below, is the influence of one infinites-
imal individual on another, which will be based on the following: The directional
derivative of y,(-) at v in the direction w is




The interpretation is, this directional derivative measures the influence on the y-
allocation of an individual with characteristics v from adding an infinitesimal indi-
vidual with characteristics w to the population u.

Definition: f is a reqular POy mechanism at p if it is POy and

(R.1) The y-allocation is smooth at u: for all v and w, Dy(.;w)(v) exists and is con-
tinuous in both v (holding w constant) and w (holding v constant).

(R.2) The y-allocation is interior at u: for all v and w, if v(yu4es,(w)) = —oo for ¢
arbitrarily close to zero, then v(y,(w)) = —c0.

Certain implications of regularity are immediate. The smoothness of the y-
allocation (R.1) necessarily implies that the y-allocation is continuous in the sense
that for all w and v:

Yuttsu (V) = yu(v) as t—0.

This solves a problem. For POy, the behavior of the mechanism at 4 is only restricted
for individuals v € supp p. But for DS, the behavior of the mechanism at u is
restricted even for w ¢ supp g (recall an individual v can claim he is any type
w € V). By restricting ourselves to POy mechanisms that are regular at u, even
the y-allocation for w ¢ supp p is “pinned down”, in particular

yu(w) = ll_f}(} yu+t6w(w),

where clearly w is in the support of u +t6,, for t > 0. (Of course, this problem would
be otiose if supp g = V, but from a strategic point of view it seems useful not to
impose such an assumption. See Remark 1, below.)

(R.2) says that all y-allocations to individuals that the mechanism calls for and
that are not in v's effective domain are away from the boundary of v's effective
domain. This rules out the possibility of v(y,(w)) being discontinuous (relative to
the mechanism) for allocations approaching the boundary of v’s effective domain.
It is a strong assumption, but it is only a sufficient condition to prove our results
for general DS mechanisms; it is not required to prove any of our results for (less
general) demand-revealing mechanisms, where the trading capacities of all individual
types are identical.

REMARK 1 (Fair Allocations): An allocation f.(v) is said to be fair at p if it is
Pareto-optimal and for all v,w € supp u

U(fu(v)iv) 2 U(fu(w);v).

(See Schmeidler and Vind (1972), Varian (1976), Kleinberg (1980), Champsaur and
Laroque (1981), McLennan (1982), Mas-Colell (1987) and others.) Interpreting this
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condition in the language of misrepresentation, it says that an allocation is fair if no
individual in supp u would prefer to represent himself as any other individual in supp
. By contrast an allocation is DS at g if no individual in supp g would prefer to
represent himself as any individual in V. Evidently a DS allocation is fair, but the
converse need not hold. However, the two definitions can lead to quite similar conclu-
sions provided supp y is a connected set. (See Section 6.) Characterization of the DS
property requires a similar connectedness assumption, but on V rather than supp g
(see Holmstrom, 1979, and below); and the results of this paper could, with straight-
forward modifications, be applied to show that the marginal productivity/externality
principles underlie fair allocations.

Despite the important similarities between the fair and DS definitions of misrep-
resentation in nonatomic models, for our purposes the differences are significant. For
example, since connectedness of supp g is crucial for the fair definition of misrepre-
sentation to narrow down the class of possible allocations, there is only a very loose
connection between fair allocations and the DS property in finite agent models: un-
less supp u is a singleton it is necessarily disconnected in such models. But finiteness
of the actual types does not preclude connectedness of V, the set of potential types,
and this is what permits a single characterization of DS mechanisms applicable to
finite and nonatomic models.

REMARK 2 (Regular Private Goods Economies and Regular POy Mech-
anisms): We outline an argument that in a private goods exchange economy with
quasi-linear preferences, the “regularity” of the economy in the sense of Debreu (1970)
will ensure that a y-optimal mechanism is regular.

For p € R, let ¢, : V — R’ be a mapping such that e,(v) is a vector of y-
commodities that maximizes v(y) + m subject to the constraint p-y +m = a (the
price of m is unity). It is assumed that p is chosen so that e,(v) is non-empty for
all v. Because v is strictly concave e,(v) is unique, and because utility is quasi-linear
ep(v) is independent of a. Note that when a =0, thenm = —p-y and

v(ep(v)) — P ep(v) = sup{v(y) — p -y} = v"(p),
where v* is the conjugate function of v. Therefore (e,(v), —p - €,(v)) are the utility

maximizing demands for the y-commodities and money when the individual faces the
Walrasian budget constraint p-y +m = 0.

Define E,(u) = [ epdp. Suppose y,(-) is Y-optimal for 4 and utility functions are
monotone. Then it may be shown that there are efficiency prices p(u) € R such
that

Yu(v) = ep(u)(v).
Feasibility of net trades, [y,du = 0, therefore implies

Epu(p) = /ep(u)d/‘ =0.
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Thus, p() is an “equilibrium” price vector for the ¢ y-commodities.

Definition: The economy u is said to be regular (Debreu (1970)) if OpEp(u)(#) is
non-singular.

In this case we can apply the Implicit Function Theorem to obtain

o -1
Dp(p;w) = = (BpEp(1))” D Epum (1),

where Dp(u; w) and DEy,.,)(s) are the directional derivatives in the direction w
of the equilibrium price mapping p(z) and the excess demand function E,,)(y),
respectively.

A simple calculation shows that

DEP(#;w)(/‘) = ep(u)(“’)—

Therefore, the formula for Dy(,.)(v) is

-1
Dy () (v) = Opep(y (v) Dp(p; w) = —0pep(u) (v) (apEp(#)(:“)) ep(uy(w).

To show that the mechanism is regular, we make the following assumption:
epu)(v) €int Y, for each v € V.

This interiority assumption evidently guarantees (R.2). To establish (R.1), first note
that the existence of Dy(,,.)(v) is obtained from the formula above. Its continuity
with respect to w depends upon the continuity of e,(-): this follows from the fact that
if w and w' are close, then so are w and Aw’. Its continuity with respect to v depends
upon the continuity of ye,(-): this follows from the fact that if v and v’ are close
and e,(v) € int Y,, e,(v') € int Y, then 8%v(e,(v)) is close to 3%v’(e,(v")) and each
of these Hessian matrices of second partial derivatives is non-singular because the
functions are strictly concave. Application of the Implicit Function Theorem yields

the desired conclusion.

In Remark 5, below, we shall demonstrate that a DS PO mechanism is actually a

Walrasian allocation.

3 The Marginal Products of Individuals and Their
External Effects

The key to our characterization of DSPOy mechanisms is the concept of an individ-
ual’s marginal product. This is no less true in the finite numbers model than in the
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continuum (see Makowski and Ostroy, 1987a), but in the continuum the infinitesimal
scale of each agent is ideally suited for the application of the calculus.

Definition: The marginal product of w to the population y is

MP,(w) = Dg,(uw) = lim g(p t) g(k)

There is an intimate connnection between an individual’s marginal product and
the externalities he/she imposes on others.

Definition: The (sum of the) ezxternal effects imposed by w on the population p
1s

£uw) = [{80(.()) - Dy (v)} du(v).

Substituting the definitions of g(u + t6,) and g(u) into the definition of w’s
marginal product, and making the obvious substitutions (to be justified below),

MP,(w) = lim Lot (0DdR(0) ¥ (0, () = J (g (0))du(v)

t—0y4 t
= [{80(yu(0)) - Dy ()} die(v) + w(yu(w))
= £u(w) + w(y#(w))'

Thus, the rate at which the total gains function g changes as an infinitesimal
individual with characteristics w is added to u, MP,(w), consists of two parts: (a)
the sum of the “external effects” that the very presence of w creates for all the other
agents in g, £,(w), plus (b) the utility that w enjoys in the y-optimal allocation,
w(yu(w)).

To elaborate on the externality component of w’s marginal product, notice that
the external effect on any one agent of type v € supp p caused by the introduction of
w is the infinitesimal change in v’s utility from his y-allocation, dv(y,(v)), evaluated
according to the directional derivative of y,(v) in the direction w, i.e., Dy(uw)(v). The
magnitude of this effect will be insignificant compared to the total utility of agent v,
but the cumulative sum of these external effects of the addition of w on the entire
population g, £,(w), can be of the same order of magnitude as an individual’s total
utility. (N.B.: Even if £,(w) # 0, w’s “externalities” may still be internalized by w
through a money transfer from w to the rest of the population. See the definition of
full internalization, below.)

The following result summarizes the implications of a regular mechanism for the

marginal product of an individual.
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Lemma 1 Let f be a regular POy mechanism at u. Then for anyw €V,
MP,(w) = &u(w) + w(yu(w))-

Moreover, £,(-) and MP ,(-) are continuous on V.

3.1 The MP of an Individual Who Misrepresents His Type

We shall show that any mechanism f is DSPOy if and only if it always rewards
all types with their marginal products, plus perhaps a lump sum. Since any type
v € supp g may claim he is really some other type w € V, as a final preliminary we
need to define not only v’s marginal product when he is truthful, MP,(v), but also
his marginal product to society when he announces some other type w, denoted by
MP ,(w;v).

Just as MP,(v) is defined by taking limits, so define

MP,(w;v) = lim g(p + tu; p +t6,) — ()

t—04 t ’

gp +td;p+16,) = /Z(yum.,(Z))du(Z) + to(Yues, (w))

is the total gains in the economy p when t agents of type v are added to the population
but announce characteristics w. Notice that for some v and w, v may be called upon
" to deliver a y-optimal allocation that is infeasible, i.e., v(y,(w)) = —oo. Certainly it
is not in v’s interest to make such an announcement; in terms of the above formula
it leads to MP,(w;v) = —oo.

where

The implications of a regular mechanism for the marginal product of an individual
who misrepresents his type are given by

Lemma 2 Let f be a reqular POy mechanism at p. Then for any w,v € V,

MP,(w;v) = MP,(w) — w(y.(w)) + v(y.(w))
= £u(w) +v(yu(w))

Thus, the marginal product of an individual who misrepresents his type consists
of the external effect of the misrepresented type, as if it were the actual one, plus the
utility the actual type receives from the allocation obtained under misrepresentation.
Notice that if w = v, the formula arrives at the required conclusion that MP ,(w; v) =
MP ,(v).
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4 Characterization of DSPQOy Mechanisms

In the following two subsections, we shall show that the marginal productivity reward
principle is necessary and sufficient for a regular POy mechanism to provide incentives
for truth-telling.

Because the economy p will be fixed throughout much of the following, we shall
suppress the functional dependence on yu, except for emphasis. For example, at u
the mechanism is a function on V and, from Lemma 1, we now write MP(w) =

§(w) + w(y(w)).

4.1 The Marginal Product/Internalization Principle as a
Sufficient Condition

The payoff in a regular POy mechanism can always be written as
U(f(w);v) = v(y(w)) + m(w) = MP(w;v) — H(w),

where H € C(V) is simply the residual establishing the equality.

The following result says that the marginal productivity reward principle has a
built-in dominant strategy property.

Lemma 3 For every type v,

max MP(w;v) = MP(v;v) = MP(v).

Say that H is a lump sum function if there is a constant h such that for allw € V,
h = H(w).

This might be better termed an anonymous lump sum function in contrast with the
lump sum function described for finite agent models (e.g., see Groves and Loeb, 1975).
In the latter, the lump sum is invariant to the individual’s characteristics but may
vary with the individual’s “name”. Of course, the distribution approach taken here

builds in anonymity.

The DS property of the MP reward principle with lump-sums follows immediately
from Lemma 3.

Theorem 1 Let f be a regular POy mechanism at p. If for all w and v,
U(f(w);v) = MP(w;v) — h,
then f is DS at u.
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Rearranging the terms in the total payoff
U(f(w); v) = w(y(w)) + m(w) = MP(w; v) — h;
and using Lemma 2 this yields,

m(w) = MP(w;v) —v(y(w)) —h

= £(w) + v(y(w)) — o(y(w)) - h

= &w)—h.
Hence, the MP reward principle may be equivalently described as giving an individual
of type v who announces w a y-allocation based on his announced type to satisfy
y-optimality, and then guaranteeing that the money allocation, m(w), will equal
(ignoring h) the external effects associated with the type he announces, £(w); i.e.,

external effects are internalized.
Let us restate Theorem 1 in terms of external effects.

Theorem 1’ Let f satisfy the hypothesis of Theorem 1. If

then f is DS at p.

Theorem 1’ says that when external effects are internalized, it pays to tell the
truth. Note, however, that this internalization is from the individual point of view
but not necessarily from the point of view of the economy as a whole. For that we
would also need the budget balancing condition [mdu = 0.

4.2 The Marginal Product/Internalization Principle as a
Necessary Condition

There remains the converse, that to achieve the DS property a regular POy mecha-
nism must be specified as in Theorem 1 (or Theorem 1’). Based on the preparations
given above and those to follow, we shall show that Holmstrom’s (1979) demonstra-
tion of necessity for the finite agent model can be “lifted” to the nonatomic case.

For the sufficient conditions on DSPOy to become necessary it is well-known
that V must exhibit a certain amount of variety. A simple method of insuring enough
variety is to assume that: V is a convez set, i.e., forv,w € V, {vs : vo = av+(1—a)w
and ¢ € [0,1]} C V.

‘The role of convexity will be to ensure that for any v,w € V, the environment
will contain the parameterization v, = av + (1 — a)w, a € [0,1], connecting v and
w. Recalling that Y, (resp.Y,) equals the effective domain of v (resp.w), note that
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Y,., = Y, NY, provided 0 < a < 1. However, Y,, =Y, and Y,, =Y, may differ from
Y, NY,, and therefore this parameterization need not be “smooth”. Before dealing
with this problem, we consider a simpler one.

It is common in mechanism theory to assume Y, = Y, for all w and v. First we
shall prove a converse to Theorem 1 for this special case, where only tastes may be
misrepresented.

Definition: Call a mechanism f demand-revealing (DR) at p if it is DS at p and
Y, = Y, for all w and v. Analogous to the definitions of DSPOy and DSPO, call
a mechanism DRPOy at u (respectively, DRPO at u) if it is both DR at u and
POy (respectively, DRPOy at p with [ mdu = 0).

A DR mechanism is a special case of a DS mechanism in which, as it were,
information about feasible net trades of individuals is always common knowledge.

Theorem 2 Let V be a conver set and let f be a regular POy mechanism at pu. If
f is DR at u then for all w and v,

U(f(w);v) = MP(w;v) — h.

Equivalently, if f is DR at u then for all w,

In some settings, such as models of exchange economies, we must deal with the
fact that individual characteristics include, besides variations in tastes, variations in
what is individually feasible. The following assumption, by providing for sufficient
variation in what is individually feasible in V, allows for a more complete converse
to Theorem 1.

Definition: V is feasibly connected at u if for all v,w € V there exists z € V
such that

(1) z could have delivered y(v) or y(w) : y(v),y(w) € Y3,

(2) v and w could have delivered y(z) : y(z) € Y, N Y.

In the above, y(:) = y,(-) is the y-optimal allocation at u.

Feasible connectedness is a relatively weak assumption. To illustrate, consider a
pure exchange economy in which for all v and all y > 0, v(y) > —oo, i.e, any v’s
trading possibilities include the positive orthant (pure purchases). Suppose for any
v, w there is a type z with a greater endowment of goods than either v or w (hence
Y, D (Y, UY,)); but because z likes y-commodities so much, in any POy allocation

for i, y(z) > 0. Then (1) and (2) would be satisfied.
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Corollary 1 Let f be a regular POy mechanism at p, and let V be conver and
feasibly connected. If f is DS at u then for all w and v,

U(f(w);v) = MP(w;v) = h.

Equivalently, if f is DS at p then for all w,

REMARK 3: A weaker assumption would suffice. It is enough to postulate that for
all v € supp p and for all w, there exists a finite sequence (2, 21, . .., 2a) With 2o = v
and z, = w such that for all: = 1,...,n —1, z; could have delivered y(z;-1) or y(zi41)
and z;_;, and z;4; could have delivered y(z;). In Holmstrom’s terminology this, along
with convexity, would make V into a piecewise smoothly connected domain.

5 Existence Theorems for DSPO and DSPOIR
Mechanisms

5.1 A Possibility Theorem for DSPO Mechanisms

Recall that a DS PO mechanism at yu is a DS POy mechanism at p in which the sum
of money transfers, [ m, is zero. If that sum were positive, the allocation of the money
commodity would not be feasible for the participants in the economy and the balance
would have to be made up by some outside authority; or if it were negative, the sum
would represent the departure from full utility maximization and Pareto-optimality.
While the results for DRPOy mechanisms in nonatomic models completely parallel
the finite agent mechanism results (the literature concentrates on DR, rather than
the more general DS mechanisms), the situation for DRPO is quite the opposite.
Instead of the impossibility results for DRPO cited above for finite agent models,
there is always possibility—even for DS PO mechanisms.

From the hypothesis that the y-allocation is optimal, fv(y(v)) = g. Therefore by

Lemma 1 /5 _ (/ MP) .

i.e., the sum of the external effects is the difference between the sum of the marginal
products and the total gains from trade for the economy.

From Theorems 1 and 2 and the Corollary we know that a DSPOy mechanism
requires that each individual’s money payment must equal the external effects asso-
ciated with the individual minus a lump sum,



Suppose the lump sum term to each agent, h, just equalled the per capita external
effects; i.e., '

h=E= [¢/m,

where 7 = [ dyu is the size of the economy p. Then
m(w) = &(w) — &

Summing the money payments, we evidently have,

/mdu=/(£—3)du=0-

This leads immediately to the following conclusion.

Theorem 3 Let f be a reqular POy mechanism at i, and let V' be convez and feasibly
connected. Then f is DSPO at u if and only if for each w and v,

U(f(w);v) = MP(w;v) = ¢

or equivalently, if and only if for each w,

Thus, assuming the mechanism is POy, the unique method to obtain DSPO is:
set the money payment for any announcement w, whether or not w € supp 4, equal
to the external effect that announcement would create for others, {(w), minus the

average external effect in the population, §.

With a finite number of individuals this method of strategically internalizing exter-
nal effects fails because each individual announcement typically changes the average
so that it cannot act as a lump sum. This observation agrees with—but does not, of
course, demonstrate—the conclusion that DS PO mechanisms typically do not exist
in finite individual models. However, as the number of individuals increases, each in-
dividual external effect will influence the average less and less, and with a continuum
of individuals the influence will be nil. (This conclusion requires certain smoothness
assumptions as well as large numbers.)

REMARK 4: Obviously, the conclusions of Theorem 3 also hold for D RPO mech-
anisms, without the assumption that V is feasibly connected.

In the following Remark and the next two subsections, we shall see that there are
important classes of models in which average external effects are zero. In such a case,
Theorem 3 can obviously be sharpened to:
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Corollary 2 Under the hypotheses of Theorem 3, if £ =0, then f is DSPO at p if
and only if for each w and v,

U(f(w);v) = MP(w; v),
or equivalently, if and only if for each w,

m(w) = {(w).

REMARK 5 (Regular Private Goods Exchange Economies and Walrasian
Equilibrium): The implication of Corollary 2 is that if private goods exchange
economies exhibit £ = 0, then f is DSPO at u if and only if

U(f(v)iv) = v(y(v)) +m(v)
= MP(v)
= v(y(v)) +£(v).
In the process of exhibiting £ = 0, the above condition will be shown to imply
that the mechanism will be DSPO at p only if it is Walrasian at u. ,
Definition: A Walrasian equilibrium for u is a triple (p(z), y(-), m(-)) satisfying

e m(v) = —p(p) - y(v) for all v € supp 4,
o v(y(v)) = m(v) = sup{v(y) —p-y} for all v € supp 4,
o [ydp =0.

Recalling the definition of £,(w) applied to this model,

60) = [{00() Dy ()} du(v)

= p(u) '/Dy(u;w)(v)dﬂ(v)

= p(u) - (—yu(w)),
where p(u) is the efficiency prices of Remark 2. The second line follows from the well-
known equality of efficiency prices and the gradients of individual utility functions.

The third line follows from the definition of Y'(u') = {y(-) : [ ydp’ = 0} which implies
that for ' = u + té,,

tyu.;.g&w(w) + f(yu+t6w(v) - yu(v)) d/‘(v) =0
t t '

Taking the limits of both sides as ¢ — 0, and assuming the mechanism is regular (as
verified in Remark 2) yields

3ulw) + [ Dy (0)dis(v) = 0.
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To summarize and conclude, for private goods exchange economies §(v) = p -

(—y(v)) and [y = 0. Therefore f¢ = £ = 0. Thus, by Corollary 2, f will be
DSPO at u if and only if m(v) = £(v), i.e,, the money payment must equal the
external effect. But the value of the external effect is the evaluation of y(v) at the
efficiency prices p(g), so m(v) = —p - y(v). Therefore, in a regular private goods
exchange economy, for DSPO the full allocation of y commodities and money must

be a Walrasian equilibrium.

5.2 A Characterization of DSPOIR Mechanisms

There is an interesting qualification to Theorem 3, one that highlights the role of the
money commodity in quasi-linear preferences as a built-in medium for making lump
sum transfers. The qualification involves “individual rationality”.

No matter what the value of [, a regular mechanism can reward each agent
with his/her marginal product—thus ensuring DS POy —and then, by requiring each
agent to make a lump sum payment in the money commodity of £, the mechanism can
ensure the PO property. It is the ability to break down the construction of a DSPO
mechanism into the separate problems of (1) DSPOy and then (2) PO, which we
shall call the “separation phenomenon”, that permits Theorem 3 to apply to a wide

range of economic environments.

In this section, we show that even within the class of models with quasi-linear
preferences, there is a way to “undermine” the separation phenomenon through the
introduction of a voluntary participation, or individual rationality, restriction. It is
as if the degree of freedom on making lump sum transfers provided by quasi-linearity
is removed once this added restriction is imposed. The argument will require further

definitions and assumptions.
Recall that B° is a set of elements common to all Y,,.

Definition: The element y° € B° is a status quo allocation at  if for all v, v(y°) =
0, and (y(v) = ¥°)vev € Y(/‘)

Thus, utility functions are scaled so that the status quo has a value of zero. In
addition, the status quo is feasible in the aggregate. For environments in which
allocations can be described by net trades (with or without public goods), y° would
be the null trade; and for environments in which ¥, = T, a fixed class of public good
projects, y° would represent the status quo project.

With a status quo allocation, we can formulate the following condition.

Definition: The mechanism f satisfies individual rationality (IR) at u if for all

veV,
U(fu(v);v) 2 v(y°)+0=0.
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For brevity, a mechanism will be called DSPOIR at p if it is both DSPO at p and
IR at p.

There is no “rationality” behind this inequality unless the mechanism gives each
individual the choice of whether or not to depart from the status quo. Where the
status quo is the null trade, the IR condition can be interpreted as a modification of
the DS property: it gives each individual the right to receive the null trade, not only
in y-commodities but also in money.

In addition to the status quo allocation, we impose more structure on the model
by assuming that the following holds for .

(E.1) (Non-decreasing returns) [MP —g>0.
(E.2) (Characteristics are benign) for all w, MP(w) > 0.

(E.3) (Existence of “dummies”) there exists v° such that MP(v°) = 0.

Were we to formulate more explicitly a particular model of an economy with costly
private or public goods, assumptions (E.1) and (E.2) could be derived as conclusions.
Here we simply assert that these conditions do not go beyond conventional restric-
tions. (See Makowski and Ostroy (1987a) for a demonstration and Section 6, below,
for an illustration of a model in which f MP — g < 0.

(E.3) postulates the existence of individuals having no effect on the gains from
trade. For example, in a private goods exchange economy if p were the efficiency price
vector corresponding to the y-optimal allocation in the population g, then v° could
be taken to be those preferences for which the hyperplane {y € R::p-y=0}is
tangent to the indifference curve of v° passing through the origin of R’ with public
goods, v° would be the tastes of someone entirely indifferent to public goods and who,
furthermore, has no resources that contribute toward their production.

With the above assumptions, the following result is a simple corollary of Theo-

rem 3.

Theorem 4 Assume f is a regular POy mechanism at u. Also assume (E.1-3) and
the ezistence of a status quo allocation. Then, f will be DSPOIR at p only if the
lump-sum payment h satisfies h = £ = 0. Conversely, if € = 0 then there exists a
DSPOIR mechanism at .

5.3 A Characterization of DSPO Mechanisms in Homoge-
neous Environments: Full Appropriation/Internalization

We shall conclude this investigation into dominant strategy mechanisms in nonatomic
economies by pointing out the connections between the condition { = 0 and the
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century-old problem of “adding-up” in the marginal productivity theory of distribu-
tion.

Say that there is adding-up at u if [ MP = g. Use this aggregate condition to
prescribe individual payoffs.

Definition: The mechanism f exhibits full appropriation at p if individuals re-
ceive exactly their marginal products: for each v, U(f(v);v) = MP(v).

There is full appropriation in the sense that each individual fully appropriates in util-
ity the benefits that his presence confers on the rest of the economy; or, alternatively
put, others neither gain nor lose from the presence of any individual. Note that,
assuming f is fully optimal at g, full appropriation at y is possible if and only if there
is adding-up at pu.

From the fact that [é = [ MP — g, adding-up is evidently equivalent to the
condition that the per capita external effect £ is zero. Given the relation between

marginal products and external effects, MP(v) = v(y(v))+{(v), there is an alternative
description of full appropriation in terms of internalizing external effects.

Definition: The mechanism f exhibits full internalization at u if individuals’
money payments equal their external effects: for each v, m(v) = §(v).

It is important to recognize that adding-up (or, £ = 0) is a property of the econ-
omy p, more precisely a property associated with Y-optimal allocations at u and
{ + t6,, and is not a property of the mechanism. However, adding-up has significant
implications for efficient, dominant strategy mechanisms. The Corollary to Theorem
3 shows that if there is adding-up, any mechanism that is DSPO at u will exhibit
full appropriation (or, full internalization). Further, Theorem 4 gives conditions un-
der which adding-up at g is necessary and sufficient for the existence of a DSPOIR
mechanism at u. Therefore, we can go a long way toward recognizing the kinds of
economic environments for which not only DS PO, but even DSPOIR, is possible by
identifying those environments exhibiting adding-up. Traditional marginal produc-
tivity theory suggests that adding-up will require constant returns in the function g.
and this is indeed the case.

To prepare the argument, we expand the domain of g from N to the smallest
positive cone containing it, i.e., {4’ : g’ = t(n+s6,), t >0, s€[0,1], we V}. For
our formal analysis it will suffice to focus on the behavior of the gains from trade on
the subset C = {p' = tp:t > 0}.

Definition: The environment is called homogeneous if g is (positively) homoge-
neous on C, i.e., if g(tu) = tg(p) for all £ > 0.

In contrast to homogeneity (constant returns), the other polar cases are for all
t > 0: g(tp) > tg(p) (increasing returns) and g(tu) < tg(p) (decreasing returns). We
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shall refer to these returns-to-scale features of an economic environment in Section 6.
The remainder of this section is devoted to a continuum extension of Euler’s Theorem
for positively homogeneous functions. The theorem is well-known to be false unless
g is differentiable. In the present context it suffices to say that g is differentiable at

w if,
(D) [ MP.(v)du(v) = Dg,(w) = ~Da.(~p)

where Dg,(-) = lima—o+ A~ {g(u + h()) - g()}.

There is an abuse of notation in (D). On the LHS we have written MP,(-) as
a function on V rather than on the set of positive measures on V, M,(V), be-
cause we preferred to write the directional derivative of g at g in the direction
v as MP,(v) rather than as MP,(§,). In the more consistent notation, (D) is
[ MP,(6,)du(v) = Dg,(p) = —Dg,(—p). The differentiability condition (D) says:
(1) at g an infinitesimal increase in the direction u has the same effect on g as the
sum of the infinitesimal increases in the component directions é,; and, (2) there is
two-sided directional derivative at g with respect to C.

Theorem 5 (Euler’s Theorem) Assume g is differentiable on C, i.e., differentiable
at tp for allt > 0. Then g is homogeneous on C if and only if g exhibits adding-up
on C.

Theorem 5 says that with differentiability, homogeneity of the environment implies
adding-up and conversely, if there is always adding-up, the environment must be
homogeneous. Therefore, adding-up will typically occur only when the environment
is homogeneous.

We have not traced the returns to scale property of g back to the underlying
conditions on the y-allocation because in the final analysis it is the results of the y-
allocation on utility that matters. Nevertheless, the function g is derived from POy
allocations and we shall comment briefly on the implications for g of some relevant
properties of these allocations. The homogeneity of g will derive from a condition
that for all t > 0, y:,(v) = y,(v), i.e., constant returns to g result if scale changes in
the population cause no changes in optimal per capita allocations. This, in turn, will
depend on the property of aggregate feasibility that for all t > 0, Y(tu) =Y (u).

The differentiability condition (D) must ultimately be derived from a condition
on the Y-optimal allocation, namely that for each v,

(Dy) /Dy(u;5w)('5v)dﬂ(w) = Dy(u;u)(év)v

where Dy,.(-) has been translated from a function on V x V' to M, (V) x M,(V).
Condition (Dy) says that the sum of all the separate effects on v, Dy(uw)(v), over
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all individuals w in the population, is equal to the effect on v of a simultaneous
infinitesimal change in the scale of the population, Dy(,;.)(v).

REMARK 6 (Regular Private Goods Exchange Economies and Homo-
geneity): It was shown in Remark 5 that a regular private goods exchange economy
satisfies adding-up, i.e., f€ = 0. It should therefore come as no surprise that this
environment is homogeneous. This conclusion can be demonstrated indirectly via
Theorem 5 after first verifying (Dy). For a direct demonstration, recall the aggre-
gate feasibility condition on trades in a private goods exchange economy p is Y(p) =
{y(-) : Vv, y(v) €Y, and [ydu = 0}, and therefore Y (tu) = Y (p), t > 0. From this
it readily follows that such an environment is homogeneous, i.e., g(tp) = tg(u), for
all t > 0.

REMARK 7 (The Value): Readers familiar with the value of a nonatomic game
(Aumann and Shapley, 1974) will recognize important similarities between the for-
mulas for the value and for DSPO mechanisms. This is a good point at which to

make some comparisons.

Let I = [0,1] be the players in a nonatomic game and e : [ — M, (V) be a
function describing each player’s characteristics with the restriction that e(z) = é, so
that each player is endowed with a pure characteristic.

Denote p = [ed), where ) is the Lebesgue measure, as the total of all players’
characteristics in the game; and let us = [ ed) be the characteristics of the players
in $ C I. (The integral us = [ged) is taken in the Gelfand sense.)

Ignoring how the construction is obtained let g(us) be the worth of coalition S.
(This is an infinite-dimensional version of Aumann and Shapley’s finite-dimensional
vector measure game.) The value assigned to an individual of type v in a game
g where the total of all players’ characteristics is ¢ is a utility é.(v) given by the
“diagonal formula,”

¢#(v) = Ll Dgtu(v)dt = /: MP;,,(v)dt.

The formula for the utility in a DSPO mechanism is
9,(v) = Dgu(v) — hy = MP,(v) - hy,

where h, = E“.

If the formulas do not coincide, i.e., ¢,(v) # ®,(v), then the value allocation as a
prescription for a mechanism cannot be DS because ®,(v) is the method of achieving

DSPO. Alternatively put, if the two formulas differ then (¢,(v) — ®,(v)) is not a

lump sum.

The one environment on which the two payoffs agree is the homogeneous one.
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With homogeneity, Dg,,(v) = Dg,(v) whenever ¢t > 0, from which it readily follows
that ¢ = ®.

Homogeneity is well-known to be important for the Value Equivalence Theorems.
For example, Aumann and Shapley (1974) demonstrate that a class homogeneous
games is derived from nonatomic exchange economies and for these games /economies
they show that the core, the value and Walrasian equilibrium coincide. Regarding
the value as a mechanism yielding utilities given by the formula ¢,(v), we are led to
the following conclusion based on Theorems 3 and 5: Assuming (D), the value is a
DS PO mechanism if and only if the environment is homogeneous.

6 The Work of Others

To conclude our analysis, we comment briefly on some of the connections between
the results of this paper and the work of others mentioned in the Introduction. We
wish to show that the general equilibrium extension of the marginal product concept
and the characterization results derived using it provide a framework in which many,
apparently unrelated, results from mechanism theory can be synthesized. Our focus is
on results for models with large numbers or a continuum of individuals, but it should
be re-emphasized that our characterization results depend upon constructs applicable
to finite individual models. In particular, the formula for a DS POy mechanism—give
each individual his marginal product minus a lump sum—is also the necessary and
sufficient condition for a DS POy mechanism in finite models.

Two further preliminary remarks are in order. First, we shall not distinguish
between results quoted below that apply to models with quasi-linear utility and those
that apply to more general models without quasi-linearity. Second, in keeping with
the mechanism approach and the emphasis of this paper in which explicit reliance
on price-guided allocations is minimized (except for Remarks 2 and 5), we shall not
elaborate upon the pricing interpretations of the results stated below. Demonstrations
that the findings of this paper for quasi-linear utility models can be extended to
models without quasi-linearity as well as pricing interpretations of DS mechanisms
are the subject of Makowski-Ostroy (1987b).

We divide the literature on DS mechanisms with large numbers of individuals
according to returns-to-scale properties of the models and then remark on the link

with finite individual models.
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6.1 Constant Returns (Homogeneous Environments)
6.1.1 Private Goods

Private goods economies have a built-in homogeneity: doubling the number of each
type clearly doubles the total gains, i.e., g(2u) = 2g(p). Therefore, a DSPO mech-
anism must reward each individual with an allocation the utility of which is exactly
equal to his marginal product. This agrees with the findings of Roberts and Postle-
waite (1976) that the Walrasian mechanism has the DS property and that it is the
only one to have this property (Hammond, 1979). McLennan (1982), and Mas-Colell
(1987) give versions of this result under the hypothesis that the net trades in a given
economy must be “fair.” (See Remark 1, above).

6.1.2 Costless Public Goods

In a model with a fixed set of costless public goods projects among which only one
will be selected, the environment is also homogeneous: if y, is the project chosen to
maximize total utility when the population is g, then yz, = y, will be chosen when the
population is 24, so g(2u) = 2g(p). (This model does not capture the distinguishing
property of pure public goods. See 6.3, below.)

Since the environment is homogeneous, we have £ = 0. But the costless public
goods model can be shown to have the stronger property that each §,(v) = 0. Thus, in
a DS PO mechanism, m,(v) = 0. Asymptotic versions of this result are demonstrated
by Tideman and Tullock (1976), Green and Laffont (1979), Rob (1982), and Mitsui
(1983); they show that the per capita surplus run by the Clarke “pivot” mechanism
(our marginal product mechanism with zero lump sum) converges to zero.

Warning: This does not imply one can design a DSPOIR mechanism for costless
public goods because, contrary to Theorem 4, in this environment characteristics may
" not be benign (recall (E.2)). In particular, any type w who does not like the efficient
public good project for population p will contribute a negative marginal product to

7R

6.2 Decreasing Returns

Consider a model of private goods without private property where individuals “own”
their tastes but total resources are fired and under the control of the mechanism.
Because an individual’s characteristics include only his tastes (representable by a
concave utility function) and not resources, when the population doubles total utility
less than doubles. The decreasing returns property g(2p) < 2g(u) is equivalent to
[&= [ MP - g <0. Therefore, DS PO requires that the utility of each individual’s
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allocation equal his marginal product plus a lump sum subsidy equal to € to make
up for the difference between [ MP and the total gains, g.

Varian (1976), Kleinberg (1980), McLennan (1982) and Champsaur and Laroque
(1981,1982) used this model to study fair allocations. Their findings established that
the only fair allocations are Walrasian equilibria arising from an initial allocation in
which each individual has an equal-valued share of total resources. We note that such
an allocation is the only way to realize the formula for a DSPO mechanism in this
model of private goods with decreasing returns.

6.3 Increasing Returns

Consider a nonatomic model with public goods produced using private goods as in-
puts, e.g., Meunch (1972). Two identical populations y, each producing the same
optimal quantities of public goods with the same resources— so producing total util-
ity 2¢g(p)—could, simply by combining to form one economy, halve the per capita
resources contributed, maintain the same total quantity of public goods and there-
fore produce total gains for the population 2y such that g(2u) > 2g(x).

In this situation, [é = [MP —g > 0. Here a DSPO mechanism gives each
individual his MP and then imposes a uniform lump sum tax of £. Hammond (1979)
has given a price characterization of a DS PO mechanism with public goods. It can be
shown that his “privately fair Lindahl mechanism” is equivalent to the above marginal
product mechanism minus lump sum.

Does a DSPOIR mechanism exist for models with costly public goods? (Clearly,
they do exist for private goods, while I R may not be applicable in case 6.2.) Assuming
the cost of the public good does not vary with the size of the population, a model
of costly public goods satisfies the hypotheses of Theorem 4. Therefore, a DSPOIR
mechanism exists if and only if ¢ = 0. However, if [£ = 0 holds, the gains function
must be homogeneous, which contradicts the increasing returns feature of public
goods models, [£ = [ MP —g > 0. So, we can conclude that a DS POIR mechanism
cannot exist when there are (costly) public goods.

There is an interesting variation in Roberts (1976). Thus far in our discussion
we have assumed that if one doubles the population then the cost of producing any
given amount of the public good will remain constant. By constrast, to prove his
asymptotic impossibility result, Roberts assumes that if an economy grows, the cost
of producing any given amount of the public good will also increase. (The role of this
assumption is to avoid asymptotically approaching a costless public good model.)
The cost may even increase in direct proportion to the population’s size; so, the
gains from trade function may even be homogeneous. But, to be consistent with the
central distinguishing property of pure public goods, Roberts also assumes that for
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any given size economy, the cost of producing any given amount of the public good
will not vary with the number of people who actually consume it. The consequence is
that individuals’ characteristics may not be benign (recall (E.2)). Indeed, if w does
not value the public good, MP(w) < 0 since his presence only adds to the cost of
production. It is easy to show that without benign characteristics, for DSPOIR one
needs to subsidize individuuals (so that MP(w) + h > 0 for all w). Consequently, to
finance the subsidy, one needs [ MP — g < 0. But this violates (E.1), which holds
in any model with costly public goods; hence the Roberts impossibllity result for
DSPOIR mechanisms even in the limiting case of a homogeneous g.

6.4 Finite Numbers: Indivisibilities

We have used the MP theme to provide an interpretive survey of the various results
for DS mechanisms in continuum economies. But what is the connection with finite
individual models, to which the literature on DS mechanisms is primarily devoted?
In making this connection, we will implicitly be shifting the focal point from models
with small numbers to models with large numbers. This change in perspective is
suggested by the parallels with traditional marginal productivity theory in which
continuous variation in the factors of production is regarded as the norm and discrete

variations as a special case.

It suffices to confine attention to constant returns models — Sections 6.1.1 and
6.1.2, above. While constant returns environments are the ideal setting for DSPO
mechanisms in nonatomic models, how to explain that DSPO mechanisms do not
generally exist when the number of individuals is finite?

Consider the parallels with the marginal productivity theory of distribution. In a
continuum model, we have shown that in constant returns environments, the neces-
sary and sufficient condition for DSPO is to pay individuals exactly their marginal
products. The feasibility of such a condition is not automatically guaranteed by con-
stant returns; it also requires the differentiability condition (D). (Recall that there is
a similar requirement in the traditional version of Euler’s Theorem for Homogeneous
Functions.) Going behind the g function to the economic environment from which it
is derived, it can be demonstrated that while (D) need not always obtain, it will hold
generically for the kinds of environments to which we have referred. Thus, in these
constant returns environments, when each individual is infinitesimal it is typically
possible to pay each one his/her MP and therefore to demonstrate that a DSPO
mechanism is feasible.

Now, while continuing to assume a constant returns environment such as would
come from a private goods exchange economy or a costless public goods model, make
the following modification: assume each individual is an atom. The fact that individ-
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uals are no longer infinitesimal is similar to the hypothesis in the theory of production
that factors are indivisible; and, in that case, even if there is constant returns it will
typically be impossible to pay each factor its marginal product. A similar interpreta-
tion appears to lie behind the non-existence results for DSPO mechanisms in finite
individual models. There is firm support for this interpretation in the case of costless
public goods. Laffont and Maskin (1979) have shown that among all of the DSPOy
mechanisms, there is none that dominates the pivot mechanism in minimizing the
absolute value of the sum of monetary transfers. (Recall that for DSPO, the sum
must be zero.) Since the pivot mechanism rewards individuals with their MP s, we
can trace the non-existence of DS PO mechanisms to the failure to obtain adding-up,
which in turn can be traced to the fact that the “factors of production” in the gains

function g, i.e., the individuals, are indivisible.

7 PROOFS

Before giving the proofs, as promised in Section 2, we provide a metric on V.

REMARK 8 (A Metric for V): Recall that an individual’s characteristics are
represented by an extended real-valued concave function v : R! - RU {—o0} with
Y, = {y : v(y) > —oc}. Denote by V a set of real-valued concave C? functions
5 : R = R that is compact in the C? compact-open topology. It is assumed that
any v € V can be represented by the pair (V(v),Y,), where V(v) = {0 € V:d(y) =
v(y), for all y € Y,} is the set of possible C? extensions of v in V. It can be verified
that V(v) is closed. Therefore, we can define V as a compact metric space by taking
the product metric on the set of closed subsets of V endowed with the Hausdorff
metric and the closed subsets of R¢ endowed with the metrizable closed convergence

topology.

Lemma 1 Holding ¢ and w fixed, let

K(t) g(p + téy)

= / V(Yup 5, () dB(V) + t0(Yupe5, (W)

/ k(t,v)dp(v) + th(t, w).

Using (R.1), for all v, k(t,v) has a right derivative at 0 given by
k"+(0,v) = Ov(y,.(v)) - Dy(um!)(v)-

(It is easy to verify that the chain rule applies even though we are taking a one-
sided derivative.) Further, k' (0,-) is continuous on V since, by assumption, y,(-) is
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continuous and, by (R.1), Dy(,.)(-) is continuous. Thus, we can apply the Lebesgue
Convergence Theorem to obtain:

MP,(w) = lim —2——— =K' (0)

t—0y4 t
- / K, (0, v)dp(v) + (0, w)
- /av ) * Dy (v)dp(v) + w(y,(w))

£u(w) + (yu(w))

Since by (R.1), for each v, Dy,.(v) is continuous, £,() is continuous. The
continuity of MP,(-) now follows immediately from the continuity of £.(-) and of

yu(5)- |l
Lemma 2 Proceeding along lines similar to Lemma 1, let
H(t) = g(p+tbuip+tby)
= [ (urisa (D) + (G ()

= /Ic(t,z)dp(z) + th(t,v),

where k(t,) was defined in the proof of Lemma 1. Then, as in the proof of Lemma

1, we have:

MP,(w;v) = lim ——-———-H(t) — H(0)

t—04 t
- / K (0,2)du(z) + Bim v(@uses, (w))
= Eu(w) + v(yu(w))’

where the last equality follows from (R.2) and the fact that y, 4.4, (w) — yu(w) (which,
recall, follows from (R.1)). ||

Lemma 3 It is evident from the definition of g that for all ¢ > 0 and v,

= H.(0)

glp + t6y;p +16,) < g(p + téy; p + t6,) = g(p + t84),

i.e., the total gains from trade cannot possibly be increased through misrepresenta-
tion. Therefore,

g(p + tbu; p + t8y) — g(p)

MP(w;v) = lim

t—04 t

< lim g(p + t6,;u + t8,) — g(p)
t—04 t

- lim g(p +t6,) — g(p)
t—04 t

= MP(v). |



Theorem 1 If U(f(w);v) = MP(w;v) — h then by Lemma 3, U(f(v);v) -
U(f(w);v) = MP(v;v) — MP(w;v) > 0. ||

Theorem 2 Fix v and w. By convexity, for any a,8 € [0,1], V contains
ve = av + (1 — a)w and vg = fv + (1 - Bw.

Recall, without loss of generality, for any a, 8 € (0,1] we can write

U(f(vs)iva) = MP(vgiva) — H(vg)
= %(B,a) — k(B),

taking advantage of the fact that v and w are fixed.

From the hypothesis that f is a DR mechanism, we have that for all a, 3 € [0,1]:

(a) a € argmaxg ¥(8,a) — k(B).

From Lemma 3, for all a, 3 € [0, 1}:

(b) a € argmax, ¥(4, ).

Since by Lemma 2, MP(vg;v,) = valy(vs)) + £(vs),
¥(B, @) = va(y(vs)) + £(vs),
where va(y(vs)) = av(y(vs)) + (1 — a)w(y(vs)).

Differentiating i with respect to a,

ﬁ./)_(a%a_). = v(y(vg)) = w(y(vs))-

Let Q = {y(vg) : B € [0,1]}. Since y(-) is continuous on V, a compact set, Q is
bounded. Therefore, sup{v(y) — w(y) : y € Q} is bounded, i.e,

Supg o [02/)(6,42 o)

< o0

(c)

Having established (a)—(c), now apply the following basic result proved in Holm-
strom (1979):

Lemma Let ¢ : [0,1] x [0,1] = R and & : [0,1] — R satisfy (a), (8) and (c),
then k is constant on [0,1].

Therefore, there is a constant k such that A = H(v) = H(w), as was to be

demonstrated. ||

Corollary 1 Note that what is required to prove Theorem 2 is that for all g €
[0,1], y(vs) € Y,NY,, hence ¢ is real-valued. The feasible connectedness assumption
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says that if this does not hold there is a z such that for all 3 € [0,1], (1) y(vg) € Y,NY,
when vy = Bv + (1 — B)z and (2) y(z3) € Y; NY,, where z3 = 8z + (1 — B)w. Apply
the conclusions of Theorem 2 to (1) to obtain H(v) = H(2) and to (2) to obtain
H(z) = H(w), leading to the same final conclusion as Theorem 2 that h = H(v) =
Hw). |

Theorem 3 Given Lemma 2, the two statements in the theorem are obviously
equivalent. Hence we need only prove one. By Theorem 1 if for all w, m(w) =
£(w) — h, then f is DSPOy at p. If in addition h = [€/E, then [m = 0; hence, f
is DSPO at p.

Conversely, if f is DSPO at u then by Theorem 2 and its Corollary, for all
w, m(w) = é(w) — h, and fm =0. Thus [{ - hp =0, or h= [&/R. I

Theorem 4 To demonstrate that DSPOIR implies [ = 0, suppose the
contrary. Then, since [§ = [ MP — g, (E.1) implies [ > 0. Now recall (E.3). By
Theorem 3, DS PO implies

U(f(v°),v)) = MP(v°) ¢
= —£<0,

contradicting IR.

To prove the converse, for each v € V, let m'(v) =¢ (v). Let f’ be the mechanism
that is identical to f except for the population g, m(-) is replaced by m'(-). By
construction, [m’ = [ £ = 0. Hence, by Corollary 2, f"is DSPO at p. Further, since
U(f'(v);v) = £(v) +v(y(v)) = MP(v), and since by (E.2), MP(v) > 0, f' satisfies IR
at u. Hence we have constructed a mechanism that is DSPOIR at p. I

Theorem 5 This is a straightforward extension of the finite-dimensional version
of Euler’s Theorem for positively homogeneous functions.

If g(tu) = tg(p), t > 0, then

Do) = lim glp+tw) —g(w) _ . (1+t)g(k) — gk

t—0t t t

= g(u).

By (D), the L.H.S. equals [ MP, so there is adding-up at p.

Conversely, if there is adding-up on C, then [ MP,,(6,)d(tp(v)) = g(tp); and by
differentiability at tp, [ MP.,(6,)d(tp(v)) = Dgr(tp) = —Dg.u(—tu). So, we have

L(t) = g(tu) = Dgeu(te) = tDgeu(p)-

Therefore,
L', (t) = Dgeu(p) =t L(1),
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where the first equality follows from the definition of L/ (t) as

lim (g((t + h)u) — g(tp)
h—04 h

, and the second equality from the positive homogeneity of the directional deriva-
tive. Since L’ (t) = limp_o_ h~* {g((¢ + h)u) — g(p)} = Dg,(—n), the hypothesis on
differentiability of C implies that L', (t) = —L’(t), i.e., L is differentiable at ¢.

The equation L(t) = tL'(t) is well-known to have the solution L(t) = ct. Putting
t=1,c= L(1) = g(p). Therefore, g(tp) == L(t) = tc = tg(u). |
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