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Summary

The present work reconsiders the celebrated article "Propagation Problems
and Impulse Problems" by Ragnar Frisch [1933].

The main conclusion is that the propagating mechanism, contrary to what
currently accepted, oscillates only under very peculiar or ’'non-economic’
assumptions. Technically in Frisch’s model the qualitative behaviour of the
economy described by the first order differential equation is equivalent -
contrary to what Frisch himself thought - to the behaviour described by the
more cryptic and complicated mixed difference-differential equation.
Moreover the examples presented by Frisch himself in the original model are
misleading because, in order for the macrodynamic variables to exhibit some
sort of oscillating behaviour, it is necessary to postulate an unrealistic
and inconsistent past historical evolution.

These intrinsic contradictions are here studied and presented.
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1. Introduction

The contribution of Ragnar Frisch to economics has been extensively and
deeply analyzed. His specific work 'Propagation Problems and Impulse Prob-
lems in Dynamic Economics’ (henceforth PPIP) has been carefully studied,
since its publication, by several authors. In the beginning the attention
was addressed toward general aspects (Cfr. For example Tinbergen [1935],
Arrow [1960], Johansen [1969], Samuelson [1974], Blatt [1980]), while in
recent years specific ones have been reconsidered. Velupillai [1987] has
underlined the implications of the imposed linearity assumption, while
Thalberg [1990]) has considered different possible evolutions of the so-
called 'primary’ cycle and has modified some assumptions of the original
PPIP. In the present paper the specific construction of the model presented
in PPIP is analytically approached and worked out with computer simulations.
The main conclusion is that PPIP is not a model of the cycle or, using the
Wicksell-Frisch's metaphor, it is a wooden horse that wouldn’t rock.

Before proceeding any further in discussing PPIP I would like to com-
ment on the computing ability of Frisch and his collaborators. With the aid
of my AT personal computer I have in fact worked out and reproduced (exact-
ly) Frisch’s numerical examples, and I have not found major mistakes in the
computations, even when they were rather complex and laborious (for example,
the derivation of the roots of the characteristic equations). It is
probably due to these computational difficulties that some crucial aspects

of PPIP were not analyzed before.

I, Th on of t ode
It is well known and part of the folklore of the history of economic
thought that the term macrodynamics was first introduced by Frisch himself

in PPIP. As known, in PPIP Frisch suggested that in constructing a model of



the business cycles we have to separate the propagating mechanism (the
swinging system) from the impulse mechanism. In what follows I will
concentrate only upon the propagation problem.

Frisch's suggestion on how to construct a macrodynamic model can be
summarized in the following passages in which he describes his basic
strategy.

I shall commence by a system that represents, so to speak, the

extreme limit of simplification, but which is, however, completely

determinate in the sense that it contains the same variables as
conditions. I shall then introduce little by little more complic-

ations into the picture, remembering, however, all the time to
keep the system determinate. [...] Indeed, the most simplified

cases are characterized by monotonic evolution without oscilla-
it is only by adding certain complications to the

tions. and b
picture that we get systems where the theoretical movement will
contain oscillatjons. It is interesting to note at what stage in

this hierarchic order of theoretical set-ups the oscillatory move-
ments come in. (PPIP, pp. 174-75, italics added).

In what follows the above program is analyzed and challenged. The main

points of Frisch’s own construction are catalogued in 12 steps.

w out o

Step 1. '[...] the yearly consumption is equal to the yearly production of
consumers’ goods (PPIP, p.1l75)'. No inventories.
Step 2. 'The depreciation on ... capital stock will be made up of two terms:

a term expressing the depreciation caused by the use of capital goods in the
production of consumers’ goods, and a term caused by the use of capital
goods in the production of other capital goods. h and k are the (constant)
depreciation coefficients in the capital producing industry and in the
consumer industry respectively (PPIP, p.175)'.

Step 3. The rate of increase of the capital stock is given by:

Z=y- (hx + ky) (1



Z - capital stock;

X - consumption;

¥ - 1investment decision.

Step 4.

There is no capital accumulation. A stationary condition of Z=0 is

assumed. Therefore we have:

y=mx (2)
where m = h / (1 - k) represents the total depreciation of capital stock.
Step 5. Production of capital goods is made up of two factors, total
depreciation as in step 4 and the increase in capital requirements

determined by the increase of consumer goods production.

3

y =mx + px

p - size of capital stock that is needed directly and indirectly in order
to produce one unit of consumption per year. The accelerator, equation (3),
had already been the centre of a previous debate with J.M.Clark about
causation (cf. Clark (1931, 1932]; Frisch [1931, 1932a,b]). Equations (3)
may be solved only when one of the two variables of time, either y or x,
is explicitly defined, i.e., only if we introduce another condition. There-
fore 'in order to make the problem determinate we need to introduce an equa-
tion expressing the behavior of the consumers (PPIP, p.l1l79)’. And this is
done in the following way.

Step 6. 'The encaisse desiree, the need for cash on hand, is made up of two
parts: cash needed for the transaction of consumer goods and producer goods

respectively (PPIP, p. 179)'

@ =Ix+ 8y (4)



w - encaisse desiree
r,s - constants given by habits and by the nature of the given monetary

institutions.

Step 7. (The approximation of a non-linear relation). '[...] the total
stock of money, or money substitutes, cannot be expanded at infinitum under
the present economic system. [...] it seems plausible to assume that the
encaisse desirée w will enter into the picture as an important factor which,
when increasing, will, after a certain point, tend to diminish the rate of
increase of consumption.

Assuming as a first approximation the relationship to be linear, we have

€))

X = c-Aw = c-A(rx + 8y)

where ¢ and A\ are positive constants (PPIP, pp.180, italics added)’.

As pointed out in Velupillai [1987] this first approximation was never
removed and one wonders why if the encaisse désiree is an ’'important
factor’, the linear formulation of it should have been kept. If we combine

(3), (4) and (6) we derive the following:

A_lrems) .
= Ti+dap) —c (6)
x(t) =X, e + T (z+m3)

where X(0) = x(ty;) - c¢(1 + Asm)/(Ar + Ams).

The above is a first order linear equation that allows only for
monotonic evolutions. For example, given certain numerical values (the same
one used by Frisch in the sequel of the article: X = 0.05, r=1, s=1,

m=0.5 pu =10, c = 0.165.) the evolution of a ten percent perturbation
of the system has a damped shape like the one represented in Figure 1.

As pointed out by Frisch himself ‘[...] this means that the variables



will develop monotonically as exponential functions. 1In other words, we
shall have a secular trend but no oscillations. The system considered above
is thus too simple to be able to explain developments which we know from
observation of the economic world (PPIP, p.180, italics added)’. Therefore,
after having discussed different possibilities on how to complicate matters,
Frisch’s goes on constructing, in Section IV of PPIP, A Macro-Dynamic System
Givin e to O ns, introducing the distinction of Aftalion [1927]
between capital goods whose production is started and the activity needed in
order to carry them to completion,

2 Cro- i tem Giv R to Osc ons.
Step 8. The amount of production activity to produce capital goods may be
considered to be a function of past investment decisions. The so-called

carry-on-activity is then defined by:
o= [ D v )

where D, is the 'advancement function’.

The activity of the system at any point of time is therefore represented by
the "consumption production" x and production of capital goods z(t).
(The sum of the two can be called, in today’s notation, GNP, and I will do

so in the sequel). Accordingly equations (4) and (5) have to be modified

into:

W =Ix + 8z, (4")

%=c- 3o =A(rx + sz,) (")

Step 9. In order to be able to solve the system in an explicit form, Frisch

defines D, as a box-function:



D

v

= {,: D,-% iftvelo,el, D=0 ift €l0,el} (8)

'This is obviously a simplified assumption, but may perhaps be taken as a
first approximation (PPIP, p.182)°'.
Now, a determinate system, from now on called, SYSTEM 1, is represented

by the three following equations:
X=c-20 = A(rx + s2,) (5")

12
Yy =mx + pXx (12

zo = [7D, Yo (7)

where Dt is given by (8).
Step 10. Differentiating (7) and (5'), 'to get rid of the constant term
(PPIP, p.182)’ and after a few manipulations we obtain a "second order

differential first order difference" equation in x:

ex(t) + Aler+sp) x(t) + Asm x(t) - Asp x(t-e) - Asm x(t-e) =0 (9

The characteristic equation of (9) is a trascendental function of the form:

ep? + Aler+sp) p + Asm - (Aspp+Asm)e® =0 (10)

where p = -8 + ia and i%=-1;

The characteristic equation (10) has a countable infinity of solutions (or

zeros). Therefore the solution of (9) is given by:

x( t) = aO + i aka"gc (11)

where the a,’'s are determined by the initial conditions.

Step 11. The countable infinity of solutions may be ordered in some way.



And this is what Frisch does using the trigonometric transformation:

™" = e Pr(cos(a,t) + isin(a,t)) (12)

The ordering goes from low frequencies (lowest values of a) to high ones
or, which is the same, from longer periods to shorter ones. The determina-
tion of the roots is therefore important in order to determine explicit
solutions of the various components. But we should keep in mind that the
whole exercise aims at constructing A_uggxg;Dxngmig_ﬁygggm_gixiﬁg_gigg_sg
Oscillations.

Step 12. Once the parameters are defined numerically, numerical algorithms
may be worked out so that the roots of (10) can be computed. Frisch's
numerical values are the ones reported in Step 7 plus the definition of e =
6. The solutions are ordered for increasing vaiues of a; in the following

way:
[@o]=0 < |ay| < Jag] < Jag] € e < fo] < .. (13)

Once the roots have been ordered Frisch goes on defining the trend as the
evolution corresponding to a,, the primary cycle as the evolution corres-
ponding to a; , the secondary cycle as the evolution corresponding to a;,
the tertiary cycle as the evolution corresponding a3 and so on. No
economic theoretical or empirical reasons are given or discussed for these

definitions.



ITII. Main c oints and Remarks

With the aid of the computer I have simulated Frisch’s examples,
recomputed the roots and reproduced the same values and graphs that Frisch
presented in his original paper. The ‘cycles’ in the three components
(primary, secondary, tertiary) are presented in Figure 2, 3, and 4 and they
reproduce the same pictures presented in PPIP. The initial conditions for
each cycle have been set to be X; = X; = X3 = 0, X;'= Xp'= X3’ = 1/2 and '
Xo = 0.

The examples developed by Frisch are interesting and when we look upon
the different components of the solutions, we see that oscillations do take
place by construction. But do these cycles represent ’'plausible’ histories?
I believe that a first curiosum arises when we recall that the evolutions of
the cycles in the three variables x, y, z were generated imposing specific
initial conditions. Given the importance of the carry on activity, 2z, and
the fact that present conditions are a function of investment decisions that
occurred during the last -¢ years, the past history is essential for the
determination of the evolution of the cycles.

In Figure 2a, 3a, 4a, the past histories consistent with Frisch's
actual simulations are reported. A striking result is that the past history
consistent with the assumed initial conditions is given by an oscillation
that is highly unlikely, to say the least. If we compare the evolution that
took place in the interval [t-¢,t,] with the evolution in [t;,t,+16] we
see that the swings are of the order of magnitude of 1 to 100. When we put
‘past’ history and 'future’ history in a graph with the same abscissa
'future’ histories are hardly distinguishable from a horizontal straight

line.



Of course it can be claimed that the three evolutions were presented
by Frisch only as examples. The implausability of this objection will be-
come clear when it is realized that such initial conditions are necessary,
if any resemblance of a cycle has to be maintained in the model. Regardless
of what has just been said it should also be underlined that Frisch’'s own
argument is rather incomplete. He had correctly pointed out in an early
stage of the construction, (see Step 7 and the section ‘Simplified Systems
without Oscillations’ of the original PPIP) that the first order linear dif-
ferential equation (6) is ’'too simple’ to give rise to oscillations because
‘the variables will develop monotoniéally as exponential function’ (PPIP,
p.180). Subsequently he went on constructing ‘A Macro-Dynamic System Giving
Rise to Oscillations’, which is summarized by the equations (5'),(3) and (7)
above (SYSTEM1).

Consistent with the argument previously developed he should have
confronted the qualitative behaviour of SYSTEM 1 with the qualitative
behaviour of equation (6). In other words, the single members appearing on
the right-hand side of the general solution of SYSTEM 1 (equation (11))
should have been summed so as to give the complete solution. In fact we
know that the sum of harmonic (or trigonometric) functions may well give
rise to monotonic behaviour, and this is a concrete possibility.

Consequently, in order to make an attempt to close Frisch's argument,
I have summed the trend, primary, secondary and tertiary components of the
original example developed by Frisch. In Figure 5, 6, 7 the result of this
aggregation is presented and in Figure 5a, 6a, 7a, the past history consis-
tent with the behaviour implicit in the original Frisch presentation are
reported.

In this very specific example some cyclical resemblance in the
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interval [ty,to+16] is maintained, but it’implies a rather unlikely
oscillating evolution in the interval ([t-e,t;]. It should by now be clear
that the way in which Frisch constructs the argument, when he shows the
‘propagating’ evolution of the primary, secondary and tertiary cycles, is
rather arbitrary because full information, with respect to the position and
the speed of the single components as given at point of time ¢,, 1is
assumed. This is not proper because there can easily be other components
with higher frequencies and also higher amplitudes and therefore the
approximating error could be high. This certainly occurs in Frisch’s own
examples. If we take, for instance, the behaviour of consumption, Fig. 2a,
in the interval [-6,-4] the tertiary cycle exhibits wider amplitudes than
the primary.

The proper procedure would be to decompose in harmonics the evolution
of the aggregated magnitudes, x, y, z that took place in the past, in-
terval [t-e,t;]. This would allow the researcher to compute the values of
the ay’s in (11). In so doing it should be possible to derive an explicit
solution for SYSTEM 1. But even when this has been done one_needs to
investigate the qualitative behaviour of the system. The explicit solution
may, of course, exhibit monotonic or non cyclical behaviour.

The procedure suggested above is rather laborious and requires a
certain computational effort. There is a much simpler way to tackle the
problem, which preserves all the qualitative and quantitative properties of
the system: solve SYSTEM 1 in a recursive manner. The linearity of the
problem and the absence of singularities in the functions, guarantees that
the actual system may be numerically approximated as closely as we like (in
my case as closely as my computer allows me to do).

Therefore, to keep also the recursive-numerical analysis at a high
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level of simplicity, equation (7) is numerically integrated using a simple
trapezoidal algorithmic rule, while the differential equations (5’') and (3)
are computed using a simple Euler approximation.

Following the trapezoid algorithm we have that (7) is written in the

form:

«/h hEr. (14)
z(t) =) zliﬁ%}-——l

4=n

where:
j is a positive integer;
tr(j)=1 for j belonging to ]0,e/h[ and tr(j) = .5 at the boundaries;
h is the step size.
Following the Euler approximating procedure we have that (5’) may be

written as:
Koy = (€= A(ZX, + 82,))h + X, (15)
and (3) as:

(x(Ep,) - x(t)) (16)

Y(th) =mx(t,,) +p T

where t, represents the ’‘discretization’ of time in intervals of size h.
As long as the investment decision function, y(t), 1is defined in the in-
terval [ty-€,ty] and x(ty) is also given, the recursive computation of
the system represented by equations (14), (15) and (16) (from now on SYSTEM
2) is straightforward and simple.

The type of information necessary to solve in explicit form SYSTEM 1,
is equivalent to the information required to solve SYSTEM 2. Moreover, for

all practical purposes and apart from very specific cases, the computation
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of the general solution must be carried on resorting also to numerical
approximations. In other words it can be concluded that to solve SYSTEM 1
in an explicit form, as the one represented by (11), is equivalent to the
recursive computation of SYSTEM 2. Moreover, if we consider that (11) has
infinite elements and that truncation of the series is almost always
unavoidable, one could claim that the study of SYSTEM 2 gives faster and
better results.

By way of example let us compute with the direct recursive method the
evolution of SYSTEM 2, in which the behaviour of the system from [tg-¢,t]
is assumed to be the one implicit in the example developed by Frisch
himself. In Figures 5, 6, and 7 the continuous line represents the solution
achieved by a direct computational method, while the dashed line is the
evolution of the system when we sum the four components considered by Frisch
(trend, primary, secondary and tertiary cycle). It is obvious that the
qualitative behaviour is the same, the difference between the two curves is
negligible and is due to the numerical approximation algorithm. In decreas-
ing the step size or using a slightly more sophisticated rule for the inte-
gration procedure the approximating error decreases. In the estimated
evolutions the step size was kept fixed to h = 1/6, i.e., to the same
magnitude chosen by Frisch in his numerical examples. When decreasing the
step size the reduction of the error is noticeable.

The simple system represented by equations (3) and (5), that has the
explicit solution (6), is homogeneous. It is, of course, well known that
adding a forcing term, will give rise to oscillations. The point stressed
by Frisch himself (see Step 7) is that system (3)-(5), when displaced out-
side equilibrium, ‘will develop monotonically’. The example worked out by

Frisch, when constructing ‘A Macro-Dynamic System Giving Rise to Oscilla-
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tions’, is not a very good one because it is equivalent to the imposition of
a forcing term into the system. The forcing term being past investment
decisions that will impose a very specific evolution to the present value of
the carry on activity (z).

This fact should be clear if we consider the type of oscillations that
were consistent, in the interval ([ty-¢,t;], with the evolution presented
in the original paper and aggregated in Figure 5,6,7. A proper procedure to
analyze the behaviour of a 'swinging’ system is represented by the perturbé-
tion method. We should try to answer the question: what is the behaviour of
a system when 'displaced’ from its equilibrium position? Or using Frisch's
own analogy: what is the behaviour of the rocking horse when displaced from
its resting position? To repeat, this is the type of question that Frisch
should have asked and answered, especially because he wanted to show that
his ’‘enlarged’ SYSTEM 1 was capable ’'of giving rise to oscillations’, while
the system captured by equations (3) and (5), with the explicit solution
(6), was not.

For the purposes of the rest of the discussion it is appropriate now
to give a "definition" of cyclical behaviour. I think that for our purposes
it can be agreed that a system shows cyclical behaviour when the variables,
as function of time, will "bounce™ above and below the equilibrium position.
It is implicit from this very general definition that non-monotonic
behaviour does not imply a cyclical one. The need for this clarification
will become obvious in the sequel.

Starting from a position of rest, in which the variables are assumed
to have been in equilibrium up to time ¢t;, the behaviour of the system has
been studied as a response to a positive ten percent shock, let’'s say, in

consumption (see Figures, 8, 9, 10). A first result is that not only that
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the behaviour of consumption is not cyclical, but it is monotonic. Moreover
it is almost equal to the behaviour of the simple system (3)-(6), when it is
exposed to the same type of shock. In Figure 1, the behaviour of consump-
tion derived from the analysis of the two different systems does practically
overlap.

When we observe the behaviour of the production starting and that of
the carry on activity we see that they are not monotonic, but also not at
all cyclical, i.e., there is no oscillation around the equilibrium values.
It is therefore possible to conclude that the system described by Frisch,
with the reported values of the paraﬁeters it is not a cycle model. Given
the intrinsic linear structure of the model the results presented above

would not change with respect to the intensity and the nature of the

original shock. It can easily be shown, in fact, that a positive shock in
the de o vestment would pr wa milar and s etrical

to what shown in Figures 8, 9, 10.

It can be argued that in the above analysis the behaviour of the total
activity, considered as the sum of consumption (x) and carry on activity
(z) - from now on called also GNP -, has been disregarded. In Figure 11 it
is shown that also when we consider the behaviour of GNP the model will not
exhibit oscillations around equilibrium positions.

Finally it is consequential to carry on parameter analysis and to try
to find out under which conditions cycles would be generated. In Figure 12,
13, 14, and 15 the evolution of the variables, after a ten per cent shock
occurred at time t,, is represented as a function of ) (ranging from .05
to .6), while the other parameters are kept at the original numerical values
of PPIP. As 1 changes also the equilibrium values would change, therefore

all the evolutions have been normalized to 100. The evolution of con-
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sumption (x) 1is still non-cyclical and monotonic for all the values of A
considered, while the evolution of the production starting (y) and of the
carry on activity are non-cyclical, but also non-monotonic. It is only gnp,
a variable not explicitly considered by Frisch, that would exhibit some
cyclical behaviour.

To discover the properties of the system it is appropriate to scan the
behaviour of the variables according to different values of the parameters.

I have constructed an index that gives the following symbolic values:

0 if the behaviour of the variable is convergent and
non-cyclical;

1 if the behaviour of the variable is convergent but in a
cyclical fashion (as defined above) ;

2 if the behaviour of the variable is divergent in a cyclical
fashion;

3 if the behaviour of the variable is explosive, but in a non-

cyclical way, or the variable is not defined at all because of
the existence of critical points (for example when 1=0, the
equilibrium value is not defined.

Having done this, the parametric analysis of the system has been conducted
with all the parameters fixed and one parameter changing, in turn, inside a
preassigned range. For each of the variables, x,y,z and GNP, the above
index numbers have been assigned.

In Table 1 the result of this inquiry is reported. Information about
the behaviour of the whole system, as a function of a given set of para-
meters, is captured by a four digit number. A series of four 0's would
express the fact that all the four variables considered would behave non-

cyclically.
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xyzg || » xyzs ¢ xyzg l_j xyzg
0 3333 -1 3003 -1 1111 0 0000 0 0000 0 2333 -.165 | o110
.05 | oooo -0.5 | 3333 -0.5 | o001 0.1 0000 2 0000 3 0000 0 0000
.10 | ooo1 0 0000 0 0000 0.2 0000 4 0000 6 0000 0.165 | 0000
.15 | coo01 0.5 0000 .5 0000 0.3 0000 6 0000 9 0000 0.330 | oooo

4
.20 | o101 n 1 0000 1 0000 u 0.4 0000 8 0000 12 0000 0.495 | oooo
.25 | o101 1.5 0000 1.5 0000 0.5 0000 10 0000 15 0000 0.660 | 0000
.30 | o101 2 0000 2 0000 0.6 oooo J| 12 0000 18 0000 0.825 | oooo
}i

.35 | o101 2.5 0000 2.5 0000 0.7 0000 14 0000 21 0000 0.990 | oooo
.40 | o101 3 0001 3 0000 0.8 0000 16 0000 24 0000 1.155 { oooo
.45 3.5 0001 3.5 0000 0.9 0000 I 18 0001 27 0000 1.320 | 0000
.50 4 0001 4 0000 1 0000 20 0001 30 0000 1.485 | ooco

The values under the coluﬂﬁ’i;zg represent a condensed indlcator of the evolution of
the system. The first digit (from the left) is the index number associated with the
behaviour of consumption, x; the second digit the index number associated with
investment decisions, y; the third the index number associated with the carry on ac-
tivity, 2z and the forth to GNP.. For example, the value 0101 summarizes the fact that
x and z have convergent behaviour, while y and g(np) exhibit both cyclical and
convergent behaviour.

From information summarized in Table 1 we can derive the following con-

clusions with respect to the four variables considered:

X - does not exhibit, independently of the set of parameters consid-
ered, cyclical behaviour;

y - exhibits cyclical behaviour only for very high values of A and ¢;

z - does not exhibit, independently of the set of parameters consid-

ered, cyclical behaviour;

gnp - exhibits cyclical behaviour only for very high values of ), r,

4, and €.
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IV. CONCLUSION

As shown above, there is a logical fault in the argument developed in
PPIP. The whole construction implies, in fact, that once the individual
components of the general solution have been identified, the closure of the
model is achieved only when the single components are sﬁmmed together, i.e.,
when the analysis is conducted on the general solution (11). In the attempt
to complete Frisch own presentation and to show that his model is a cyclical
one the opposite has been discovered. The main result of the paper is that
the model presented in PPIP, the so-called_propagation mechanism, is not in-
trinsically cyclical. Therefore it is not 'A Macro-Dynamic Model Giving
Rise to Oscillations’, as claimed by Frisch. When the system is perturbed
from equilibrium, i.e., is subject to an external shock, it evolves back to
the equilibrium position in a non-cyclical manner. Using Frisch own
metaphor, we have the paradoxical result that the rocking horse is not
rocking: or 'a wooden horse that wouldn't rock’.

Oscillations are possible only in the forcing form. It implies that
the qualitative behaviour of the ’propagating mechanism’ is equivalent to
the behaviour exhibited by a (forced) first order linear differential system
like (6).

The use of mixed difference-differential equations in economics was
(presumably) first introduced by both Frisch and Kalecki at the meeting of
the econometric society held in Leyden in 1933 (cf. Tinbergen [1935], p.
269). Frisch presented a version of PPIP, while Kalecki discussed his 'Proba
Teoriy Konjungtury’. A slightly different version of Kalecki model was then
published in Econometrica in 1935 with the title 'A Macrodynamic Theory of
Business Cycles’ and a version of ’'Proba Teoriy Konjungtury'’ appeared in an

English edition in Kalecki [1939] with the title ‘Outline of a Theory of the
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Business Cycle'. It is well known that Frisch (together with Holme) strong-
ly criticized the ‘improper’ use of difference - differential equations made
by Kalecki in his 1935 article, in which self repeating cycles were
generated under the ’'non-economic’ assumption of a parameter fixed to a
preassigned value. Given an infinitesimal change in the value of that
crucial parameter, it was underlined that the system would have evolved
exhibiting damped or explosive oscillations, and not endogenous ones. In
modern terminology, a structurally unstable model.

Frisch’s criticism turned out to be correct. But, in light of what I
have discussed above, a 'counter-critique’ could have been addressed toward
PPIP. That is, if Kalecki’s argument relied on very specific values of the
parameters, Frisch’s construction in turn did not - quite independently from
the values of the parameters - account for cyclical behaviour.

Why such a paradoxical result found in PPIP went unnoticed for almost
sixty years is an intriguing question that, in my opinion, should be of
interest to scholars of mathematical economics, business cycle theory and

history of economic thought.



19
REFERENCES

Aftalion, A. [1927]}: 'The Theory of Economic Cycles Based on the Capitalist

Technique of Production’, The Review of Economic Statistics, pp.165-70.
Arrow, K. [1960]: ‘The Work of Ragnar Frisch, Econometrician’,
Econometrica, Vol. 28, pp.175-92.
Blatt, J. [1980]: 'On the Frisch Model of Business Cycles’, 0x Economic
Papers, pp.467-479.

Clark, J.M. [1931]: 'Capital Production and Consumer Taking: A Reply’,

Journal of Political Ecomomy, vol.39, pp.814-16.

Clark, J.M. [1932]: 'Capital Production and Consumer Taking: A Further
Word', Journal of Political Fcomomy, vol.40, pp.691-93.

Frisch, R. [1931]: 'The Interrelation Between Capital Production and
Consumer Taking’, of Polit , vol.39, pp.646-654,

Frisch, R. [1932a]: ’‘Capital Production and Consumer Taking: A Rejoinder’,

Journal of Poljitical Economy, vol.40, pp.253-55.

Frisch, R. [1932b]: ‘Capital Production and Consumer Taking: A Final Word',
Journal of Political Economy, vol.40, pp.694.

Frisch, R. [1933]: 'Propagation Problems and Impulse Problems in Dynamic
Economics’, in "Essays in Honour of Gustav Cassel", Allen & Unwin,
London, pp.171-205.

Frisch, R. and Holme, H. [1935]: ‘The characteristic Solutions of a Mixed
Difference and Differential Equation Occurring in Economic Dynamics’,
Econometrica, vol. 3, pp.225-39,

Johansen, L. [1969]: ‘Ragnar Frisch’s Contributions to Economics’, The

Swedish Journal of Economics, pp.302-324.
Kalecki M. [(1933)-1939]: 'Outline of a Theory of the Business Cycle’, in



20

"Studies in the Theory of Business Cycles", Basil Blackwell, Oxford, pp.
3-15. |

Kalecki M. [1935]: 'A Macrodynamic Theory of Business Cycle’,
Econometrica, vol. 3, pp.327-344,

Samuelson, P. [1974]: 'Remembrances of Frisch’, e conomic Review,
vol. 5, p.7-23.

Thalberg, B. [1990]: 'A Reconsideration of Frisch’s Original Cycle Model’,
in Velupillai [1990], pp.96-117.

Tinbergen [1935]: ’'Annual Survey: Suggestions on Quantitative Business Cycle
Theory’, Econometrica, vol.3, pp.241-308.

Velupillai, K. [1987]: ’'Theories of the Business Cycle: From Frisch to Lucas
- and Beyond’, mimeo.

Velupillai, K. [1990]: ‘Nonlinear and Multisectoral Macrodynamics’,

Macmillan, London.



21

VI Figures.

Fig.1 Evolution of Consumption: Simple System (Eq. 6)

Fig.2 Consumption (x) - Single Cyclical Components

Fig.2a Consumption (x) - Past History, Single Cyclical
Components

Fig.3 Production Starting (y) - Cyclical Components

Fig.3a Production Starting (y) - Past History, Single
Cyclical Components

Fig.4 Carry on Activity (z) - Cyclical Components

Fig.4a Carry on Activity (z) - Past History, Single Cyclical
Components

Fig.5 Consumption (x) - Aggregated Magnitudes

Fig.5a Consumption (x) - Past History

Fig.6 Production Starting (y) - Aggregated Magnitudes

Fig.6a Production Starting (y) - Past History

Fig.7 Carry on Activity (z) - Aggregated Magnitudes

Fig.7a Carry on Activity (z) - Past History

Fig.8 Consumption: Response to a 10% Shock in x

Fig.9 Investment Decision: Response to a 10% Shock in x

Fig.10 Carry on Activity: Response to a 10% Shock in x

Fig.11 G.N.P: Response to a 10% Shock in x

Fig.12 Consumption: Response to a 10% Shock in x
(Consumption)

Fig.13 Investment Decision: Response to a 10% Shock in x

Fig.1l4 Carry on Activity: Response to a 10% Shock in x

Fig.15 Total Activity (G.N.P): Response to a 10% Shock in x
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Evolution of Consumtion: Simple System (Eq. (6))
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Simple case. First order differential equation.
Evolution of consumption subsequent to a ten
percent disturbance.

Mixed difference and differential equation.
Evolution of consumption subsequent to a ten
percent disturbance.

Comment: The two evolutions above have been computed referring to
the same values for the structural parameters used in the
original paper by Frisch. A visual comparison between the two
curves indicate that there is not a substantial difference
between the evolution of the simple system and the more ‘'complex'

one.



Consumption (x) - Single Cyclical Components
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Figure 2,

Legend:

Primary Cycle. Consumption.
----- Secondary Cycle. Consumption.
«+++. Tertiary cycle. Consumption.
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Comment: The curves above are the one reported by Frisch. The
original conditions for each cycle are set to be
(0)= x%,(0)= %,(0) = 0 and dx,/dt = dx,/dt = dx;/dt = 1/2 and x, =
0. Of course also the values of the parameters are the same one
used by Frisch (see text above).

X,



Consumption (x) - Past History, Single Cyclical Components
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Figure 2a.
Legend: Primary Cycle. Consumption.

----- Secondary Cycle. Consumption.
«ee.. Tertiary cycle. Consumption.

Comment: The curves above show the implicit past history consis-
tent with the evolution reported in PPIP. The small box on the
right is Figure 2.



Production Starting (y) - Cyclical Components

Frisch Simulation

Figure 3.

Legend:

Primary Cycle. Production Starting.
----- Secondary Cycle. Production Starting.
+«... Tertiary cycle. Production Starting.

Comment: The curves above are the same one reported by Frisch.
The original conditions for each cycle have been set to be
X,(0)= xX,(0)= (0) = 0 and dx,/dt = dx,/dt = dx,/dt = 1/2 and Xg =
0. Of course also the values of the parameters are the same one
used by Frisch (see text above).



Production Starting (y) - Past History, Single Cyclical Components
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Figure 3a.
Legend: Primary Cycle. Production Starting.

----- Secondary Cycle. Production Starting.
«+++.. Tertiary cycle. Production Starting.

Comment: The curves above show the implicit past history consis-
tent with the evolution reported in PPIP. The small box on the
right is Figure 3.



Carry on Activity (z) - Cyclical Components
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Frisch Simulation

Fiqure 4.

Legend: Primary Cycle. Carry on Activity.
----- Secondary Cycle. Carry on Activity.

«+++. Tertiary cycle. Carry on Activity.

Comment: The curves above are the same one reported by Frisch.
The original conditions for each cycle have been set to be
xX1(0)= x,(0)= % (0) = 0 and dx,/dt = dx,/dt = dx,/dt = 1/2 and X,
= 0. Of course also the values of the parameters are the same one
used by Frisch (see text above).
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Eigure 4a.
Legend Primary Cycle. Carry on Activity.
----- Secondary Cycle. Carry on Activity.
..... Tertiary cycle. Carry on Activity.

Comment: The curves above show
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Carry on Activity (z) - Past History, Single Cyclical Components
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the implicit past history consis-

tent with the evolution reported in PPIP. The small box on the
right is Figure 4.



Consumption (x) - Aggregated Magnitudes
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1.1

Direct recursive method. Aggregate Consumption.
----- Sum of individual components. Aggregate
Consumption.

Comment: The aggregated evolution of consumption implicit in
Frisch's own examples is obtained in two ways. The first requires
recursive computation of SYSTEM 2, while the second requires the
summation of the individual components. The result above is
consistent with x,(0)= x,(0)= %,(0) = 0 and dx,/dt = dx,/dt = dxy/dt
= j?./2 and x, = 6 and i:he values for the parameters given by
Frisch.



Consumption (x) - Past History
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Figqure Sa.

Legend: ——  Sum of individual components. Aggregate
Consumption.

Comment: The curves above show the implicit past history consis-
tent with the evolution reported in PPIP. The small box on the
right is Figure 5 appropriately scaled.



Production Starting (y) - Aggregated Magnitudes

Figure 6.

Direct recursive method. Production Starting.
----- Sum of individual components. Production Starting.

Legend:

Comment: The aggregated evolution of production starting, i.e.,
investment decisions, implicit in Frisch's own examples is
obtained in two ways. The first requires recursive computation of
SYSTEN 2, while the second requires the summation of the individ-
ual components. The result above is consistent with X,(0)= x,(0)=
X,(0) = 0 and dx,/dt = dx,/dt = dx,/dt = 1/2 and %, = O and the
values for the parameters given by Frisch.



Production Starting (y) - Past History
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Figure 6a,
Legend: —— Sum of individual components. Production Starting,

i.e., Investment Decisions.

Comment: The curves above show the implicit past history consis-
tent with the evolution reported in PPIP. The small box on the
right is Figure 6 appropriately scaled.



Carry on Activity (z) - Aggregated Magnitudes
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Legend: Direct recursive method. Carry on Activity.
----- sum of individual components. Carry on Activity.

Comment: The aggregated evolution of the carry on activity
implicit in Frisch's own examples is obtained in two ways. The
first requires recursive computation of SYSTEN 2, while the
second requires the summation of the individual components. The
result above is consistent with x,(0)= x,(0)= x%;(0) = 0 and dx,/dt
= dx,/dt = dx,/dt = 1/2 and x, = 0 and the values for the parame-
ters given by Frisch.



Carry on Activity (z) - Past History

FiQure 7
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Eigure 7a.
Legend: ——  Sum of individual components. Carry on Activity.

Comment: The curves above show the implicit past history consis-
tent with the evolution reported in PPIP. The small box on the
right is Figure 7 appropriately scaled.



Consumption: Response to a 10% Shock in x
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Figure 8,

Legend: ———  Consumption.

¢ : Evolution of consumption as a response to a ten percent
sﬂocﬁt in consumption that perturbates the system away from an
equilibrium condition. The computation is conducted on the

approximating SYSTEM 2, using the same parameters values as in
PPIP.



Equilibrium Investm. Decision: Response to a 10% Shock in x
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Figure 9.

Legend: —— Production Starting, i.e., Investment Decisions.

Comment: Evolution of the decisions of investment as a response
to a ten percent shock in consumption that perturbates the systenm
avay from an equilibrium condition. The computation is conducted
on ;:he approximating SYSTEM 2, using the same parameters values
as in PPIP.



0,66 Carry on Activity: Response to a 10% Shock in x
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Figure 10.

Legend: ——  Carry on Activity.

Comment: Evolution of the carry on activity as a response to a
ten percent shock in consumption that perturbates the system away
from an equilibrium condition. The computation is conducted on
the approximating SYSTEM 2, using the same parameters values as
in PPIP.



G.N.P: Response to a 10% Shock in x (Consumption)
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Eigure 11,
Legend: ——  G.N.P.

Comment: Evolution of the gross national product, i.e., sum of
consumption and carry on activity, as a response to a ten percent
shock in consumption that perturbates the system away from an
equilibrium condition. The computation is conducted on the
approximating SYSTEM 2, using the same parameters values as in
PPIP.
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Consumption: Responses to a shock in x (Consumption)
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Legend: ——  Consumption.

Comment: Evolution of consumption as a function of the structural
parameter lambda (the starting impulse is a ten percent shock of
the equilibrium value of consumption). The computation is
conducted on the approximating SYSTEM 2 and the equilibrium value
of consumption is normalized to 100.
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Figure 13.

Legend: Production Starting, i.e., Investment Decisions.

Comment: Evolution of production starting as a function of the
structural parameter lambda (the starting impulse is a ten
percent shock of the equilibrium value of consumption). The
computation is conducted on the approximating SYSTEM 2 and the
equilibrium value of the investment decision is normalized to
100.
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Legend: —— Carry on Activity.

Comment: Evolution of the carry on activity as a function of the
structural parameter lambda (the starting impulse is a ten
percent shock of the equilibrium value of consumption). The
computation is conducted on the approximating SYSTEN 2 and the
equilibrium value of the carry on activity is normalized to 100.



A}GNP

A

Y

\\

\\ \

\
oM
\\\\\\\\\\\\\\\\\\\\\qo,~$\\\§\\®\\\\\&\\\&\

NN
R
\Q\\\\QQ\\\\\\\\\\\\\\\‘\“

A

Figure 15,

Legend: —— G.N.P.

Comment: Evolution of the gross national product as a function of
the structural parameter lambda (the starting impulse is a ten
percent shock of the equilibrium value of consumption). The
computation is conducted on the approximating SYSTEM 2 and the
equilibrium value of gross national product is normalized to 100.



