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This paper is concerned with the solution and estimation of a simple
class of linear rational expectations models with current expectations of
the endogenous variables when there are g priori bounds on the dependent
variable. We show that for plausible values of the parameters, the model
has a unique RE solution. We first consider the exact maximum likelihood
estimation of such a limited-dependent rational expectations (LD-RE) model
and perform a number of Monte Carlo experiments to shed light on the small
sample properties of a number of alternative estimators. The results
clearly illustrate the importance of taking proper account of the limited
nature of the dependent variable and its expectations in the estimation of
the parameters of the LD-RE models. We then extend the analysis to a two-
limit situation where the dependent variable is within a band, prove the
existence and uniqueness of the RE equilibrium for this case and present an
empirical application to the Deutsche mark/French franc exchange rate within

the Exchange Rate Mechanism of the European Monetary System.



1. Introductjon

Government interventions to regulate commodity or foreign currency
markets often take the form of policies that aim at preventing the price
level to fall below or rise above certain levels. The observed price,
therefore, becomes a censored variable. In many such situations, however,
the agents’ decisions, and thus market's supply and demand are influenced by
expectations and it would be unreasonable to ignore the impact of government
policy announcements or regulations on the way expectations are formed and
the resultant outcomes. This means that government's policy, as long as it
is credible, may not only operate through the bounds it directly sets on the
variable of interest, but also through the effect that the policy announce-
ments may have on expectations. Thus even when the variable of interest
remains within the bounds (apparently removing the need for taking account
of limited-dependence in estimating the model), government regulations will
still influence the market via expectations and ignoring this may introduce
important errors into the analysis.

There is a large literature on the econometric estimation of models with
censored or truncated variables (see Maddala, 1983 for an extensive
discussion of various models) but, despite their obvious relevance, very
little has been done on the estimation of limited-dependent models when
expectations matter. Chanda and Maddala (1983, 1984) discuss a rational
expectations model with bounded price variations and briefly comment on the
estimation of such a model. Shonkwiler and Maddala (1985) further discuss
the model and present an interesting application to the U.S. corn market.
The model allows for disequilibrium caused by government intervention in a
manner that when the market price is below the support price, the producers

receive the support price while the consumers pay the market price. A review



of this earlier work can be found in Maddala (1990). Holt and Johnson
(1989) further consider the estimation problem in the one limit case and
utilize the numerical algorithm proposed by Fair and Taylor (1983) for the
solution of the non-linear RE models. This solution method relies on the
certainty equivalence assumption and in general can only provide an approx-
imate solution. By contrast, the solution we give in this paper is exact.1
Also, the estimation method adopted by Holt and Johnson does not seem to take
full account of the cross equation parametric restrictions in the computation
of the asymptotic standard errors. These authors do, however, conjecture the
uniqueness of the rational expectations solution and support this by some
simulation exercises. Pesaran (1990) discusses the properties of the
solution and provides an analytical proof of its uniqueness.

These studies provide a very interesting and useful framework to
analyze government-regulated markets. In this paper we further analyze the
issues that have been raised in the literature by discussing the solution
and estimation of a single equation limited-dependent rational expectations
(LD-RE) model where the dependent variable is bounded below. By taking
proper account of how expectations are formed and how they affect estimation
procedures, we analyze the properties of the rational expectations solution
and discuss the exact maximum likelihood estimation of the model. A number
of Monte Carlo results on the small sample properties of the alternative
estimators of the parameters of the model are also presented. These results
further highlight the importance of making proper allowances for the direct
and indirect (via expectations) influences of the bounds in econometric

estimation of such models. We then extend the model to a two-limit case

1Seo Fair and Taylor (1990, p. 383) for a further discussion.



where the dependent variable is bounded both above and below, prove the
uniqueness of the RE solution in this more general case and present an
application using data on exchange rates in the Exchange Rate Mechanism of
the European Monetary System (EMS).

The model studied in the paper is similar to that discussed in the
literature in that only current expectations matter. Limited-dependence,
however, is of the tobit variety so that the dependent variable cannot fall
below a certain exogenously given level. We concentrate on the estimation
of the reduced-form equation of the variable which is limited-dependent,
rather than the structural equations that may underlie it. Our empirical
application to models of exchange-determination under a target-zone will
illustrate the relevance of the reduced-form estimation. Analysis of the
structural LD-RE models can be carried out along a similar lines, but will
not be attempted here. Extensions to models with future expectations of the
dependent variable, on the other hand, is not a straightforward matter and
requires further investigation.

The plan of the paper is as follows. Section 2 presents the model and
discusses the properties of the rational expectations solution. Section 3
outlines the various methods of estimation. Section & presents the results
of the Monte Carlo experiments, and section 5 extends the analysis to the

two-limit case and presents the empirical application.

2. The Medel In The One-Limit Case

Consider the linear rational expectations (RE) equation

P, - ~,p: +8x +u, u - N(O,ai) (1)

t'
where Pt is the market price, P: is tts expectations given the informa-

tion at t-1, and x, 1s a vector of exogenous variables. In the absence



of any g priori restrictions on the range of variations of Pt’ this

equation has the equilibrium RE solution
- (1) 8'x® '

Pt (1.1) B x, + B xt +u

o (2)

where xi represents the rational expectations of x, formed at time t-1.
For the derivation of x: we assume that x, is generated according to the

general linear process

x =Rz + v, (3)

where z_ represents the predetermined variables that are known at time
t-1, R 1is a matrix of parameters and v, is a vector of disturbances
distributed independently of u, with mean zero and the non-singular covar-
iance matrix X. Then x: - ch. When Pc 1s unconstrained, consistent
and asymptotically efficient estimates of the structural parameters can be
obtained by the joint maximum likelihood estimation of (2) and (3) subject
to the cross-equation parametric restrictions implied by x: - lzc.

Suppose now that Pt is subject to the bound Pt 2 PcL' where PtL
is the lower limit on Pc announced prior to the determination of Pt‘
Further assume that the announcement is fully credible and that PtL is
taken to be a part of the agent's information set at time t-l.2 The price
equation in this case will be given by:

‘
TEL + Ax_+u, 1f u > P - TR; - A'x,

P = 4)
PtL' otherwise,

and the RE solution (2) obtained in the absence of market intervention will

2The econometric analysis of the LD-RE models in the case where the
policy announcements are not fully credible is beyond the scope of the
present paper.



no longer be valid. To derive the rational expectations solution in this
case, we need to make explicit assumptions concerning the distribution of

the disturbances, u. and v, Assume that

u, 02 0
~-N{o |¥ : (5)
vt 0 x
and let
Cop = (Pep-7Pe-A'x0) /0, (6)
W, = (B'v +u ) /o, (7
where
02 - ai + p'3p. (8)

Then (4) may be rewritten as:

e ,_e
1Pt + 8 z + awt, if Vt > CtL
P = (9)

P otherwise

tL’
where Wt ~ N(0,1). The expression for P: may now be written as3

e e
P = PtL’(ctL) + Plc[l-O(C (10)

¢ r

where ¢ 1is the distribution function of the standard normal variable, P;t

is the expectations of Pt conditional on u_ > P: - 1P: - p'xt (or equi-

t

valently conditional on Ct > Wc) and is given by

L

Pl = (11" (8xd + 0d(C, )/ (1-0(5 1) (11)

*See Shonkwiler and Maddala (1985), Maddala (1990) and Pesaran (1990)
for more details. The expressions given for Cc in Shonkwiler and Maddala
(1985) and in Holt and Johnson (1989, p. 606) inklicitly assume that v, - 0
and are, therefore, not appropriate for the case where =x_ are not
perfectly predictable. On this also see footnote 3 in Maddala (1990).



The first term in this expression is the price expectations in the absence
of the bound, the second term enters due to the truncation of U, and ¢
is the density function of the standard normal variable. Substituting (11)

in (10) now yields
e -1 , e -1,,.e
Po= (1-7) ~ (B'x.+ a$(C 1)) + (P -(1-7) "A'x) o). (12)

Due to the dependence of CtL on Pt and the complicated forms of ¢ and

&, it is not possible to write the functions P: in terms of the para-
meters of the model explicitly.

In dealing with this problem Shonkwiler and Maddala (1985) suggest that
P: be estimated as the maximum of PtL and some quadratic function of the
exogenous variables, with the switch depending on whether Pt is above or

below Pt Apart from the error involved in the quadratic approximation,

L
this specification implicitly assumes that at the time expectations are made
(namely at time t-1) agents in fact know vhether Pt is above or below PtL'
This incorrectly introduces a kink in the expected price function, which as

will be seen below is unnecessary and can be avoided.
Proposition 1l: For values of vy <1, equation (12) has a unique solution
for P: that is above the support price.

Broof: See Pesaran (1990) and the proof of Proposition 2 below.

3. Exact Maximum Likelihood and Other Estimation Procedures
The log likelihood function of the price-equation (4) is similar to the

log-likelihood of the standard Tobit model and is given by

2
118,05k D) = ) log(®) - 3 ) log(2mel) T ) (B are-prxt. (n)
0 1 u 1

where the indices O and 1 respectively refer to observations below and



above the limit and ’t - ¢(CtL). This is not, however, a complete
specification of the likelihood function of the model and ignores the cross-
equation parameter restrictions implied by the dependence of P: on the
parameters of the xt-equation. The complete log-likelihood function of the
model is given by4
1(7,#,02;2,2) - 4 (1,p,02;l,8) + 2 (R,D), (14)
u P u X

where lx(-) is the log-likelihood function of the xt-equation. (3):

L (R,Z) = - & Z log(2x|Z|) - & Z (x.-Bz_)'= Y(x_-Bz ).  (15)

X 2 2 t t t c

0,1 0,1

The exact ML estimators of (1,5,03;1.2) can now be obtained by maximiza-
tion of (14), noting that P: is defined uniquely as a function of these
parameters (see relation (12) and the proposition 1).

What differentiates the estimation problem here from that encountered
in estimating the standard Tobit model is that in the present case not only
tL)’ but also P: is a function of the unknown parameters. Further-
more, given the complicated nature of the dependence of P: on the
parameters, in evaluating the derivatives of the log-likelihood function one
needs to solve for P: iteratively at each stage in the computation of the
ML estinatots.s Note also that although the likelihood function for the
Tobit model without expectations is known to be globally concave in parame-
ters and thus has a unique maximum (see Olsen, 1978), it does not seem that

one can make a similar claim here. This is again due to the dependence of

P: on the unknown parameters.

aNotice that u, and v, are assumed to be independently distributed.

The relevant expressions for the analytical derivatives of P and
the log-likelihood function are given in the Appendix.



The above ML procedure imposes the cross-equation parametric
restrictions implied by the REH and yields the Full Information Maximum
Likelihood (FIML) estimates of all the parameters. Like Tobit ML estima-
tors, these estimators are asymptotically efficient and have a multivariate
normal distribution in large samples, assuming, of course, that certain
regularity conditions are satisfied.6 These conditions are the same as
those assumed in the literature on the standard Tobit model and in particu-
iar requires the disturbances u, and v. to be homoskedastic and be
normally distributed.

The FIML estimators, despite their obvious desirability, can be
computationally time-consuming. Somewhat less cumbersome are what may be
called the 2-step maximum-likelihood (2SML) estimators. These are obtained
by separating the estimation of the parameters of (4) from those of (3).

The parameters of (3), namely R and X are estimated by applying OLS to
the equations for x, while the coefficients in the equation for Pc are
estimated by maximizing IP(-) given in (14) conditional on the first stage
(step) estimates of R and ZI. This is the analogue of the two-step pro-
cedure discussed in Pagan (1984) and analyzed in some detail in Pesaran
(1987, Ch. 7). These estimators will be asymptotically less efficient than
the FIML estimators. This is because the estimators of R and = do not
take account of the dependence of IP(-) on the parametesrs of the x
process. The 2SML estimators are, however, somewhat easier to compute. We
shall compare the small sample properties of thess two estimators below.

The 2SML estimators will be used as initial values in the computation of the

6The proof of consistency and asymptotic normality of the Tobit ML
estimators can be easily extended to cover the present problem by noting
that Pt is a unique continuous function of the unknown parameters.



FIML estimators.

Finally, one may also be interested in the degree of bias or
inconsistency generated in the parameter estimates when the bound on the
dependent variable is not taken into account. The degree of bias present
will obviously depend on the proportion of the observations that are censor-
ed. If this proportion is zero then the first term in the log-likelihood
function, (13), will disappear. However, as mentioned above, it is
important to note that unlike the usual Tobit model (where if no observation
is below the limit, then OLS can be applied) here the mere announcement of
the bound will, by influencing expectatioms, complicates the model and
introduces bias in the estimation procedures that ignore the effect of
(credible) announcements on expectations. To estimate the misspecified RE
model obtained by ignoring the bound one may apply the two-step procedure
discussed in Pagan (1984) to (2). Such an estimator can be obtained by
first estimating R (say f) by applying the OLS procedure to (3), and

then regressing P_ on iz -

ﬁzt and x_ to obtain estimates of v and
B. 1In what follows these estimators will be referred to as the 2-step
estimators.7 An alternative possibility would be to apply the above method
only to the non-censored part of the sample. This procedure may be expected
to give estimates that are on average better than those obtained by using
the whole data. In the following we shall refer to these latter estimators

as the 2-step non-censored (2SNC) estimators and will use them as initial

estimates for the 2SML procedure.

7Notc that the computation of the standard errors of these two-step
estimators by the usual OLS formula is not appropriate and needs to be done
along the lines suggested in Pagan (1984) and Murphy and Topel (1985).
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4. Moute Carlo Simulations

In order to shed light on the small sample properties of the various
estimators discussed above, we carried out a nunber of Monte Carlo experi-
ments. Two sets of experiments were conducted, assuming alternatively a
univariate and a bivariate process for x_. The latter is more general and

t

allows for an extra set of cross-equation parameter restrictions.

4.1 TIhe Univariate Case

In this case X, is assumed to be a scalar and generated according to

the first-order autoregressive scheme x = 4 + pxt-l + v vc - N(O,l).8

t t'
To generate the values of Pt we first generated PtL and P: by control-
ling for the proportion of censored oba-rvations.g As to be expected, this
Parameter plays a key role in the relative performance of the alternative
estimators. Denoting this proportion by * we have = = prOb(PtSPtL) -
®(C.;), and hence Cop = O'l(x), where ¢'1(-) is the inverse of the
distribution function of the standard normal variable. Now using (6) we

have

e e -1
PtL - 1Pt + ﬁxt + 0® “(x), (16)

where 02 - ai + pz, and x: -4 + pxt-l‘ Also using (12) we have:

-1 e
BxS+oé [0 " (n)] px
e t t
Pe - { = } + [ch. . —-1_1]1. (17)

8Tho random-number generation and all the estimations were carried out
using a computer program written in Gauss (version 2.0). In order to reduce
the influence of initial values on x, twice the number of observations
needed were generated and the first hilf were dropped. For numerical opti-
mization the quadratic hill-climbing method was employed with analytical
first derivatives given in the Appendix and numerical second derivatives.

9Note that the alternative procedure for generating P_ would be to
control the values of Pt directly. We also did some expériments using
this procedure and the rc%ults were similar to those presented below. The
relevant tables are available from the authors on request.
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10
L

These can now be used in (4) to generate Pt for a given value of u,

Equations (16) and (17) then simultaneously determine P: and Pt

generated as N(O,ai ). The value of ai was fixed by controlling the

coefficient of determination of the equation for Pt in the absence of the

bounds [see equation (2)]. Denoting this coefficient by R; we have11

2 2.2 2 1
% = YRR, ¥ =8 {1 * [I%;EJ [TT;] } '

We fixed the values of v and B at -0.8 and 2.0, respectively, and

carried out 24 sets of experiments corresponding to the values of the cont-

2
X

(0.10. 0.25, 0.50).12 All the experiments were based on 500 replications.

4.2 The Bivariate Case

Here the two variables in X, Were generated according to the

rol parameters R> = (0.50, 0.90), R§ = (0.50, 0.95), n = (40, 80), and x =

following stationary vector autoregressive process

e T LY PR e A% et Ve Vi - MO (18)

%26 T LY P1% et P20%g e * Vae,  Vpe - NOOD),  (19)

where pij's are determined once Ri, R%, the coefficients of

loNotico that since we are controlling the value of C__., and thus
that of ¢(cc ) and &(C L)' P_ 1is obtained without any rided for
numerical itc%ations. Thg same fs not, however, true of the alternative
procedure of generating Pc for a given series of price bounds.

llThis result is derived by first using (2) and (3) to obtain

V(Pc) =% + ci, and then noting that by definition R§ -1 - (ai/V(Pc)).

lzlt is worth noting that the likelihood function of the LD-RE model is
well defined only for values of v < 1. This restriction was imposed at
the estimation stage. Although the estimate of v was close to one on a
few occasions for high values of o¢°, the roltricciog was never actually
binding. However, convergence of the equation for P_ towards its
solution, and also the likelihood function towards its maximum became
increasingly more time-consuming as the estimate of v moved towards unity.
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determination of equations (18) and (19) and, r, the correlation

coefficient between Xle and X' are known. Having considered various

possibilities in the univariate case, in these experiments we focus our

attention only on the effect of varying the correlation between X, and

X5e R% and Rg, were, therefore both set equal to 0.80, while r was

allowed to take the values of 0.20, 0.50 and 0.70. Under this parameteriza-

tion the variance matrix of x = (xlt'th)' is given by13

t
911 %12 1 r
Z - | J-s( )
XX r 1
912 922

Three of the four autoregressive parameters, pij' i, = 1,2 1in (18) and
(19) may now be derived from the following relations:

U117 P11 ¢ Piga * 243010, * L.

Onn ™ pz o., + p2 Ono + 20,0000, + 1,

22 21711 22722 21722712

%12 7 1121711 * P12922%2 * (P11P22*°12921912-
In the experiments we set Pl = 0.30 and obtained the other three
parameters_fron the above relations.

To generate Pc we followed the same procedure as before. We
generated the values of P: and PtL by setting the proportion of the
censored observations equal to 0.25, and draw the values of u, from
N(O,ai). These series were then used in (4) to generate the values of Pc‘

2

The variance of u, is fixed by controlling Rp. In this case the para-

meter ¥ in the relationship between aﬁ and R: is given by

13 2 -
Notice that V(xic) - 1/(1-R1). 1i=1,2 and °°v<x1t'x2t)

r/ca-8d)(1-r)",
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1.2, g 1.2 .,
¥ - (1-(I7;) ) B'B + (If;) B'E B

The remaining parameters were set as follows: g = (1.0,1.0)’', + = -0.8,
and Rs = 0.85. The results for the values of r = (0.2,0.7) and the two

sample sizes 40 and 80 are presented in Tables 3 and 4.

4.3 Summary of the Monte Carlo Results

To save space we only report the results for six of the 24 experiments
carried out for the univariate case. (see Tables 1 and 2). These correspond
to three different values of » (0.50, 0.25, 0.10), the proportion of censor-
ed observations, and two sample sizes (40 and 80). Other results are
available from the authors on request. Each table gives the simulation
results for four different estimators of the structural parameters of the
Pt equation. The four estimators covered are the two-step estimator, 325,
the two-step non-censored estimator, aZSNC' the two-step maximum-likeli-
hood estimator, 4 and the full-information maximum-likelihood

2SML’

estimator, aFIML' The tables also give type I errors of testing the null
that B and v take their true values, namely vy = -0.80 and J = 2.0.
The nominal size of the test is set at the 5 percent level. The simulation
standard errors of the estimates are in brackets.

The results show clearly that the two-step estimators that do not take
account of the bound (325 and aZSNC) perform very poorly and inferences
based on them tend to over-reject the null by a wide nargin.la Not surpris-

ingly these estimators do particularly badly when the proportion of censored

laThe standard errors of the two-step estimators are computed using the
consistent estimators discussed, for example, in Pagan (1984) and Pesaran
(1987, section 7.2.2). The relevant expressions for the variance matrix of
the two-step estimators, both for the univariate and the bivariate cases are
available from the authors on request.
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observations is high. For example, when this proportion is 0.50, the two-
step estimates of vy have a wrong sign and the null hypothesis that <y |is
equal to its true value is incorrectly rejected in the majority of cases.
In the case of these experiments (x = 0.50), the two-step non-censored
estimators do generally better than the standard two-step estimators, but
they are still unsatisfactory and inferences based on them can be very mis-
leading. The same is also true of the two-step estimates of §. Overall,
the two-step estimators tend to underestimate S and overestimate <vy. The
bias of the two-step estimators can still be quite large even when the pro-
portion of censored observations is low. Also, increasing the sample size
is not helpful in the case of these estimators and makes the over-rejection
problem even worse. This is not surprising and is due to the fact that when
x# > 0, the two-step estimators which do not allow for the price bound are
inconsistent.

Turning our attention to the ML estimators, 328ML and 3FIML' we
first note that both estimators perform reasonably well irrespective of
whether the proportion of censored observations is high or low. Even for
# = 0.50, the estimated type I errors are generally close to their nominal
size. The effect of increasing the sample size on the ML estimators is as
predicted by the asymptotic theory, and results in significant improvements
both in the parameter estimates and in the rejection probabilities. A comp-
arison of the two-step ML estimators with the FIML estimators also reveals
that based on their small sample properties there is little to chose between
them; but on computational grounds the 2SML estimators are preferable.

The above findings seem to be fairly robust to the inclusion of a
second regressor to the RE equation. As can be seen from Tables 3 and 4,

the two-step least squares estimators continue to perform very poorly, and



15

the ML estimators do extremely well, especially when the larger sample size
1s considered. The parameter estimates are very close to their true values
and the estimates of the Tejection probabilities are well within the simula-
tion confidence intervals. Also, increasing the correlation coefficient
between X, and X, seems to have little effect on the small sample
performance of the ML estimators. Once again, there is little to choose

between the two ML estimators. The 2SML estimator is, however, much simpler
to compute and is therefore to be recommended.
3. The Two-Limit Case With An Empirical Application

In this section we extent the analysis of the previous section to a
situation where the dependent variable is bounded both above and below. An
important empirical example in this context is the Exchange Rate Mechanism of
the European Monetary System (EMS), where all the bilateral exchange rates
have to remain within a band agreed by the member countries. There is a
recent theoretical literature which analyzes this problem in a continuous-time
stochastic setting (see, for example, Krugman, 1990). There has not, however,
been much empirical work in this area.ls We first illustrate how the analysis
of the previous section may be modified to take account of two bounds and then
present an empirical application in the case of the Deutsche mark/French franc
during the period when the target-zone regime has been in operation.

Suppose Pt, the observed price or exchange rate, be determined as

follows:

1SBut, see Meese and Rose (1989, 1990), Diebold and Nason (1990) and
Smith and Spencer (1990). The approach adopted in these papers is, however,
different from ours and focus on testing for non-linear effects in exchange
rate models.



16

PtU if P: 3
- >
Pt P: if PtL < Pt < PtU (20)
%
PtL if Pt 1 PtL
where PtU and PcL are the upper and lower bounds on the exchange rate

(or the price level) and P: is determined by:

e . 2
P: - 7Pt + B x, + U, u, N(O,au) (21)
where P: is the expectations of Pt given the information at time ¢t-1
and x, is generated according to (3). The expectations of Pt can be

obtained following a similar procedure as in the one-limit case. We have
e e
P - [¢(CcU) - ¢(CtL)] Plt + O(CcL) PtL + [1~Q(CcU)] PtU (22)

where:

P

’ o @
e p xt g (ctU)-¢(ctL)
ry (23)

T EORS e (TGRSR TC) i

is the expectations of Pt conditional on Pt being within the band, and

e ,,._e
CtU - (PtU-yPt-p xt)/a. The other notations are as before. We now prove

the following generalization of the Proposition 1.

Proposition 2: As long as v 1is less than unity there exists a unique

e e
solution for Pt that lies within the band, PtL < Pt < PtU' If v 1is

greater than unity a solution may still exist but this is not guaranteed.

For v equal to one no solution will exist.

Broof: Substitute Py from (23) in (22), and let the right-hand-side of the
resultant equation be F(P:). To prove the proposition we first demonstrate
that for vy <1, and P: inside the band, F(¢) is a monotonically

decreasing function of P:. We then show that for y <1, F(+) does in
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fact lie within the band.
(1) Using (22) and differentiating its right-hand-side with respect to

Pz, we have (suppressing the time subscripts for notational convenience),

F(B®) = ~7(dy=dp) B'2%/0(L-7) - 7(Cyby=C é,)/(1-7)
+ 7(PU¢U-PL¢L)/U,
where ¢i - ¢(Ci), for i = L,U. Now substituting for CU and CL we

have

2
1o - e e
F/(P%) = oy ((By -Pyéy + (B%-2, )4,

which establishes that F'(Pe) <0, for y<1 and for p® in the band.

(i1) To prove that for vy < 1, F(*) does in fact lie within the band

and F(By) <P 16 For this

it is sufficient to show that F(PL) >P U

L

purpose we introduce the following notations:

px*
w sl )

v, = (PU-PL)/a >0, 8 = (1l-9)/¢ > 0.
Evaluating the right-hand-side of (22) at P® = PL' we now have
’[F(PL).PL] - [’(wz'wl)'.('wl)lwl N [‘(VZ'V1)°¢('V1)]
+ (1-v9) [1-0(v2-w1)]v2.

The last term of this expression is always positive. Consider now the sum

of the first two terms which can also be written as

H(wluwz) - ['(wl)"(vl'wz) lwl + [‘(wl)“(v].'wz)]'

16Rccall that for vy <1, F(-) is a decreasing function of P® over

e
the range PL <P < PU.



We now show that H(+) 1is positive for w2 >0 and for any arbitrary value

of wl. First notice that

6H/3w2 - w2 Q(wl-wz) > 0.

Thus for any given value of v H 1s monotonically increasing in Wy

Also H(wl,O) = 0, and H(wl,o) - wlw(wl) + ¢(w1) which is positive for

all Wy - [See, for example, Amemiya (1985, p. 274)]. Therefore, H will

be positive for all w. and for w. > 0. This in turn implies that

1 2

0[F(PL)-PL] >0 and since 4 > 0 we have F(PL) > PL'17 A similar argu-
ment can be made to establish the inequality F(PU) < PU.

Consequently, for vy < 1, F(+) (being a continuous mapping) will
cross the 45° line once and at most once between PL and PU. In the case
where v > 1, for PL < P® < PU’ F(¢) 1is an increasing function of P®
and since F(+) may or may not be within the band, there may or may not
exist an intersection with the 45° line. The condition ¥ <1 1is therefore
sufficient for existence and uniqueness of the RE solution in the band, but
it is not necessary. This is in contrast with the one-limit case where
7 <1 is both necessary and sufficient for the existence and uniqueness of
the RE solution above the support price.18

The log-likelihood function in this case has the same form as in (14),
with the difference that IP(-) is now given by
2p(e) = 2: log(®,,) - ;l 103(2:03) - ;ii 2: (P,- 1P:-p'xt)2 + }: log(l-¢ ),

u 1 2 (24)

17Notice that when v > 1, the sum of the first two terms in O[F(PL)-
P.] continues to remain positive but the third term will now be negative.
Tke sign of O[F(PL)-PL] is ambiguous and depends on the size of the other
parameters.

18The proof in the one-limit case may be obtained as a special case of
Proposition 2 by letting PU -+ @,
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where ¢ti - Q(Cci), i =10, n, is the number of non-censored observationg
in the sample, and the indices o0, 1} and 2 respectively refer to observations
below, within and above the band.

As an empirical application of the above two-limit LD-RE model we

* e ’ ’
Pt - Pt-l - 1(Pc - Pt-l) + 8 x +4 ht + u., (25)

where Pt is the log of the exchange rate and ig determined by (20). we

assume that the Pre-announced target zone (PtL’P:U) is fully credible.

(1991)]. In the simple monetary model x, - (mt,yt)', where . is the log
of relative Woney supplies, and Y. 1is the log of relative GDps. As
elements of the vector of Predetermined variables we tried the l-month and
12-month lagged values of m, Yer Pt' and the interest rate differentials.
These were included because of the Possibility of lagged adjustment (for
example in the demand for money) and in order to account for the possible
Seasonality in the monthly data [see, for example, Haache and Townend
(1981)]. The GDP series were proxied by industrial output for which month-
ly data is available. The money supply figures are M1 plus the quasi-
money, the interest rate differentia]l ig the difference between the rate on
3-month loans ( Frankfurt) and the short term interest rate in France. al}

the data are from QEQn_u.in_ﬁsgng.1s_1ngig;gg;g, except for the data on the

upper and lower bounds on exchange rates that are calculated using bilateral

central rategs obtained from Euzgg;;;‘_ﬂgn.x_.nq_ﬁin‘ngg and the fixed
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maximum deviation from the central rates (2.25%). The exchange rate
movements and the bands around them are displayed in Figure 1.

We computed three sets of estimates for the exchange rate equation.
These are presented in Table 5. The first panel of this table gives the
two-step ML estimates ignoring the band.l9 The middle panel gives the two-
step ML estimates that allow for the band. This latter estimates are
obtained by maximizing lP(-) defined by (24), taking the estimates of the
parameters of the X_ Pprocess as given.zo Finally, the third panel in
Table 5 gives the FIML estimates which are computed by maximizing the joint
log-likelihood function in (14) with lP(-) given by (24).

The contrast between the estimates that do take account of the band and
those that do not is very striking. None of the coefficients estimated
without allowing for the target zone are statistically significant, and in
line with other results in the literature on linear exchange rate models, it
is not possible to reject the random walk hypothesis. By contrast the
estimates that allow for the band explain as much as 75 percent of the
variations in the exchange rates. The coefficient of the expected exchange
rate is significantly different from zero (and from one), and there is
strong evidence of a positive effect of the differential interest rate
variable on the exchange rate. Given that only four observations lie on the
boundaries, the results indicate the importance of a proper treatment of
expectations formation in estimating LD-RE models. One must, however, be

careful in drawing conclusions from these results since the above procedure

19Notice that due to the presence of over-identifying restrictions in
the exchange rate equation, the two-step ML estimation method is more
appropriate than the simple two-step procedure discussed in Pagan (1984).

onhe auxiliary equations for the exogenous variables, x = (nt,yt)'.
were assumed to have a vector autoregressive process of order 2.
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assumes that the band at time t 1is known to the agents at t-1. The
literature on the market for corn referred to earlier makes a similar
assumption with regards to the price support. This is a strong assumption
since the exchange rate bands are not fully credible. Ideally, one should
model the determination of the band and thus the expectations of it as
formed by the private sector. Also lack of any diagnostic tests for these
models make the results very preliminary. Extensions along these lines

should be the purpose of further research.
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APPENDIX

Here we give the first-order derivatives of 2(7,p,ai;l,2) with respect
to the structural parameters of the model in the one-limit case. Similar
expressions can also be derived for the two-limit case and are obtainable

from the authors on request. Using (14) we have:
a2/dv = Z [(30 /37)/8 ] + Z (P -vE-B'x,) [Po(3RL/aM)1/0,
0 1
at/ap = Z [(30./38)/0] + Z(thr:-p'xt) (x,+1(3FS/38) 1/,
0 1

2 2 2
az/aau - Z [(aét/aau)/ét] - nl/Zcu
0

L L [1(32/80%) (B -1P%-p'x) 1 /o,
1
a2/ok = Z [(Ot/al)/Oc]
0

+ Z [~,(ap:/an)(rt-11’:-p'xt) + 1(81’:/8!)(1’,:-71’:'#'!:)]/"i
1

+

[(x,-Re 2T T,
1

o

1

n -
d2/3L = [(aoc/ax)/otl -3 z

°r~1

e e L, 2
+ Z [1(31’:/82)(1’:-11’:-# x.))/0,
1
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+ }: 5 2 [(xt-kzt)(xt-lzt)'/Z]
0,1

In the above expressions, n represents the total number of observations,

the number of observations for which Pt > P and ¢t and Qt are

™ tL’
¢(CtL) and °(CtL)’ respectively. The expressions for the derivatives of

P: and Gc with respect to the structural parameters can also be obtained

using equations (12) and (6) in the text. We have:
8PE/8y = [0B'xe(1-8) + %4, + v(1-m) ¢ 2S(R_ B/
[0(1-7) -7 2a1- 7)) $. (B - c)]

923/38 = (0% (L-8)x] + 16 (C Tp+oxd) (B -BD) + o9 Bo)/

[(1-1)a? - vPop (B, -PD],
988/80] = (06 + 18.Coy (B B /2007 (Lm) - v24 (B, B0,
OPG/0R = (0B (1-8.) + vz é (P -PD1/[(1-1a - 126, (B B,
IRL/OT = (BB')[0b. + 18.Coy (B PO 1/2[a°(1-m) - 724 (B, -PD)a].
Similarly,
20 /3y = -¢.[BL + 7(3L/8m)]/e,
30./3P = -4 [x%0 + 1(3PL/aB)0 + TAC, 1/0°,
30 /302 = -4_[C_ /2 + 10(38%/85%) /0%,

20, /0R = -4 [Bx] + v(3RY/8R)] /0",

30 /3% = -4 _[(BB')C_ /2 + 7c(aP:/az)]/a2.
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Monte Carlo Results For Alternatives Estimatorsg Of The
Parameters of The RE-1D Model (Univariate xt)*
2 2
(Rp = 0.95, Rx = 0.90)

x = 0.50 X =025 x=0.10
Alternative Estimatorg
—_ -8 X 8 Y —
225 0.110 0.994 -0.352 1.505 -0.622 1.804
(0.161) (0.180) (0.159) (0.178) (0.147) (0.164)
a 1.000 1.000 0.882 0.878 0.288 0.282
(0.000) (0.000) (0.014) (0.015) (0.020) (0.020)
QZSNC -0.399 1.558 -0.576 1.754 -0.688 1.877
(0.276) (0.305) (0.191) (0.212) (0.155) (0.172)
a 0.418 0.418 0.260 0.258 0.136 0.130
(0.022) (0.022) (0.020) (0.020) (0.015) (0.015)
QZSML -0.813 2.014 -0.817 2.019 -0.796 1.99¢
(0.264) (0.292) (0.199) (0.220) (0.156) (0.173)
@ 0.086 0.090 0.062 0.062 0.064 0.062
(0.013) (0.013) (0.011) (0.011) (0.011) (0.011)
ZFIML -0.766 1.961 -0.782 1.978 -0.794 1.992
(0.253) (0.280) (0.189) (0.208) (0.155) (0.171)
a 0.094 0.094 0.078 0.076 0.058 0.060

(0.013) (0.013) (0.012) (0.012) (0.010) (0.011)

*All experiments are based on 500 replications. Figures in brackets are
simulation standard GrYOrS, ¥ = Ptob(PcSPtL)’ § = (v,8)' = (-.80,2.0)",
228 is the two-step estimator ignoring the bound on Pt, QZSNC is the two-
Step estimator ignoring the bound on Pc, but using only the non-censored
observations, QZSHL is the 2-step maximun likelihood estimator, ZFIHL is
the full-information maximum likelihood estimator, a is the type I error
(set at the nominal value of 0.05), Rp is the coefficient of determination
of the Pt-equacion in the absence of the bound, and Rx is the coefficient

of determination of the X, -equation..
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TABLE 2
Monte Carlo Results For Alternatives Estimators Of The
Parameters Of The RE-LD Model (Univariats x.)°

(R2 = 0.95, R% = 0.90)
p X

Sample Size = 80
x =0.50 x = 0,25 x=0.10
Alternative Estimators
X )] e ] ] v J:]
225 0.097 1.010 -0.358 1.514 -0.627 1.811
(-0.1195) (0.129) (0.109) (0.122) (0.097) (0.108)
a 1.000 1.000 0.992 0.990 0.484 0.470
(0.000) (0.000) (0.004) (0.004) (0.022) (0.022)
QZSNC -0.390 1.550 -0.572 1.751 -0.686 1.876
(0.176) (0.195) (0.121) (0.135) (0.102) (0.113)
a 0.688 0.680 0.468 0.460 0.172 0.168
(0.021) (0.021) (0.022) (0.022) (0.017) (0.017)
gZSML -0.801 2.002 -0.804 2.004 -0.799 1.999
(0.163) (0.180) (0.121) (0.133) (0.103) (0.114)
a 0.046 0.044 0.052 0.054 0.068 0.068
(0.009) (0.009) (0.010) (0.010) (0.011) (0.011)
gFIHL -0.754 1.948 -0.773 1.967 -0.793 1.990
(0.157) (0.173) (0.117) (0.129) (0.102) (0.112)
a 0.082 0.082 0.068 ~ 0.070 0.062 0.064

(0.012) (0.012) (0.011) (0.011) (0.011) (0.011)

*Sae the notes to Table 1A.



TABLE 3

Monte Carlo Results For Alternatives Estimators Of The

Parameters of the RE-LD Model (Bivariate xt)*

(r = 0.20)
n = 40
True
Values -0.800 1.000 1.000
Alternative Estimators
U5 -0.289 0.773 0.755
(0.245)  (0.145)  (0.152)
a 0.710 0.412 0.438
(0.020)  (0.022)  (0.022)
0 -0.358 0.827 0.804
~25NC (0.355)  (0.193)  (0.197)
a 0.588 0.340 0.352
(0.022)  (0.021)  (0.021)
8 -0.866 1.022 1.013
~25ML (0.333)  (0.151)  (0.173)
a 0.082 0.074 0.090
(0.012)  (0.012)  (0.013)
8 -0.8764  0.998 1.013
~FIML (0.339)  (0.140)  (0.168)
a 0.082 0.084  0.080
(0.012)  (0.012) (0.012)
* 2 2
In all the experiments Rp = 0.85, Rl - R

r = Correlation coefficient between x

in Table 1

2
2

n =80
-0.800 1.000 1.000
-0.246 0.752 0.752
(0.174) (0.105) (0.096)
0.934 0.724 0.710
(0.011) (0.020) (0.020)
-0.314 0.810 0.809
(0.222) (0.130) (0.127)
0.806 0.516 0.526
(0.018) (0.022) (0.022)
-0.802 1.001 1.000
(0.204) (0.098) (0.114)
0.056 0.074 0.068
(0.010) (0.012) (0.01D)
-0.798 0.974 0.998
(0.203) (0.090) (0.110)
0.060 0.092 0.072
(0.011) (0.013) (0.012)

= 0.80 and x = 0.25.

1 and xz.

Other notations are as
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TABLE 4

Monte Carlo Results For Alternatives Estimators Of The

Parameters Of The RE-LD Model (Bivariate xt)*

(r = 0.70)
o= 40
True -0.800 1.000 1.000
Values
Alternative Estimators
£y -0.458 0.774 0.755
(0.622) (0.158)  (0.165)
a 0.518 0.364 0.392
(0.022)  (0.022)  (0.022)
0 -0.879 0.782 0.758
-25NC (3.269)  (0.211)  (0.215)
a 0.516 0.39 0.398
(0.022)  (0.022)  (0.022)
9 -0.839 1.030 1.010
~25ML (0.321)  (0.219)  (0.226)
a 0.088 0.074 0.068
(0.013)  (0.012) (0.01l1)
9 -0.851 1.032 1.011
~FIML (0.319)  (0.216)  (0.224)
a 0.098 0.078 0.086
(0.013)  (0.012) (0.013)

*See footnote to Table 3.

n = 80
-0.800 1.000 1.000
-0.373 0.752 0.751
(0.353) (0.114) (0.105)
0.686 0.646 0.630
(0.021) (0.021) (0.022)
-0.437 0.761 0.762
(0.563) (0.147) (0.140)
0.636 0.566 0.580
(0.022) (0.022) (0.022)
-0.800 0.999 1.002
(0.202) (0.146) (0.149)
0.062 0.072 0.076
(0.011) (0.012) (0.012)
-0.799 0.994 0.996
(0.196) (0.143) (0.146)
0.064 0.076 0.072
(0.011) (0.012) (0.012)
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Deutsche Mark/French Franc Exchange Rate within the Target Zone
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Intercept
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Pt'Pt-l

2-Step ML Estimators
Not Taking Account

—Of the Bapd ——Of the Band
-6.285 -0.496
(18.128) (0.310)
-0.1672 0.867°
(2.890) (0.040)
0.0408 0.0068*
(0.098) (0.0028)
-0.1054 -0.0090"
(0.267) (0.0036)
5.434 -0.823
(8.967) (0.557)
-5.056 -0.293
(11.913) (0.321)
-8.101 0.618
(17.466) (0.377)
-0.997 0.443
(4.323) (0.419)
0.271 0.036
(1.149) (0.065)
1.197 -0.356
(4.739) (0.386)
-7.674 2.121%
(17.674) (0.889)
-5.606 0.930
(13.699) (0.565)
0.7465 0.4045
0.1677 0.7557
0.1677 0.7557
-136.32 -60.20
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TABLE 5

(1979(5)-1989(5)]

2-Step ML Estimators
Taking Account of

Alternative Estimates of the Monetary Model of the
Deutsche mark/French Franc Exchange Rate

FSML Estimators

Taking

Account

—Of che Band

-0.
(0.

-59.

474
305)

*
.870
.039)

.0069™
.0028)

.0089*
.0035)

.819
.551)

271
.318)

.611
.372)

.585
.485)

.031
.065)

.486
.446)

*

.100
.869)

.960
.559)

.4019
.7588

.7588

66
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Iable 5 (comt,)

TThe dependent variable is percentage change in the exchange rate measured
as 100(Pt-Pt_1), Pc is the logarithm of the spot exchange rate, @, is
log of the ratio of German to French money supplies, Ye is the log of the
ratio of German to French industrial production, r, is the difference
between the three-month interest rates in Germany and in France, "*"
denotes statistical significance at the 5 percent level. The bracketed
figures are asymptotic standard errors, 3u is the estimate of the
equation’'s standard error, R? = 1 - (Gi/vir(zrt)), LL is the maximized

value of the log-likelihood function.



30

REFERENCES

Amemiya, T. (1973), "Regression analysis when the dependent variable is
truncated normal," Ecopometrica, 41, 997-1016.

Amemiya, T. (1985), Advanced Econometrics, Basil Blackwell, Oxford.

Chanda, A.K. and G.S. Maddala (1983), "Methods of estimation for models of
markets with bounded price variation under rational expectations,"
Economic letters, 47, 181-184. Erratum in Economics Letters, 15 (1984),
195-96.

Diebold, F., and J. Nason (1990), "Non-parametric exchange rate
prediction?”, Journal of International Economics (forthcoming).

Fair, R.C., and J.B. Taylor (1983), "Solution and maximum likelihood
estimation of dynamic non-linear rational expectations models,”
Econometrica, 51, 1169-85.

Fair, R.C., and J.B. Taylor (1990), "Full information estimation and
stochastic simulation of models with rational expectatioms,” Journal of
Applied Econometrics, 5, 781-92.

Haache, G., and J. Townend (1981), "Exchange rates and monetary policy:
Modelling Sterling’'s effective exchange rate, 1972-80," Oxford Economic
Papers, Supplement, 201-47.

Heckman, J. (1979), "Sample selection as a specification error,"
Econometrica, 47, 153-61.

Holt, M.T. and S.R. Johnson (1989), "Bounded price variation and rational
expectations in an endogenous switching model of the US corn market,”
Review of Economics and Statistics, 71, 605-13.

Krugman, P. (1990), "Target zones and exchange rate dynamics,” Quarterly

Journal of Ecopomics (forthcoming).



Maddala, G.S. (1983), - ve V
Econometrics, Cambridge University Press, Cambridge.

Maddala, G.S. (1990), "Estimation of dynamic disequilibrium models with
rational expectations: The case of the commodity markets,"” in L.A.
Winters and D. Sapsford (eds.), Primary Commodity Prices: Ecopomjc Models
and Poljcy, Cambridge University Press, Cambridge.

Meese, R.A., and A.K. Rose (1989), "An empirical assessment of
nonlinearities in models of exchange rate determination," IFDF367.

Meese, R.A., and A.K. Rose (1990), "Non-linear, non-parametric, non-
essential exchange rate estimation," American Economic Review, 80, 192-
96 .

Murphy, K.M. and R.H. Topel (1985), "Estimation and inference in two-step
econometric models,” Journal of Business and Economics Statistics, 3,
370-79.

Olsen, R.J. (1978), "Note on the uniqueness of the maximum-likelihood
estimator for the Tobit model," Econometrica, 46, 1211-15.

Pagan, A.R. (1984), "Two stage and related estimators and their

applications," Review of Economic Studies, 53, 517-38.
Pesaran, M.H. (1987), Limits to Rational Expectations, Basil Blackwell,

Oxford.

Pesaran, M.H. (1990), "Comment on Maddala’s paper,” in L.A. Winters and D.
Sapsford (eds.), Primary Commodity Prices: Ecomomic Models and Policy,
Cambridge University Press, Cambridge.

Pesaran, M.H. (1991), "Exchange rate expectations and exchange rate bands:
Deutsche mark/French franc rate in the EMS," under preparation.

Shonkwiler, J.S. and G.S. Maddala (1985), "Modelling expectations of bounded
prices: An application to the market for corn," ngigg_gﬁ_ﬁggnggigg_gnﬂ



32

statiscics, 67, 634-41.

Smith, G.W., and M.G. Spencer (1990), "Estimation and testing in models of
exchange-rate target zones and process switching,” Dept. of Economics,

Queens University, Ontario.



