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1. Introduction

Needs for forecasting multivariate time series arise in many
undertakings both in experimental and non-experimental disciplines. In non-
experimental forecasting problems such as many problems in economics, we
cannot affect the data we observe by choosing "input" variables. We must
deal directly with data. Many algorithms developed in the engineering
literature presuppose the input-output pairs are available, and are not
therefore applicable in modelling non-experimental data.

A computationally efficient and stable procedure applicable in such
situations has been proposed in Aoki (1983, 1987). The algorithm does not
require data in input-output pairs, uses only the first and second moment
information of the data, and is therefore well suited to process data
generated in any non-experimental undertaking. The basic algorithm requires
that underlying data generating processes are weakly stationary with
rational spectral density matrices.1

A number of successful applications of the algorithms have been made
since the initial announcement of the algorithm.2 Since 1987 several
clarifications and improvements have been made to the basic algorithm. Its
relations with other estimating schemes such as the least squares method,
instrumental variables, and the canonical correlation method have also been
pointed out. Some of these later developments and clarifications are
included in Aoki (1990).

The purpose of this paper is to present further developments and

refinements made to the algorithm and to discuss a way for iteratively

1The algorithm can be extended to time varying data generating
processes so long as they are asymptotically stable.

2See Cerchi and Havenner (1988), Criddle and Havenner (1988), and
Dorfman and Havenner (1991).



improving the estimates of the state space innovation representations of the
data generating processes. More specifically, we give a more detailed
account than in Aoki (1991) on how the IV estimators for the state space
models are related to the forward and backward innovations in state space
form, show how the "nestedness" property enjoyed by the original algorithm
can be restored to the models constructed by the IV estimators, and relate
the iterative improvements of the estimates proposed in this paper to the EM

algorithms as applied to state space models by Shumway and Stoffer (1982).

2. Data Generating Processes

We assume that the data sequence (yt), t=20,1,2,... 1is a mean zero
weakly stationary linear process of dimension p, having a full rank
rational spectral density matrix. These assumptions mean that we can posit

a dynamic system for the data in the form

x -Axt+u t=20,1,2,... (1)

t+l t’

- +
Yg = Cx¢ + Ve

with an unobserved state vector X, of a finite dimension n, and an
asymptotically stable constant matrix A where u and V. are mean zero,
serially and mutually uncorrelated noise processes. The matrix C is pxn
and is called the observation matrix. Since L is not observable we
estimate it and transform (1) into a state space innovation form before we
can estimate matrices A and C.3 We must estimate n as well. For

simpler exposition we treat it fixed and known. See Aoki (1989) or Aoki and

Havenner (1991) on this point.

3Shumway and Stoffer (1982) applies the EM algorithm to (1).



3. ova ation
There are two ways to estimate X, in (1). 1In this section we
estimate it by its orthogonal projection onto the subspace spanned by past
data Ygr S < t-1. We use the notation
_ t-1
Yec1 T | -
t-2
which defined y:_l recursively as the stacked vector Ye.pr oOVer,
Ye.pr--- For the moment we regard it as an infinite-dimensional going back
to data at remote past, in order not to worry about the initial (or

terminal) conditions. We use the notation
z, = €(xt|yt_1) (2)

to denote this orthogonal projection.
The next section introduces a "dual" representation in which x, 1is
projected on the subspace spanned by Yo T2 t+1.4

Denote the covariance matrix of this stacked vector by
R_ = cov Ye1:

This matrix is also of infinite-dimensional, although in any actual
implementation, we cut off the stacked vector at Ve for some positive
integer K. Then R_ is Kp x Kp.
Define a matrix Q by
1 = cov(xt,yt_l).

These matrices are constant by the assumed weak stationarity of the data

4In a weakly stationary process the data covariance matrices depend on
the time-differences only. There is no intrinsic direction of time for
these statistics.



series. Then the state vector (2) is given by

-1 -
z =Ry ., (3)

where the inverse is assumed to exist. At the moment (3) is not
operational since we do not know the matrix Q, which will be shown later
to be determined by a suitable factorization of the Hankel matrix defined
later. Advance the time index by 1 in (2) and note that the orthogonal

projection has the property

€( - £(x

xt+1|yc) t+1lyt-1’yt)

- €(xt:+1|yt:—1’et)

where =- €(x ) + Bet (4}

ee11¥em1
. = Ve - €0y p
is called the forward innovation component in the data vector Ye- Note

that it is uncorrelated with y;_l by construction, and that (et) are

serially uncorrelated. Matrix B 1is defined by

S |
B = E(xt+1et)A (5)

with

(6)

A = COV et,
assumed to be positive definite. Since Ye is weakly stationary, the
covariance matrix of the innovation vector is constant. The matrix B is

also constant as we show later. The first term in (4) becomes, using the

first of (1) and (2)
€(ax +u |y, 1) = AE(x |y, _;)
- Azt,

where €(ut|y;_1) = 0 by the assumption on the noise sequence. The set of



equations in (1) is now replaced by

z = Azt + Bet (7)

t+l

- +
Ye = €2 %

since E(thy;_l) = 0, again by assumption. In (7), we assume that the
dimension of the state vector is such that the pair (A,C) 1is observable.5
In this representation it is important to recognize that the state
vector z, is uncorrelated with the innovation vector e, Such a
representation is called a forward innovation representation of the data
generating process (1). Note that (zt) is also mean zero and weakly

stationary. We denote its covariance matrix by I. Then from (7) it

satisfies the relation
II - AITA’ + BAB' (8)

with AO = CIIC' + A, where AO = coV yt. When A 1s substituted out we
see that it is a nonlinear equation in II. It is called the algebraic
Riccati equation.

Now return to the definition of the matrix Q above (3). Since
cov(xt,yt_l) - cov(zt,yt_l), it is also a constant matrix

Q= [MAQ] - [MAMAZM .1,

where we define the cross covariance matrix between z, and Ye.q1 a8

M = E(z (9

Je-1)-

To see that matrix € has the indicated structure observe that,

B(ZYe.) = EZeypyey)

5Pair (A,C) 1is called observable if Cz = 0, Az = Az implies
z =0.



- AEztyt_1
- AM’
and so on. Matrix B defined by (5) can be rewritten as B = E(zt+1e£)A-l

since e and e

¢ c+] 2Te uncorrelated by construction. Using (7) and (9),

note that M = ANC’' + BA. Thus matrix M appears only as an intermediate
expression in defining matrix B, which is explicitly present in the time
series dynamics (7). Section 4 provides a more direct interpretation of
matrix M, however.

The (log) likelihood function can be written using (7), and maximized
either directly to obtain the maximum likelihood estimates, or iteratively
as in the EM algorithm. We follow an alternative route by noting that a
factorization of the covariance matrix between y;_l and y:, defined as
the stacked vector of all future observations yt,yt+1,... in that order,

can be used to evaluate 1 and hence zt as follows: Let
+ t
y., = +
t Yesl

Then from (7)
y: - Ozt + Se: (10)

where the matrix O 1is the observability matrix of the model (7), i.e.,

- -

c
CA

ca?

. B

and S 1is a matrix of no immediate concern. Then the covariance matrix

between the future and the past is

cov(y:,y;_l) =0 cov(zt,y;_l)



= 0q.

The lefthand side defines a Hankel matrix made up of covariance matrices
cov(yt+i,yt_1) - Ai+j as submatrices i =0,1,..., j =1,2,... which is
shown to be factorized as the product of two matrices O and Q. The rank
of matrix O 1is n which is the dimension of the state vector by the
assumed observability of (7).

The sample covariance matrices
. -1 T-4
Al =T ég% Yerse: 2 =1,2,.

are used to construct a sample Hankel matrix H which is factorized into O
and Q with * indicating sample versions. A numerically stable way for

this factorization is the singular value decomposition

H - uzv’,
where
U't = I,
n
ViV=T1,
n
and
I = diag(al,...,an), ay 2 9, 2 ... 2 o, > 0,

for some positive integer n, and we construct the two factors by
6 - us* (11)
and

a-3xsh,

In the above the singular values smaller than the cutoff value o, are all
replaced by zero and only the column vectors of U and V corresponding to

the retained singular values are retained as U and V.



Other factorizations are possible such as O =U and QO =3V' or 0O =
Uzk and Q = ZW'. These alternative forms amount to alternative choices
of the coordinate system (or parameterization) of the state space. The

representation that corresponds to the choice of (11) is called "balanced"

since the gramians are equal

Once matrix Q is obtained, we have estimates of the state vector =z

by (3) as

t - e
where ﬁ_ is the estimates of R_ constructed from the sample covariance
matrices, with A—l - Az.
Once matrix C 1in (7) is estimated, the estimate of the innovation

vector ét is obtained as Ye - éit. Since (et) is weakly stationary,

NS | .

mén Et(yt-Czt) z (yt~Czt)
yields

Az. al - .,

Ctztzt zytzt
which is the same as the least squares estimate and is also the IV estimate
using ét as: instruments. From the definition (3), we estimate the
covariance matrix cov z_, 1i.e., solution of the Riccati equation (8) by

t

i - ar g, (12)

Then the estimate of C is obtained as

a

- a o, =1
C = (Zy,z)(2z z))
- t7la @R Y4yt (13)

where



a

since this is the first row submatrix of the sample Hankel matrix H. In

Aoki (1987) matrix C 1is estimated by using Ye1 3S instruments, 1i.e.,
by
CEZYe-1 ™ YY1
which leads to
cQ =T,
and is solved using the pseudo-inverse as
¢-n a0 (14)

We remark that the error covariance matrix of (13) is not greater than that
of (14) for ARMA processes, but is equal to (14) in the case of AR

processes, see Aoki (1990, p.77).

v vatio
We mention an alternative derivation of (7) due to Faurre (1979) since

we use a similar derivation in the next section. With the infinite dimen-
sional vector y;_l, the definition of R_ can be partitioned and yields

the relation

Q'c' R g2l g22

since

6Note that y;_l is uncorrelated with e_ by construction. Bowden

t
and Turkington (1984), and Soderstrom and Stoica (1983) are books on IV

estimators written by econometricians and systems analysts, respectively.
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E(V e 1Yeg) = CE(z( 1Y p)
= CE(zpye )
= CQ,

where the inversion formula yields

r12 _ R11C0R:1 - &%y
and

r%? - R:l + R:10'C'R11CR:1.
Note that

R - (ag-cme) ™ = a7l frem (8).
Similarly

- E(zty;il)

= Elz (Y. Ve p)]

(M Eztyt-2]

M Ez ;¥ ]

(M an]).

Then advance t by 1 in (3) to obtain

Rll _R12 Ye
= [M AQ) -
2l g22|lyo,

2 1 2

11 12 - 2 2 -
= M(R yt-R yt-l) + AQ(-R yt+R yc_l)

where the theoretical counterpart of (12) is used.

12 11

Then noting that R y;_l = R

Czt and that 0R21yt = [IC'R

11yt we obtain



Zo1 - Azt + B(y-Czt)
with

B = (M-AIC')a™T, (15)
in agreement with (7). 1In this forward innovation representation, matrices
C and N are the one which are mostly naturally estimated. Then the
innovation covariance A 1is estimate by (8). To estimate B from (15) we

need estimates of M and A. For these we use the dual representation of

the data generating dynamics.

4. Backward Innovation Representation
Matrix M appears in the observation equation of the backward

innovation representation. To see this, define

+
¢ T E(xtlyt)

-1 +
= OR,Y,
where
+
R+ = covy,
and

+ !’
8 = cov(xt,yt) = [0
where (10) is used. It is convenient to scale s by H'l assuming that

t

R+ is positive definite to define a new state vector by

-1 ,o—1. +
$e = It s, = 0 R+ Ye-

In this representation time runs backward. Therefore, we express ct-l as
functions of ft as follows. First, replace t by t-1 in the above,

-1_+
Ce-1 = ORy Ve

where



t-1

Y+ -
t-1 y;
Since O' = [C',A’0], we express the above in the partitioned form
-1 t-1
Ceol = o' (c’ A'O')R+ .
Ve

’ ' ’ 11 M
= A'C, 4+ (CT-ATZM)ST (. -ME))
where

1 [ro M'O’ -1’= gll  _g12
+ OM R, g2l g22f

since using (10) E(y:+1yé) - E(yt+y£_1) - OE(ztyé_l) = OM, with

11
ST - Ao

-1
Z = 0RO,

- M'ZM,

S12 - SllM'O'Rzl,

and

22 -1

-1...11 1
S = R+ + R+

OMS M'O'R+ .

Now introduce the backward innovation vector by
+

berr = Ve - €0y,

=Y "M

By construction, b_ 1is uncorrelated with Coo Then the backward dynamics

t
are defined by

fc-l - A'ft + Pbt

Ye =M€y tPen

(16)



where
P=2C" - A'ZM,

cov bt - Ab = A, - M'ZM,

0

and Z 1is the solution of another Riccati equation
Z=A'7ZA + GA.bG'.
In this backward innovation representation

E(¢ ) = A'ZM + GAb

e
from the two equations in (16). Using (10) and the observation equation in

(7)

EC y) =¢C’

vt
i.e., C' = A'ZM + GAb
which corresponds to (15) of the forward representation.

The covariances of the two state vectors are related to the canonical
correlation coefficients between the future y: and the past y;_l. Fol-
lowing Aoki (1991, Sec. 8.1) use normalized data vector R;hy: and R:Hy;_l

to do the singular value decomposition of the normalized Hankel matrix as

-~ =) ,
R WHR” "~ = PIQ
P’P=-1, QQ=1

where the matrix T is the diagonal matrix which displays the canonical
correlation coefficients.

Then, recalling that H = 0Q
-1 -1
tr(ZM) = tr(O’R+ OarQ_"0')

- tr(O'R:hPPQR:HQ')
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]

L JR
Q OR+ )

= tr(PrQ'R_

= tr(PrQ’'Qre’)

- trrz.

See Table for a summary of the alternative expressions.

Estimates of M

In this representation M’ 1is estimated exactly as C 1is estimated in
the forward representation. The first factor of the sample Hankel matrix
given in (11) yields the estimate ét of the backward state vector which is

used as instruments to estimate M’ in complete analogy with the estimation

matrix C:
gy §r il g0 )
t't+l t+1° t+1
or
ﬁ;lazlo - ﬁ'(O'R;IO)
or

1

. o 1o -1, 1.
M = (0'R-0) 0'R,H, (17)

a

where ﬁol is the first submatrix column of the sample Hankel matrix H.

This is contrasted with the estimator in Aoki (1987) which can be interpret-

ed as using y:+1 as instrument in the second equation of (16).

Estimate of Matrix A
Unlike matrices C and M which appear explicitly in only one

innovation representation, matrix A appears in both representations. We

drop * from =z_, $or @

c and bt from now on. Two alternative estimates

t

are obtained by using z, or {  as instruments on the first equation in

(7) or in (16). Multiply (7) from the right by zé and summing over ¢,
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we obtain

< = AL > + >
zt+l’zt> A zt,z <Bet,zt

t

-1 T ,
where < , > denotes times average, e.g., <Bet,zt> =T zt-l Betzc.

Dropping the last term since e, and z, are uncorrelated theoretically,

an estimate of A of A is defined by

<z 2> = A<zt,zt>. (18)
Here
<Z_,Z2. > = n=- ﬁﬁ—lﬁ',
t'7t -
and
a~1 1

<zt+1,zt> = (R_ <yt,yt_1> R Q'

When the transpose of (16) is multiplied from the left by Et and averaged

over time, we obtain the dual of (18)
K erfey> = <ES>A + <5 Pb >

from which we construct another estimate of A by

K Se> ZA (19)
since <¢ ¢ > = Z = é'ﬁllé.

Here

2oa=l _+ +  _a-1l-
<§tgt_1> - O'R+ <yt'yc—l>R| 0

A third estimate is obtained by advancing t by one in (10)

+ +
Yeer = O2%p4q * Seryy

+
- OAzt + OBet + Set+1

and multiplying it from the right by éé to derive
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z, > = OAll + O<Bi,i > + S<e' >.

+
LTS ¢ e+l %t
The last two terms are theoretically zero and we define A by multiplying
the above by O'R;1 from the right

o=l _ + s~
0 R, V412> = ZAll (20)

where we see that the left-hand side of (19) is equal to

o=l + ot + - -1
0 R+ Fe+10%e” T 0 Rt+1<yt+1’yt-—l>R- o
- o] %R tar (21)

where
N + -
i - Yer1Ye-1”

is the sample Hankel matrix H shifted up by one submatrix (p) rows.

5. Propexties of Estimators
Asymptotic Error Covariance Matrices of Estimators

In this section, asymptotic error covariance matrices of the IV
estimators introduced in the previous sections are derived. The basic
framework is the forward innovation model together with the assumption that
the dynamic matrix A 1is asymptotically stable and the model is minimal,
i.e., the pair (A,B) 1is a reachable pair. To evaluate the asymptotic
behavior of these alternative estimates we use results due to Anderson and
Kunitomo (1989) which generalized an earlier contribution by Billingsley
(1961). Let 5; be an increasing sequence of o-fields generated by z;
and e;. Assume that E(et|3£_1) = (0, and E(ete£|3£_l) - At' In addition

we assume that, as a goes to infinity
suptE[eéetI(eéet>a)I?;_l] -+ 0 1in probability.

Throughout we use a version of the central limit theorem for martingale



differences that the "vec" of T-% thteé converges in distribution to a

normal distribution function with mean zero and finite variance, under
suitable conditions. Assuming some moment conditions such a theorem was
proved in Billingsley [1961]. See also Lai and Wei [1985]. A more general
version is obtained by Anderson and Kunitomo [1989] which allows for time
varying conditional covariance matrices for the martingale differences

(e,). We follow them in stating the next
Lemmg 1 (Anderson and Kunitomo): Under the set of assumptions stated above,

T‘1 Zeteé converges in probability to A, T-1 Zetzé converges to zero in

probability and that T-IZztzé converges in probability to II.

If we further assume that
-1 éf:
T (A _®e e! )+ § (A®A), in probability,
t‘l'max(r,s) t t-r t-s r,S

Lemma 2: The expression T etzt':_1 is a martingale difference array and

T'kzvecetzé_i converges to as N(O,lIeA) as T goes to infinity, i =

-3 ,
1,2,..., where A = cov e, and II = var z,. Similarly T vecZetyt_1

converges to N(O,AOOA), where AO = var y,.

We also use the next

Theorem (Anderson and Kunitomo): The expression T°B vec(zT z eéB')

t=1"¢t
converges in distribution to a normal one with mean zero and covariance

matrix BAB ® I as T goes to infinity.

We first examine the estimator defined in (17). Let §A = A - A. Then

from (17)

SAIl = <Bet,zt>



Lo

or (I®I)vec(SA) ='T'1zzt®Bet.

Apply theorem to derive

1--1

cov(vec(§A)) = T 'I'~ ® BAB' + op(r'l).

Analogously, we derive from (19)

Z6A = <¢,.Pb>

or (I®Z)vec SA = 'r'lzpbt ® ¢,

from which we obtain

1 1

-1 .. -

cov(vec(6A =T "PAP ©2 + 0 (T .
(vec(8A)) 8y, (T
To derive the error covariance matrix of the third estimator given by (20),

rewrite it as

s s - +
ZSAIl = Z < Bet,zt> + <et+1,zt>,
- +
or SAIl = <Bet,zt> + W< et+1,zt>
with wezlor? e

Noting that the two terms on the right hand side are uncorrelated, we

obtain, using cov e+ =1 ® A.

t+l

1 --1

cov(vecsa) = T'F (i'! @ BaB’ + it

® W(IBA)W') + op(r'l)

A dual relation to (19) is obtained by noting that

+

-, + Qe

Ye-1
and write y;_z as

- , +
Yep = W€y + Qb

- QA+ Q'Pb_ + Qb:.

Asymptotically, the first two are comparable and the third appears worse.



19

Their small sample properties, however, remain to be examined.

We next turn to analyze errors in estimating matrices C and M.

Matrix C: From (13), and the observation equation the estimation error
matrix 6C =C - C is given by

- _1 ,
§Cll T Eetzt.

Using its vectorized expression
T'h(ﬁ@I)vec 6C = T';!Zzt ®e,
and Lemma 2, we deduce the asymptotic error covariance matrix of &C to be
T(II®I)cov(vec §C)(Mlel) - I @ 4,
-1
i.e., T cov(vecs§C) - 11 = @ A, (22)

since as T goes to infinity, m- m.
In the case of the stochastic realization estimator, given in (14) the

Instead of (22), we arrive at the

expression for 6C is §CQ = T-lzety;_l.

expression
T(Q'®I)cov (vecsC)(MBI) - R_ @ 4, (23)
or by taking the pseudo-inverse of Q given in (11)

T cov(vecsC) - E@A,

where E = Z-HV’R_VZ-H. When the data generating process is AR(n), then

we know that R Q' = ZHV'R - VE;i where V and Z are as in (11) is exact

expression for 1II, Aoki (1991, Sec. 7.2), then we can state

Proposition: In VAR models in which the minimal dimension of the model is
an integer multiple of that of the data vector, the asymptotic covariance

matrices of the stochastic realization estimator and the IV estimator with
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the state vector as instruments are the same.

This important property of the stochastic realization estimator follows
by comparing (22) and (23), and noting that the state vector covariance
matrix is given by OR-IO' in such situations and that the matrix V in
the singular value decomposition of the Hankel matrix into UZV’' is such
that VV' 1is the identity matrix so that V(V'R:1V)-1V' is equal to R .
Only when the state vector covariance matrices are not equal to 0R:10, the

asymptotic covariance matrix given in (22) is smaller than that given in

(23) in the partial ordering of the symmetric positive definite matrices.

Matrix M: From (17) proceeding analogously we obtain

1 1..-1. +

6M = 27 T0'R_"ST "Ze_,y!.

Vectorizing this, the asymptotic error covariance matrix as T goes to

infinity is given by

Tcov(vecéM) - AOQW(IOA)W',

1 1

where We=2z O'R: S,

where the matrix S 1is a lower triangular Toeplitz matrix with the identity
matrix Ip on the main diagonal and the impulse response matrices

HI'H2"" on the succeeding subdiagonal lines.

Nestedness of Estimators

The estimators of matrices A, C and M proposed in Aoki (1987) have the
strict nestedness property with respect to the state vector dimension which
are very useful. Once the estimates are made for dimension n* the
estimate of these matrices for any dimension for which the model is of
minimal realization, then the estimate of these matrices for any dimension

less than n* can be read off as the appropriate submatrices of these
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matrices. See also Aoki and Havenner (1991, Sec. 3.2).

The estimates

obtained by using the state vectors as instruments do not enjoy this very

desirable property. The strict nestedness can be restored once (it) is

obtained with some dimension n*.7 To see this

define

. ., N-2 ‘
T, =T éga Yerner 2=1,2,...

and construct a new sample Hankel matrix ﬁz with fl'

The theoretical values are
Ty = EGepp2y)
-catln, 2-1,2,....
Therefore, Hz admits a factorization

H =-0a
z z

where matrix 0O 1is as before and we define

%-mmfmJ.

The singular value decomposition of Hz'

H =UZ V',
z z'zz

leads to a balanced representation with

0 =uzt
¥4 Z Zz

and

Q = ZHV’.

4 4

Then the first submatrix row of H is (Hz)lo = an

s in lieu of A,’'s.

2

and the relation

7This point was originally made in Havenner and Aoki (1987).
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- - -4 - - o=
¢= (Hz)lonz - (Hz)lovzzz

show that the estimate C possesses the nestedness property for n < n*.
Likewise for A derived from Hz. The estimate of II now becomes nested

since
or fi=57% i)
Zz Z

In practice the size of the stacked vectors are finite and Hankel
matrices are finite size truncations of the theoretical infinite-dimensional
ones. Suppose that y: is truncated and Yesg and y;_l at y. g Then
E(y:y;:l) is Jp x Kp. Now the state vector z, being a summary of informa-
tion contained in a truncated data vector Yeo1 - Yeok in general fails to
capture all information needed to forecast the future. The only important
exception is a class of data generating processes which are autoregressive.
1f Ye is AR(m), then K can be taken to be m without loss of any informa-
tion, while ARMA or MA processes admit no such exact finite truncations.

The Riccati equation for AR(m) processes with finite m admit# closed
form solutions as shown in Aoki (1991, Sec. 7.2) and hence an estimate of
matrix B 1is obtained, once matrices A, C, M and A are estimated.

Even though the expression II = QR:IO' is not exact with finite
truncation for non-AR processes, they serve as an initial approximate
expression of the covariance matrix of state vectors which are quite good in
some cases. Aoki and Dorfman (1991) reports on a small scale Monte Carlo
study to support this claim.

The only nontrivial calculation step in the algorithm is the

computation of the covariance matrix @ which is minimal among the solu-



tions of the algebraic Ricatti equation. It can be obtained iteratively or
by converting the Riccati equation into a symplectic matrix equation. Even
though the general procedure is known in the control and estimation
literature, the details of the matrix differ in our stochastic realization
estimation problem as shown by the symplectic matrix derived in Aoki (1987,
1991).8 The symplectic matrix in time series may possess spurious unit
roots when matrix ¢ (defined in Aoki (1990, p. 79) is singular. A remedy
was suggested in Aoki (1987, p. 124) by increasing the estimate of Ay-
Vaccaro and Vukina (1991) also suggest similar methods to remedy the
nonpositive condition. It is better, however, to use the (approximate)
expression (R _Q' for 0N as an initial estimate and iteratively improve it

either as a part of EM algorithm or as described next.

6. Improving Estimates

Estimated models described above produce quite satisfactory out-of-
sample forecasts in applications as shown in Cerchi and Havenmer (1988),
Criddle and Havenner (1989) and others. 1In practical implementation of the
algorithm, the stacked data vector is necessarily truncated. Truncated data
vector lose information except in AR data generating processes, where
AR(p) require only data Vet yt-p’ model matrices estimated by the
algorithm are only approximate rendition of the theoretically derived
expressions in the above. They can be further improved, if desired, by a
procedure analogous to the EM algorithm reported in Shumway and Stoffer

(1982) since the expression for the (log) likelihood function is available.

8One major difference is that the noise covariance matrices and model
parameters are assumed known in the estimation literature, while they must
be estimated in model construction.
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After matrices A, B, and C are estimated as described in the previous

sections, (7) is used together with 20 = 0 to produce {it) and {ét).

(In particular A should be close to <e e >.) For asymptotically stable

t

A, the initial condition z, does not matter too much. If desired,

however, a "backcasting" procedure can be invoked to estimate 20. In what
follows, we set éO = 0 for simpler exposition of the basic iterative
schemes for modifying estimates of the matrices. Denote the initial

sequences by (zg) and {eo) to distinguish them from (zz) and (ei) to

t

be introduced below.
In the version of the EM algorithm due to Shumway and Stoffer (1982),
the model represented by (1) is used to write the log-likelihood function as

L=- 2L smlql- ,} er Q1 £, (x,,,-Ax,) (x

Vi -Ax.)

t+l

1 1 -1
75 £n|R| 5 tr R

€t const.

Et(yt-Cxt) (yt-Cxt)'

where

cov [“t] - diag(Q,R).
vt )
In the innovation formulation, the representation (7) rather than (1) is

employed to write the joint probability density and the log-likelihood as:

P(yeoze) = POz Yoy 2 PO g02e )

with
P(Yt.ztlyt_l,zt_l) - P(Zt|yt_1,zt_1)9()’tIyt_l.zt)
- P(z |z, By |20
with
P(zt]zt ) = conmst '——l——g exp - .% (zt-Azt_l)'(BAB')'l(zt-Azt_l)
- |BAB’ |

and



1 1 P AL
P(yt|zt) const TZTg exp - (yt Czt) A 1(y Cz.).
t t
The log-likelihood function becomes

1

5 lnlAI

1
Lstate I § on|BaB’ |-

1 l'l 2
1 ercean) Tt 5 (z Az ) (z Az, )

- .% tr A5 (ye-Cze) (ye-Cze) ',

(assuming that z. = 0).

0
Maximizing the above with respect to C and A yields, respectively

<Y, 12> = C<z .2 > (24)

and

<z_,z > = A<

e %e-1 (25)

Ze17%e.17"

When the log-likelihood function is maximized with respect to B, we get
BAB’' = <zt-Azt_1,zt-Azt_l>. (26)

The maximization with respect to A yields

1

- -1 -1
O0=-A"+A <yt-Czt,yt-Czt>A

(27)
-B(BaB') 1B + B (BaB) L <z_-Az, .,z -Az_ .>(BAB')'B
t t-1'"t t-1
Substitute (26) into (27) to simplify it as
A= <yt-Czt,yt-Czt>. (28)
Having (zt), {ei), (24) yields éi+1 by

éi+1 -

and Ai+1 i i i i -1

- >
ZerZe-1""Fe--1%t-1

The latter yields
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(el 5 . s
ztil = Al*lzi:l + Bl+1e’t‘:+1 (29)
with
i+l i+l i+l
A A C z. t=20,1, (30)
-1+l i i i i i i-1
and B - <zt+1-A zt,et><et,et> .
Then (28) produces
. i+l i+l
Al*l 2 ce™ "7 > (31)
t t
7. The Two-Step Procedure and Iterations

When the largest eigenvalue in magnitude of the dynamic matrix A is
still less than one but close to it, the time series may appear
nonstationary to naked eye and modeling of such time series should be
carried out in two steps; first to model the dynamic mode corresponding to
the largest eigenvalue in magnitude and then the remainder, as carried out
in Aoki (1990, Sec. 11.5). This procedure has been applied with success to
data series with the largest eigenvalue near .98 or .99 and the next largest
one .93 or so, for example.

We write the log likelihood function in a decomposed form to derive
expressions for their iterative improvements.

The data series is represented as

Ye = Crt + Hzt + e,

where 7. is the state variable for the dynamic mode with the largest
eigenvalue p. Here to be definite and simplify explanation, we assume that
only one eigenvalue p > 0 1is such that p > all other eigenvalue of A

in magnitude. The state variable Te is scalar, and it evolves with time
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according to

T, = pr

c + wzt—l + be

t-1 t-1
The remaining dynamic modes contained in the data series are modeled by z

evolving with time by

zt - th-l + Get-l'

In this procedure both e and z, are measurable functions of y;_l, and

orthogonal to e.- They jointly form the state vector.

This representation9 is useful since it shows that a linear
combination of components of Yer v'yt, where v'C = 0, does not contain
the dynamic mode corresponding to the eigenvalue p. This procedure for
forming u'yt is analogous to the notion of cointegration which
corresponds to the data series with unit root.

The relevant part of the log-likelihood function is

1 o1 -1 Ce . Ce . ,
- 3 fnlal 5 tr A E (y -Cr -Hz )(y -Cr -Hz )

1 . 1 s -1 . ) 2
- 5 nlbab’|- 5 er(bab’) T (r et Y2 )
- 1 pnjcacr|- 1 tr(GAG')-l T (z_-Fz_ ,)(z_-Fz_ .)’
Z Vi t %t “e-17'"t " Te-17
Its maximum with respect to C and H 1leads to
< > < > C,H 't (32)
(<Y T Vo Ze ] (C,H] cov ze

with

Tt,ft> <rt,zt>
['t]
cov = .

z
t Zg,Te> <Z¢,Z¢>

The maximization with respect to p and ¥ leads to

9Its dual representation may be used instead, which is the error-
correction form as shown in Aoki (1988). An EM-like algorithm can be
developed as well.



[<7 071> <TerZeq>) = [0,9] cov [’t‘l]. (33)

Zt-1

The dynamic matrix F 1is estimated by

<zt,zt_1> = F<zt_1,zt_1>. (34)

The remaining parameters are estimated by

bAb' = <rt-pft_1-¢zt_1, rt-pft_1-¢zt_l> (35)

GAG' = <zt-th_1, zt-th_1> (36)
and

A= <et,et> (37)
with

Estimates of b and G may be calculated by

-1
b = <rt-prt_1-¢zt_1,et_1>A (38)

and

-1
G = <zt-th_1,et_1>A . (39)

The iterative procedure is therefore entirely analogous to the one described
in the previous subsection.

The two-step procedure is employed to generate the initial set of

0

estimate of C, H, F, b, G and A, together with {eg), (rt) and

(zg). Then (32) ~ (39) are used to update these estimates which in turn

update the innovation and state vectors.



29

8. Discussions

This paper reviewed the state space modeling of vector-valued time
series in Aoki (1987, 1990) from the perspectives of two alternative
innovation representations and showed that each representation is natural
for estimating matrices C and M respectively. The dynamic matrix A can be
estimated in at least three ways. |

Since approximate solutions to the Riccati equation produce correspond-
ing approximate expressions of matrix B, and hence the approximate models,
it is interesting to compare alternative forecasts implied by alternative
approximate expressions for matrix B. We note that the closed form
expression of matrix N in (12) with the truncated matrices corresponding
to a finite truncation of the stacked data vector y;_l at Yek for some

K > 0 produces one such matrix B.



Model zt+1 - Azt + Bet

- +
Yp = 02 * &

with

e T Ve - E(ytlyt_l)

-1 -
=Ry,

cov zt - ﬂR:lﬂ'

State vector zt

+ +
Ye = Ozt + Set

30

TABLE

with

gt-l = A gt + Pbt

Ye = M'Xeyp Y P

L+
by = Ve - E0clyen

yp—l +
Ce = O'Ry Ve

cov x,. = O'R;lo

p— ’ +
Yep = B¢ + Qb



31

REFERENCES

Anderson, T.W., and N. Kumitomo, "Asymptotic Robustness in Regression and
Autoregression Based on Lindberg Conditions," Stanford Univ. Tech. Rept.
No. 23, June 1989.

Aoki, M., Not : t (s)
Heidelberg: Springer-Verlag, 1983.

, State Space Modelling of Time Serijes, Heidelberg/NY: Springer-
Verlag, 1987.

, State space Modelling of Time Series, 2nd revised ed.,
Heidelberg/NY: Springer-Verlag, enlarged 1990.

, "Singular Values, Canonical Correlation Coefficients and the
Dimension of State Space Models of Time Series," to be presented at the
1989 NSF/Nber Seminar, Madrid, Sept. 1989.

, "Cointegration, Error Correction and Aggregation in Dynamic
Models: A Comment," Oxford Bull. Econ. Stat., 50 (198): 89-95.

, "Instrumental Variables Estimators for State Space Models of
Time Series," in G. Conte, A.M. Perdon, and B. Wyman (eds.), New Trends
in System Theory, Boston: Birkhauser, 1991: 73-80.

and A. Havenner, "State Space Modeling of Multiple Time Series,"
Econometric Reviews (1991).

and J. Dorfman, "Statistical Analysis of Some Identification
Procedures for State Space Innovation Models," presented at MINS91
International Symposium on the Mathematical Theory of Networks and
Systems, Kobe, Japan, forthcoming, 1991.

Billingsley, P., "The Lindberg-Levy Theorem for Martingales," Proceedings of

the American Mathematical Socjety, 12 (1961): 788-92.



32

Bowden, R.J., and D.A. Turkington, Instrumental Varjiables, Cambridge/NY:

Cambridge University Press, 1984,

Cerchi, M., and A. Havenner, "Cointegration and Stock Prices," Journal of
Economics Dynamic. Control, 12 (1988): 333-46.

Criddle, K., and A. Havenner, "Forecasting Halibut Biomass Using System
Theoretic Time Series Methods," American J. Agri  Economics, 11 (1989):
422-31.

Dorfman, J.H., and A. Havenner, "State Space Modelling of Cyclical Supply,
Seasonal Demand and Agricultural Inventories," American Agricultural
Economics, 73 (1991): 839-40.

Faurre, P.L., M. Cleyet, and F. Germain, Qperateurs Rationels Posjitifs,
Paris: Durod, 1979.

Havenner, A., and M. Aoki, "Econometrics and Linear Systems Theory in
Multivariate Time Series Analysis," Working Paper, UC-Davis Dept. of
Agricultural Economics.

and , "An Instrumental Variable Interpretation of
Linear System Theory Estimation,” J, Econ. Dyn. Control, 12 (1988).

Kraybill, D.S., and J.H. Dorfman, "A Dynamic Intersectoral Model of Regional
Economic Growth," J. Regional Science, 32 (Feb. 1992), forthcoming.

Lai, T.L., and C.Z. Wei, "Asymptotic Properties of Multivariate Weighted
Sums With Application to Stochastic Regression in Linear Dynamic

Systems," in D.R. Krishnaiah (ed.), Multivarjate Analysis, Amsterdam:

North Holland, 1985.
Ljung, L., System Identification: Theory for the User, Englewood Cliffs, NJ:
Prentice Hall, 1987.

Lindquist, A., and M. Pavon, "On the Structure of State Space Models for

Discrete-Time Stochastic Vector Processes," IEEE AC-29 (1984): 418-32.



Sargan, D., Lectures on Advanced Econometric Theory, M. Desai (ed.), Oxford:

Basil Blackwell, 1988.

Shumway, R.H., and D.S. Stoffer, "An Approach to Time Series Smoothing
Forecasting Using the EM Algorithm,"” J, Time Series Anal., 3 (1982): 253-
64.

Soderstrom, T., and P. Stoica, Instrumental Variable Methods for System
Identification, Lecture Notes in Control and Information Sciences, New
York: Springer-Verlag, 1983.

Vaccaro, R.J., and T. Vukins, "A Solution to the Positivity Problem in the
State Space Approach to Modelling Vector-Valued Times Series," Working

Paper, Kingston: Univ. of Rhode Island, 1991,

White, H., Asymptotic Theory for Ecopmometricians, NY: Academic Press, 1984.



