OPTIMAL INVENTORY POLICIES WHEN THE
DEMAND DISTRIBUTION IS NOT KNOWN*

C. ERIK LARSON’

LARS J. OLSON
and

SUNIL SHARMA™ ™’

UCLA Working Paper No. 631
September 1991

# We are grateful to Steven Lippman and Bruce Miller for comments and suggestions. We have
also benefitted from discussions with Ken Burdett, Nick Kiefer, Ravi Kumar and Yaw Nyarko.

School of Business Administration, University of Southern California, Los Angeles, CA 90089
1421,

Department of Soil and Environmental Sciences, University of California, Riverside, CA 92521-
0421, and Visiting Fellow, Department of Agricultural Economics, Cornell University, Ithaca, NY
14853,

**+  Department of Economics, University of California, Los Angeles, CA 90024.



OPTIMAL INVENTORY POLICIES WHEN THE
DEMAND DISTRIBUTION IS NOT KNOWN

ABSTRACT

This paper analyzes the stochastic inventory control problem when
the demand distribution is not known. In contrast to previous Bayesian
inventory models, this paper adopts a non—parametric Bayesian approach
that places no restrictions on the prior information about demand,
allows for any underlying true (but unknown) demand distribution, and
accommodates fixed order costs which make the cost function non-convex.
The firm's prior information is characterized by a Dirichlet process
prior. As information on the demand distribution accumulates, optimal
history-dependent (s,S) rules are shown to converge to an (s,S) rule
that is optimal when the underlying demand distribution is known. Two
examples are presented. The first illustrates that the optimal policies
under learning can differ from those when the distribution is known,
even when the prior is such that the initial forecast of the demand
distribution coincides with the true distribution. The second example
shows that the non-parametric model may perform better than a commonly
used (misspecified) parametric model. Comparative dynamic results for
the non—-parametric model are developed when there is no fixed ordering

cost.



OPTIMAL INVENTORY POLICIES WHEN THE
DEMAND DISTRIBUTION IS NOT KNOWN

1. INTRODUCTION

Most firms léarn about the distribution of demand for their
product as they accumulate information over time. Almost all models
which incorporate learning adopt a parametric Bayesian approach and
assume that the true underlying distribution belongs to some parametric
family characterized by a finite number of unknown parameters (Scarf
[1959,1960a], Karlin [1960], Iglehart [1964], Azoury and Miller ([1984],
Azoury ([1985], and Lovejoy [1990]). 1In these models, the firm's
information about demand is specified by assuming some conjugate prior
on the unknown parameters and updated via Bayes’ Rule. The
specification of a conjugate family of distributions places restrictions
on the prior information that can be accommodated and the true
distributions of demand that can be allowed. For example, it is
difficult under conjugate family specifications to allow for bi-modal
priors or bi-modal true demand distributions. Another key assumption in
these parametric Bayesian models is that purchasing costs are linear or
convex. It is important to investigate inventory models that encompass
both learning and fixed order costs.

This paper adopts a non-parametric Bayesian approach that places
no restrictions on the prior information about demand, allows for any
underlying true (but unknown) demand distribution, and accommodates
fixed order costs which make the cost function non-convex. The firm's
information about the demand distribution is characterized by a

Dirichlet process prior on the space of distributions (Ferguson [1973]).



Starting with any given Dirichlet process prior, the set of possible
posterior distributions is large in the sense that any distribution
whose support is included in the support of the measure characterizing
the Dirichlet process prior can be approximated as a posterior.

Section 2 develops a dynamic programming formulation of the
problem. The state space is defined on the beginning—of-period
inventory level and the beginning-of-period forecast of the demand
distribution, given information on past demand.l 1In Section 3 we show
that for both the finite and infinite planning horizon formulations of
the model, a history-dependent (s,$§) policy is optimal at each stage.
We also prove that as information on the demand distribution
accumulates, these history-dependent (s,S) rules converge to the optimal
(s,8) rule for the case where the underlying demand distribution is
known.

Section 4 provides some illustrative numerical examples. The
first example shows that the optimal solution under learning may differ
from the solution in the case of a known demand distribution, even when
the prior is such that the initial forecast of demand coincides with the
true distribution. The example also illustrates how the solution under
learning varies as confidence in the prior changes. As one would
expect, if there is sufficient confidence in a prior that yields a
forecast identical to the true distribution, then the learning solution
is the same as the solution in the known case. With low confidence in
the prior, however, the two solutions may differ. The second example
compares the history dependent optimal policies under a misspecified

parametric model with those obtained for the non—parametric Bayesian
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inventory model. For purposes of comparison, the priors are chosen so
that the initial forecast of the demand distribution is the same in the
two cases. As information about the demand distribution accumulates,
the history dependent optimal (s,S) policies in the non-parametric case
are closer to the optimal (s,S) policy for known demand distribution
than the optimal policies in the former case. As information about
demand accumulates, the optimal policies for the non-parametric model
eventually approach those for the known case, and give at least as good
an approximation as policies in the misspecified parametric model.

Comparative dynamic results for the case where there is no fixed
ordering cost are given in Section 5. If the expected demand
distributions under two Dirichlet process priors are ordered by first-—
order stochastic dominance, then the critical numbers are ordered for
any common history of demand observations, for all periods-to—go. This
extends results obtained by Karlin [1960] and Scarf [1959]. We also
show that if in any period the current demand realization is less than
(greater than) the minimum (maximum) of those observed to date, the
optimal order-to-level S decreases (increases) for the following period.
Furthermore, it is possible that if the current demand realization is
sufficiently small, then the optimal policy in the following period
refrains from ordering additional inventory.

Section 6 offers some concluding remarks. Proofs of all results

are given in the Appendix.



2. THE INVENTORY MODEL AND THE DIRICHLET PROCESS

Consider a single commodity periodic review (e.g. at the beginning
of each week or month) inventory control problem. The holding and
penalty costs are assumed to be linear with h and p the per-unit costs,
respectively. These costs are based on the end of period inventory
level. There is a fixed order cost K and a per-unit order cost c¢, where

¢ < p. The ordering cost function C is given by

K + ceu, ifu>0
C(u) =

0, if u = 0.

All cost parameters are assumed to be non-negative. The presence of a
strictly positive fixed ordering cost makes the ordering cost function
non-convex. It is assumed that excess demand is backlogged and there is
no lag between ordering and delivery. Future costs are discounted by a
single period discount factor B, 0 < B < 1. The true underlying demand
distribution, F*(w), is assumed to be stationary.

The firm, not knowing the true demand distribution F*, takes it to
be a random variable defined on the space of distributions on R,. Let B
be the o-algebra of Borel subsets of R,, and define # to be the space of
probability measures on (R,, B) with finite variance. ¥ is endowed with
the topology of weak convergence. Let A be the o-algebra of Borel
subsets of &, and let ® be a probability distribution on (#;A). P
denotes a random probability measure chosen according to ®, and Wyy -0y
denotes a random sample chosen according to P. Define F(t) = P[0,t] so
that F(t) is the random probability distribution corresponding to P.

Let E[-] denote the expectation operation with respect to ®. It is easy



to show that E[P] is a probability measure on (R,,B). Let E[F], the
expected distribution function, be the distribution function
corresponding to E[P]. If ¥(+) is any function defined on R,, then
E[¥(2)] = [o° $(£)AE[F](t).

We refer to F as a random probability distribution on R,. This
means that with probability one, F selects a distribution function with
support in R,. When we say that F has finite variance, we mean that
E[F] has finite variance. The posterior of F after observing Wy sy
will be denoted by F|w;,.,w, (and sometimes simply by F).

It is assumed that P is a Dirichlet process with parameter a,
written PED(a) or FeD(a), where a is a finite non-null measure on
(R;,B). The Dirichlet process is analyzed in Ferguson [1973]. Ferguson

[1974] provides an excellent survey of random distributions.

Definition (Ferguson [1973]1). Let a(+) be a finite non-null measure on

(R,.,B) and let P be a stochastic process indexed by elements of 8. P is
a Dirichlet process with parameter a if for every finite measurable
partition (I;,.,I,)} of R,, the random vector (P(1;),.,P(I,)) has a

Dirichlet distribution with parameter (a(Ip),...,a(Ip)).

If PeD(a), then the support of P (in the topology of weak
convergence) is the set of all probability measures whose support is
contained in the support of a. If a(+) is chosen such that its support
is R,, then the support of P is ¥ The one-dimensional marginal
distributions of the Dirichlet distribution are Beta distributions so

that if PeD(a) then for every BeB, P(B) has a Beta distribution with



parameters (a(B), a(R, )-a(B)). Also, F(z) has a Beta distribution with
parameters (a(z), a(R,)-a(z)), where a(z) = a([0,2]), for all zeR,.
Thus E[F](2z) = a(z)/a(R,) and the mean of the (expected) prior
distribution is u = fow tdE[F](t).

When the parameter a of the Dirichlet process has finite support
{®ys...,7m}, one obtains a Dirichlet distribution. In this case the

demand takes one of m values, wj,...,w The underlying demand

m*
distribution is discrete with unknown parameter
Neas= ((ﬂl,...,ﬁm)l ny > 0, Eﬂi =1},

where m; is the probability that demand is w The prior distribution

i i*
on the space A of discrete distributions is Dirichlet with parameter a =
(@¢3,...4ap). In this case the expected prior distribution is discrete
with parameter (a;/Zaj,...,ap/Za;). After a demand realization, Wi the
posterior distribution on A is Dirichlet with parameter
(al,...,aj+1,...,am) and the expected posterior distribution is discrete
with parameter (al/Zai+1,...,aj+l/zai+1,...,am/Zai+1) (see DeGroot
[1970]).2

Under the Dirichlet process the updating of beliefs is special in
that information is completely "local". If w is observed, then the
posterior distribution assigns a higher probability to (any subset that
contains) w and uniformly decreases the probability of all subsets that

do not contain w, no matter how far or close they are to w. Moreover,

the posterior random probability distribution is a Dirichlet process.



Fact_ 1 (Ferguson [1973)). If F € D(a) and if wy,...,wn is a sample from
F, then the posterior distribution of F given wjp,...,w,, denoted

Flwy,...,wp, is a Dirichlet process with parameter a + £6,;, where

8, 1s the measure on (R,, B) that assigns mass one to w.

It is easy to see that Fact 1 implies

n
a(z) + = l[wi'“)(z)
E[F|w1,...,wn](z) - j=1

a(R+) +n
n
- i .2 + : o2 Moy, (2
a(R,) +n a(R,) a(3+) +n n .

Under the Dirichlet process prior assumption the expected posterior
distribution is a convex combination of the expected prior distribution
and the empirical distribution. a(R,) can be interpreted as a measure
of "confidence" in terms of sample size. If a(R,) is large relative to
n, then greater weight or "confidence" is placed on the prior. Of
course, as the firm accumulates information on demand (and n becomes
large) the expected posterior distribution gets closer to the empirical
distribution. The Glivenko—Cantelli theorem implies that, in the limit,
the firm’'s expectations about the demand distribution converge to the
true demand distribution. It is easy to show that the updating process

satisfies the following lemma.

LEMMA 1. The Bayes mapping E[F,] - E[F,, ;|w] is continuous.



3. EXISTENCE AND CONVERGENCE OF (s.S) POLICIES UNDER LEARNING

The expected one-period holding and shortage cost given n demand
realizations is given by fﬂ L(z,w)dE[F,](»), where L(z,w) = heMax[z-w,0]
+ peMax[w-2,0]. Let Vqp(x,E[F,]) be the minimum expected value of
discounted costs with T periods to go until the end of the planning
horizon when x is the current starting inventory level, E[F,] is the
expected posterior demand distribution given a history of n demand
realizations, and an optimal ordering policy is followed in the future.

The existence of Vp follows from standard dynamic programming arguments.

THEOREM 2. There exists an optimal policy that satisfies the following
functional equation for T = 1,...,o;

Vp(x,E[Fp]) = inf C(u)+fQ(L(x+u,w)+BVT_1(x+u-w,E[Fn+1Iw])dE[Fn](w),
u=0

where Vg = 0. Further, the function Vr is lower-semicontinuous.

Define the post—order inventory level by z = x + u. In characterizing

the optimal solution it is useful to define the cost functions

Gy (2,E[Fp]) = cz+[q{[hemax[z—w,0]+pemax[w—z,0] }dE[F ] (w) (3.1)

Gp(z,E[Fp)) = cz+[gL(z,w)dE[F ] (w)+BfqVp_q (z—w,E[Fq |©])dE[F ] (0).  (3.2)

Note that G; is convex in z and limlzl*” Gy (2,E[F,]) = ». Let sln
minimize G1(2,E[F,]) in z and let sln be the smallest wvalue of z such
that G, (z,E[F,]) = K + Gl(Sln,E[Fn]). Using standard arguments

developed by Scarf [1960b], the following facts can be established:



(i) GT(z.E[Fn]) is K—-convex in z, (ii) 1im|z|*w GT(z,E[Fn]) = 0,

(iii) Vp(x,E[F,]) is K-convex and continuous in x for T = 1,...,%, and
(iv) there exist scalars (s¢®, Sp") such that S¢" minimizes Gp(z,E[F,])
in z, where sTn is the smallest value of z for which Gp(z,E[F,]) = K +
GT(STn,E[Fn]). Thus, the optimal inventory policy has the following

characterization.

THEOREM 3. There exist (sTn,STn) such that the optimal policy satisfies

STn - X7 if xr < STn

0 if X7 2 STn

for T=1,...,0.

According to Theorem 3, the optimal policy is an (s,S) inventory
rule that varies as expectations change in response to the observed
history of demand observations. Given the time-varying nature of
optimal policies, it is of substantial interest to determine their long
run characteristics. Do optimal policies converge as the number of
demand observations increases, and if so, what are the limit policies?
An answer to thése questions is provided in Theorem 5, below.

Consider the family of T period value functions
{VT(x,E[Fn])|n-1,...), where n is the number of previously observed

demand shocks.

LEMMA 4. The family of value functions (VT(x,E[Fn])ln-l,...} is

equicontinuous at x for all finite T.



Using Lemma 4 we now prove that as the number of demand observations
increases, the history dependent optimal inventory policies under
learning converge to policies that are optimal when the true demand
distribution is known. Define uTn(x) to be the optimal order from x
when the current inventory level is x and the estimate of the demand
distribution is E[Fn].

THEOREM 5.3 For all T = I1,...,0 (1) limy g, Vp(x,E[Fy]) = Vg¥(x) for
all x in any finite interval, where VT* is the value function for the
inventory problem with known demand distribution, F*, and (ii) for all «
> 0 there exists an N(T,e) such that 0 < C(uf®) + [[L(x+ug®,w) +

BVr_ ¥ (x+upB-w) JdF* - Vp*(x) < e for all n > N(T,e). If limy,, up™(x)
exists, then lim, . (s¢®,SpR) - (sT*,ST*), where (sT*,ST*) are optimal

for the inventory problem with known demand distribution, F*.

This theorem states that once firms observe a sufficient number of
demand realizations, their optimal policies under learning will be close
to those that are optimal when the true demand distribution is known.

It is particularly relevant in situations where information accumulates
rapidly, as is the case in many retail and wholesale operations where

inventory levels are monitored on a daily or weekly basis.

=

8 TIONS
In this section we provide two illustrative numerical simulations.
The first example shows that the optimal inventory policy under learning

can differ from the optimal policy for a known distribution, even when
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the expected prior coincides with the true distribution. This is
because it is important to distinguish between distributions on
distributions and simple distributions when there is resolution of
ncertainty over time. When there is no learning, probabilities of
probabilities can be compounded and are equivalent to simple
probabilities; however, under learning the two are different (e.g.,
Kreps [1988]).

This example also demonstrates that optimal (s,S) policies vary
with the confidence the firm has in its prior on the demand
distribution. If the firm has sufficient confidence in its Dirichlet
prior, then the optimal policy under learning is identical to the policy
the firm would follow if it knew the demand distribution. With low
confidence in the prior, however, the two policies may differ.

The second example compares Bayesian inventory policies for non-
parametric Dirichlet and parametric Gamma-Poisson models where the
initial expected priors are the same.* The example is constructed so
that the underlying demand process has a Discrete Uniform distribution,
resulting in a misspecified conjugate family for the parametric model.
Policies under the non-parametric Dirichlet specification converge more
rapidly toward the known demand aistribution optimal policy than do the

policies under the misspecified Gamma-Poisson model.

EXAMPLE 1
We characterize demand by a Discrete distribution on O =
{wy,wp,wg} = {50, 70, 90} with respective probabilities p =~ {0.7, 0.02,

0.28). The parameters of the model are h = 0.5, p = 2.0, ¢ = 1.0,

1



k = 10.0, B = 0.999. The problem is solved using the method of
successive approximation over a feasible solution set of integer—valued
inventory levels. We first solve the problem assuming that the firm
knows the demand distribution and then address the unknown case assuming
a Dirichlet prior with parameter a = (@7, @y, a3) over the space of
discrete distributions on Q. The parameters are chosen so that the
expected prior distribution is the same as the true distribution, but
the firm’s confidence in the prior is allowed to vary. We examine three
cases:

Case 1 : a = (a;, ay, a3) = (0.7, 0.02, 0.28),

Case 2 : a = (al, ag, a3) = (1.4, 0.04, 0.56),

Case 3 : a = (al, ay, a3) = (70.0, 2.0, 28.0)

In case 1 the firm has very low confidence in its prior [Zai is small],
whereas in case 3, the confidence is relatively high [Zai is large].
The T-period optimal policies for T = 1, 2, 3, 4, 5 are presented
in Table 1. Because the expected prior is the same as the true
distribution, the (s,S) policies are the same in all cases for T = 1.
As it turns out in this example the optimal policies are also identical
for T = 2. However, for T = 3, both s and S are larger in case 1 than
in the known case, illustrating that with low confidence (and hence
greater uncertainty) the firm is liable to overstock. In case 2, only
the target level S is higher, while in case 3, the firm has sufficient
confidence that its prior guess is correct and the (s,S) policies are
identical to the known case. These cases show that even when the

expected prior coincides with the actual demand distribution,
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TABLE 1

A: Distribution Known

Distribution: Discrete with parameters #=(0.7,0.02,0.28)

(s,S) Policies with T Periods to Go
T=- 1 2 3 4 5 6
(40,50) (53,100) (49,90) (49,90) (49,90) (49,90)

B: Distribution Not Known

Case 1.
Prior Distribution: Dirichlet with parameters a=(0.7,0.02,0.28)
Expected Prior Distribution: Discrete with parameters n=(0.7,0.02,0.28)

(s,8) Policies with T Periods to Go
Tw= 1 2 3 4 5 6

(40,50) (53,100) (53,100) (53,100) (53,100) (53,100)

Case 2.
Prior Distribution: Dirichlet with parameters o=(1.4,0.04,0.56)
Expected Prior Distribution: Discrete with parameters #=(0.7,0.02,0.28)

(s,S) Policies with T Periods to Go
T= 1 2 . 3 4 5 6
(40,50) (53,100) (49,100) (49,100) (49,100) (49,100)

Case 3.
Prior: Dirichlet with parameters o=(70.0,2.0,28.0)
Expected Prior Distribution: Discrete with parameters n=(0.7,0.02,0.28)

{(s,S) Policies with T Periods to Go
T= 1 2 3 4 5 6
(40,50) (53,100) (49,90) (49,90) (49,90) (49,90)

Note: The Discrete distributions are defined on i={50,70,90}, and the
Dirichlet distributions are defined on the space of Discrete
distributions on Q.

13



one or both of the critical stocks can differ from those characterizing

the optimal inventory policy when the distribution is known.

EXAMPLE 2

Set h=2, p=4, c=1, k=4, 8 =0.97. The true demand
distribution is Discrete Uniform on Q = {wy,Wg,e00, 007} = {0,1,...,6}.
Two cases are considered when the distribution is not known:

Case 1: Poisson(A) with Gamma(y,n) conjugate prior,

Case 2: Space of distributions on Q with Dirichlet(a)

conjugate prior.

Case 1 represents the misspecified parametric model and Case 2 the non—
parametric model. It would be difficult, if not impossible, to present
the solutions for a large number of long demand histories. To simplify
the exposition without losing generality, we have chosen to report (s,S)
policies for 0, 7, 14, 21, 28, 35, and 105 observations of demand.
These observations satisfy the assumption that each demand realization,
wj, shows up once in the first seven observations, twice in the first
fourteen, and so on. This seems reasonable given that the underlying
true distribution generating the data is Discrete Uniform on the seven
points of support specified by Q1. To make the two cases comparable, the
parameters are chosen so that the expected prior distributions are the
same (before any observations are taken).

Optimal (s,S) policies for the known and learning models are
presented in Table 2. The results show that for both Cases 1 and 2 the

(s,8) policies differ substantially from those when the distribution is
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TABLE 2

A: Distribution Known
Distribution: Discrete Uniform on Q

(s,8) Policies with T Periods to Go
T= 1 2 3 4 5
(—4,2) (0,4) (0,5) (0,6) (0,6)

B: Distribution Not Known
Case 1. Parametric Bayesian Model

Conjugate Prior Family: Poisson(A) - Gamma(y,n)
Expected Prior Distribution: Negative Binomial(y,n/(1+n))

(s,8) Policies with T Periods to Go

(v,n) T= 1l 2 3 4 5
25,25 (=5,0) (-2,1) (-1,2) (-1,2) (-1,3)
46,32 (=3,1) (-1,2) (-1,3) (0,3) (-1,3)
67,39 (=3,1) (-1,2) (0,3) (-1,4) (0,4)
88,46 (—4’1) (-1,3) (0’4) (-1,4) (0,4)
109,53 (-4,1) (-1,3) (0,4) (-1,4) (0,4)
130,60 (=4,1) (0,3) (0,4) (0,4) (0,5)
340,130 (-4,2) (0,4) (0,5) (0,5) (0,5)

Case 2. Non-Parametric Bayesian Model
Conjugate Prior Family: Space of Distributions on O — Dirichlet(a)
Expected Prior Distribution: a(w)/a(Q)

a = (al+j,az+j,a3+j,a4+j,a5+j,a6+j,a7+j)
- (.3751+j, .3607+j, .1803+j, .0624+j, .0168+j, .0037+j, .0071+j)

(s.,8) Policies with T Periods to Go
— 3 T= 1 2 3 4 5

0 (-5,0) (-2,1) (-2,2) (-1,2) (-1,1)
1 (-5.,1) (0,4) (0,5) (0,5) (0,3)
2 (-4,2) (0,4) (0,3) (0,5) (0,5)
3 (—4,2) (0’4) (0’5) (0'5) (005)
4 (-492) (0,4) (0'5) (015) (0,5)
3 (-4,2) (0,4) (0,3) (0,5) (0,5)
15 (-4,2) (0,4) (0,5) (0,5) (0,6)

Note: & = {0,1,2,3,4,5,6). The parameters of the Gamma and Dirichlet
priors have been chosen so that the expected prior distributions in
Cases 1 and 2 are the same.
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known, especially for the longer time horizons. After 7 observations
however, the (s,S) levels in Case 2 are close to the known case, whereas
for Case 1 the policies are quite different even after 14 or 21
observations. As the number of demand observations increase the
policies under misspecified parametric learning eventually approach
those for the known case, but those under non-parametric learning always

give at least as good an approximation.

S. COMPARATIVE DYNAMICS

In this section we assume that there is no fixed ordering cost,
i.e., K= 0. We prove two results. The first says that for two
Dirichlet process priors, D(a) and D(b) with a(R,) = b(R,), if E[F](w) =
a(w)/a(R,) first order stochastically dominates E[G](w) = b(w)/b(R+)
then the optimal inventory level under the first prior is always larger
than that under the second prior for any common history of demand
realizations. This result complements those obtained by Karlin [1960,
Theorems 2 and 2'].

The second result states that if demand in any period is less than
the minimum of past demand realizations, then the optimal desired
inventory level decreases. Furthermore, it is possible that if demand
is low enough, no additional inventory is ordered in the next period.
This extends the result of Scarf [1959, Theorem 3] to non—parametric
learning.

When it exists, let V'q denote the derivative of Vg with respect

to x. The following lemma leads to the main result.
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LEMMA 6. If E[F] dominates E[G] by first order stochastic dominance
then V'qp(x,E[Fp]) < V'p(x,E[G,]). (If the derivative is not well-
defined then the inequality holds for the right hand and left hand

derivatives.)

The main result of this section is stated below.

THEOREM 7. Assume K = 0.
(i) Consider two Dirichlet process priors, D(a) and D(b), such that
a(R+) = b(R+). For simplicity assume that a and b are continuous with
continuous first derivatives.’ Let the expected distributions before
any observations are taken be given by E[F](z) = a(z)/a(R,) and E[G](2)
= b(z)/b(R,). If E[F](z) first-order stochastically dominates E[G](z),
then the critical numbers satisfy Sp®(F) 2 S¢®(G) for all n, T and any
common history of demand realizations.
(ii) The critical numbers satisfy

SPM(E[Fp]) 2 SpP(E[Fp.qlwp sMin{wy, ... ,0n}]1)
for all n and T. Further, if

STP(E[Fp]) > SP™(E[Fgyp|ogy1=01)
then there exists a critical demand level w* such that if O<wp,jsw*, the

optimal policy is not to order in period n+l.

6. CON ING
This paper uses a two-state dynamic programming approach to
analyze the stochastic inventory control problem when the demand

distribution is not known. With recent and continuing gains in
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computing power, it is becomming increasingly possible to calculate
optimal inventory rules for models that incorporate non-parametric
learning. Further progress could be made if results on the reduction of
state space dimensionality, similar to those of Scarf [1960a] and Azoury
[1985], are obtained for non-parametric Bayesian inventory models. If
this proves difficult or impossible in these models, it would be of
interest to develop bounds on the loss from using non-optimal, but

simple and readily implementable policies (Lovejoy [1990]).
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APPENDIX: PROOFS

Proof of Lemma 1. From Fact 1,
E[Fpe1lv] (@) = (1-ap)E[Fl () + aplpy, 41(),
where a

= a(R)/(a(R)+n). Let {E[F i} = E[F,], where = denotes

n nl

convergence in distribution or weak convergence of the associated
measures. Then,
E[Fp41lv]y = (1-a)E[F ]; + anl[v'm](w) =

(1-a )E[F,](w) + anl[v’w](w) = E[Fp411v]. //

Proof of Theorem 2. The model satisfies standard continuity
assumptions, the cost function is bounded below, and the space of
actions over which the cost function is bounded is compact. Under these
conditions, the result follows from dynamic programming arguments in

Schal [1975]. //

Proof of Theorem 3. The proof follows the classic arguments of Scarf

[1960b] and Iglehart [1963].

Proof of lLemma 4. The proof proceeds by induction. Assume
{Vp_1(%,E[F]) In=1,...} is an equicontinuous family. Recall that
Gp(z,E[Fp]) = cz + Jg{L(z,0) + BVp_;(2-w,E[Fp,;|@])}dE[F ] (0).
Since {L(z,w)|wel} and {(Vp_; (X,E{F,]|n=1,...} are equicontinuous
families, it is straightforward to show that (Gq(z,E[F,]|n=1,...} is

also equicontinuous.



Let (sTn, STn) be the optimal policy from E[F,] with T periods
remaining and let z and z' be the optimal orders from x and x’,
respectively. From Theorem 3, it follows that

. n
{ x if x > sq
z-

STn if x < sTn

and
x' if x' > so”

° T { S if X' < sq”.
Without loss of generality assume x’' < x. We want to show that for any
€ > 0, there exists a §, such that |x-x'| < §, implies |Vp(x,*) -
Vp(x’,+)| < €. The following three cases need to be considered.
Case 1: z =2 = Soo.
In this case, [Vp(x,*) = Vp(x',¢)| = |-cx + GT(STn,E[Fn]) - (—cx' +
GT(STn,E[Fn]))l = c(x — x'). Given ¢ choose § = ¢/c. Equicontinuity
of the family {Vp(x,E{F,])|n=1,...} follows directly.
Case 2: z=x, 2z' =5
From x' < sg” < S¢" it follows that |z-z'| = [x-S¢"| = |x-s¢@| < [x—%'
Note that
K - cx + Gp(S¢%,E[F,]) if x < s

n

Ve(x,E[F,]) =~
-cx + Gp(x,E[F,]) if x 2 sq,

where Gp(z,E[F,]) is defined above. This gives
|[Vp(x,¢) = Vp(x',¢)|
= |-cx + Gp(x,*) — {K - cx’ + GT(STn.°))I

= |-c(x-x') + Gp(x,*) — Gp(sg",*) |-



The last equality follows from the fact that GT(sTn,-) =K + GT(STn,-)
by the K—convexity of G and the definitions of sp" and Sg". Thus,
|Vp(X, ) = Vp(x',*)| = |-c(x=%X') + Gp(x,*) = Gp(sg™, )|
< c(x-x') + |Gp(x,*) = Gp(sg™,*)|.
By the equicontinuity of the family (GT(x.-)|n=1....} there exists a
66/2 > 0 such that |x-X'| < 66/2 implies |Gp(x,*) — Gp(x',*)| < /2.
Then |x-sg?| < |x-x'| < 8¢y implies |Gp(x,*) - Gp(sp™, *)| < €/2.
Define 5'5/2 = ¢/2c. From this we get c(x-x') < ¢/2 whenever |x-x'| <
6'6/2. Choose 6§, = Min(6€/2.6'e/2). For this 6, it can be seen that
|x-x’'| < 6, implies [Vgp(x,*) - Vp(x',*) | < e.
Case 3: z = X, z' = x'.
In this case, |z-z'| = |x-x'| and
[Vp(x,*) = Vp(x',¢)| = |-cX + Gp(x,*) + cx’' - Gp(x',*) |
= |-c(x-x') + GT(x,-) - GT(x'.-)I
< c(x~-x') + |Gp(x,*) = Gp(x',*)].
The equicontinuity of the family {Vq(x,E[F,])|n=1,...} follows directly
from the fact that {Gp(x,E[F,]|n=1l,...)} is an equicontinuous family.
The proof is completed by noting that (Vy(x,E[F,])=0|n=1,...} is

an equicontinuous family. //

Proof of Theorem 5. (i) First consider the case of finite T. Let X be
in some finite interval [0,X]. Consider the sequence {VT(x,E[Fn])}n_lw.
VT(x,E[Fn]) is uniformly bounded on [0,X] (i.e., there exists an M such
that VT(x,E[Fn]) < M independent of n). The Ascoli-Arzela theorem
(Royden [1988], Theorem 7.40) implies that there exists a subsequence

E[F,] such that VT(x.E[Fnk]) converges to a continuous function
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VT(x,F*) where the convergence is uniform on each compact subset of
[0,x]). Since E[F,k] converges to F* for all possible subsequences, nk
can be taken to be the entire sequence, n. It remains to show that
VT(x,F*) - VT*(x). We need the following preliminary lemma adapted from

Hinderer [1970], Lemma 3.3.

Lemma. If u(x) and v(x) are continuous functions bounded below then

|inf, u(x) - inf, v(x)| < supylu(x)-v(x)|.

Proof of Lemma. Without loss of generality assume that inf, u(x) > infy
v(x). This implies inf u - inf v = |inf u - inf v|. For any € > 0 such
that inf u — inf v = ¢ there exists an x for which u(x) =z inf u 2 inf v

+ € = v(x). This implies inf u - inf v - € < u(x) — v(x) < sup, |u(x) -
v(x)|, or |inf u - inf v| < supy |u(x) - v(X)| + ¢. Since ¢ can be made

arbitrarily small the proof is complete. //

The proof of theorem 5 proceeds by induction. Suppose the theorem

holds for T-1 and consider limg Vo(x,E[F,]). By the Lemma,

IVg* (%) = Vp(x,E[Fp]) | S supy |G(w+[[L(x+u,0)+ BVq_1 " (x+u-w)dF* ()] -

{C(u)+[[L(x+u,w) +pVy_y (x+u-w,E[Fp 4 |©]) JAE[Fp] (@) } |

= sup, |[[L(z,0)+BVq ;" (z-) ]dF* (v)
- (J[L(2,0)+BVp_; (z=0, E[Fpy |0]) JAE[Fp] (@) } ]

- sup, |JL(z,0)dF*(w) - [L(2,w)dE[F,](w)
+ BfVp_y *(z-0)dF* (@) = BfVp_y ¥ (2-w)dE[F,] ()

+ BfVp_1 ¥ (z—0)dE[Fp] () - BfVp_; (2=, E[Fpyq |@])AE[Fy] () |



IA

sup, |[[L(z,w)+8Vq_1*(z~0) 1dF* (0) = [[L(z,0)+BVq ;" (z-0) JAE[F,] (@) |

+ sup, B|f[Vq_y"(z—0) = Vq_;(z=0,E[Fyy |w]) JdE[Fp] (@) |

IA

sup, |[[L(z,0)+BVp_y*(z—0) JdF*(0) = [[L(z,0)+BVy_; " (z-w) JdE[Fp] ()
+ sup; sup, BI[[Vp_1*(z~w) — Vg3 (20, E[Fpy; |0]) JAE(Fj1 () |,
(5.1)
where z = x+u.
Since L(z,w)+pVT_1*(z—w) is continuous in w and E[Fn] converges
weakly to F¥,
lim e JIL(Z,0) 4BV ¥ (z=0) JAE[Fy] (@) = [[L(z,0)+BVq_;* (z-0) JdF" (&),
where the convergence is uniform on finite intervals. Thus, the lim and
sup operators can be exchanged (Hinderer [1970, remark following Lemma
3.4]) to obtain
lim_,, sup, |[[L(z,0)+BVy ;" (z—0) |dF" ()
- [IL(z,0)+8Vy_; " (z0) JAE[F ] (o) |
= sup, lim, |f[L(z,w)+pVT_l*(z—w)]dF*(w)
- [[L(z,0)+BVp_; ¥ (z-0) JAE[F ] (@) | = 0. (5.2)

6

Since the period T-1 cost function is uniformly bounded for all n,” and

Vp_1(z=w,E[Fp,q |@]) » VT_l*(z—w) by the induction hypothesis, the
dominated convergence theorem implies

JVp_1(z-0,E[Fpyy |0])AE[F5] (@) = fVT_l*(z—w)dE[Fj](w)

which in turn gives

lim;,, SUpj SUp, ﬁ]f[vT_l*(z—w) - fVT_l(z—w.E[Fn+1|w])]dE[Fj](w)|

= supj sup, Llimy g B|[ [V "(z0) = [Vp (20, E[Fpyp [@D JAE[F5] () | = 0.
Combining this with (5.2) shows that (5.1) converges to zero as n»®

which proves that lim,,, VT(x.E[Fn]) - VT*(x). Since the result holds



trivially for T=0, the induction argument is complete and the theorem
holds for finite T.

Now consider the infinite horizon case. Standard arguments imply:
(1) Vm(x,E[Fn]) and Vm*(x) are continuous in x, and
(2) limp,, Vo(X,E[F

) = Vu(X,E[F,]) and limg,, Vo' (%) = V,'(x), where

nl nl

the convergence is uniform in each case. This implies that for all x
and € > 0 there exists a T, such that |VT(x,E[Fn]) - Vu(X,E[F])| < ¢
and |VT*(x) - Vw*(x)| < ¢ for all T > T,. Combining these two
inequalities gives |Vo(X,E[F,]) - Vo (X,E[Fq]) - VT*(x) + Vm*(x)l < 2e
for all T > T,. Taking the limit of this as n»» implies |Vw*(x) -

Voo (%, E[F,]) | < 2¢, since limg Vo(x,E[F]) = VT*(x). The proof follows
immediately.

(ii) The proof is similar to the proof of Theorem 3.8 in Stokey, Lucas
and Prescott [1989]. Define

Vo (x,u) = C(u) + [g(L(x+u,w) + BVp_;* (x+u—0) }dF*(w), and

Wol(x,u) = C(u) + Jg{L(x+u,w) + BVp_j (x+u-w,E[Fp,q|@]) ME[Fy](@).

Note that VT*(x) = max, WT*(x.u) and VT(x,E[Fn]) = max, WTn(x,u). Part
(i) of the theorem implies that WTn(x,u) converges to WT*(x,u) where the
convergence is uniform on each compact subset [0,%]x[0,0]. By the
principle of optimality

0

IA

*
Vo (X, up®) - Ve () < Wptoxup® - Wptoxup®) + Wt (xup) - Wt (x,up™

1A

2sup{ [Wp* (%, ug™ =W (x,ug™ |, (Vg (%, ug ) -Wp(x,up™) |}
for all x. Since WTn converges to WT* uniformly, it follows that for
all € > 0 there exists an N(T,e¢) such that 0 < WT*(x.uTn) - VT*(x) < €

for all n > N(T,¢). //



Proof of Lemma 6. The proof uses an induction argument. Consider the

case when T = 1. The value function is given by

Vi (x,E[Fy]) = inf [ceu + [ L(x+u,w)dE[F](w)]
u=0
= inf [Gy(x+u,E[F,]) - c*X]

u=0
where the function G, is defined in (3.1). Under the Dirichlet process,
Gy can be rewritten as
Gy (z,E[F,]) = cz + (1-ap) [he (% (z—w)dE[F] (@) + p+f,” (wv-2)dE[F](@)]
n n
+ an[h-% Z max(z-w;,0] + p-% Z max[w;-2,0]]
i=1 i=1
= cz + (1-a,) [he[(Z(z—w)dE[F] (@) + p+[,”(0-2)dE[F](w)]
n n
+aghed T (27001 (5pu1) + PR T (0172)1 (5]
As stated earlier, G;(z,E[F,]) is continuous and convex in z. The
derivative of G, with respect to z is
G'1(z,E[F,]) = c + (l—an)[h'E[F](2)—p'(l—E[F](Z))]
n n
+ “n[h'% Z1lipuy) t P‘%.z 1iz<wi)]}
i=1 i=1
= c + heE[F,](2) — p* (1-E[F,](2))
= c - p + (h+p)*E[F,](2).
This derivative exists except possibly at wy,...,w, and points of
discontinuity of the prior; however, at these points the left-hand and
right-hand derivatives exist and are bounded. (For simplicity we assume
in the sequel that the prior measure has a density.)

It is clear that G';(z,E[F,]) is increasing in z, and given p > ¢

we have



lim Gy (z,E[F,]) = .

|z |=e
The above discussion implies that a minimum of Gl(z,E[Fn]) exists.
Let Sln(F) be the smallest value minimizing Gl(z,E[Fn]). The value

function and its derivative are given by

—cex + G, (S;%,E[F,]), x < ;"
V) (x,E[F,]) =
—cex + G (x,E[Fn]), x = 5,0
and
-c, x < 8"
V' (x,E[F,]) =
- ' E[F,]) x = 8,8
C+Gl(x, nl?s = D]
the derivative being well-defined except possibly at wy,...,w,. The

continuity and convexity of G;(x,E[F,]) imply that Vi (x,E[F,]) is
continuous and convex in x. Further, V';(x,E[F;]) is non—-decreasing in
X (because if G',(x,E[F,]) is well-defined then it is non—negative for x
> 5,7 by the convexity of Gp).

The T-period value function is defined by

Vep(x,E[F]) = i:§ cou + Joi{L(x+u,w) + BVp_; (x+u—w,E[Fp,q |0]) }E[Fp] (@)
uz

= inf —cx + Gp(x+u,E{F;]),
u=0

where Gp(z,E[F,]) is defined in (3.2).
Using standard arguments, it can be established that
(i) Gp(z,E[F ] is continuous and convex in z
(ii) 1im|z|*~ Gp(z,E[Fp]) = =
(iii) G'q(z,E[F,]) is increasing in z

and hence that



-cx + Gp(S¢™,E[F,]), x < S¢°
-cx + Gp(x,E[Fp]), x = g1,
where STn is the smallest value minimizing GT(z,E[Fn]). Next,
_C, X S ST
V/p(x,E[F,]) = {
' n
-c + G T(x.E[Fn]), X = ST ’

which is well defined except possibly at w,,.,w, and STn. Clearly

n
V'p(x,E[F,]) is non-decreasing in x. Finally, VT(x,E[Fn]) is continuous
and convex in x.

It is clear from the expression for V'; that the result is true
for T = 1. We now assume it is true for T-1 and show it is true for T.
Consider

G'p(x,E[GL]) (6.1)

= c - p + (h+pP)E[G,](x) + Bfg V' 1 (x~w,E[G 41 |0])dE[G] (@)

= c - p+ [qiBV' p_q (x=0,E[Gpyy [©]) + (h+P)L(,cry }AE[Gp] (w)

v

c - p+ [gBV gy (x~0,E[Gpyq [©]) + (B+DP)1 ey ME[Fy] (@)

v

c = p+ [gBV p_y (x~,E[Fpyy|©]) + (B+P)L(eyy ME[Fp] (0)

= G'p(X,E[Fy]),
where the first inequality follows from the fact that E[F,]
stochastically dominates E[G,] and the integrand is decreasing in w.
The integrand decreases in w because (i) V'q_;(2,) increases in z, and
(i1) V'qp_3(2,E[Gpiqlw]) = Vg y (2,E[Gpyql@’]) for w < w', by the
induction assumption and the fact that E[G . |w’] stochastically
dominates E[G., |w]. The second inequality in (6.1) follows from the
induction assumption since E[Fn+1|w] stochastically dominates E[G.;|w].
The critical number STn(F) satisfies G'q(x,E[F,]) = 0 if the derivative

exists, or it is the smallest w for which the right hand derivative of
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Gp(x,E[F,]) is greater than or equal to zero. In either case, the fact
that G'p(X,E[F,]) =< G'T(x,E[Gn]) enables us to conclude that STn(F) =
STn(G) (since G’y is increasing in its first argument) .
To complete the proof of the lemma, consider the following three
possible cases:
(i) X = STn(G) which implies V'T_l(x,E[Gn]) - V'T_l(x.E[Fn])
=-c+c¢c =20,
(i1) 8¢™(6) s x =< S"(F) which implies V'p_j(X,E[Gy]) — V' g (X, E[Fy])
- —c + G'g(x,E[G,]) + ¢ = G'q(x,E[G,]) 2 O,
(iii) x = STn(F) which implies V'T_l(x,E[Gn]) - V'T_l(x,E[Fn])

= G'¢(X,E[G,]) + G'p(x,E[Fy]) = 0.

nl
If the derivative is not well-defined at a point x, then the above
inequalities can be established for the right hand and left hand

derivatives. Hence, the lemma is proved. //

Proof of Theorem 7. (i) The proof follows immediately from Lemma 6.
(ii) Note that Sy"(E[F,]) satisfies G'r(z,E[F,]) = 0, or if the
derivative is not well defined it is the smallest z such that the right
hand derivative of GT(z,E[Fn]) is greater than equal to zero. A similar
relation characterizes STn(E[Fn+1|wn+15Min(wl,...,wn)]). By Lemma 6,
G'p(2,E[F,]) = G'T(z,E[Fn+1]wn+lsMin(w1,...,wn)]) because E[F,] first-—
order stochastically dominates E[Fn+1|wn+lsMin(w1,...,wn)]). The result
follows because G'p(z,*) is non-decreasing in z.

Remark. Theorem 7 is not true when there is a fixed ordering cost.
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NOTES

1. A contribution of previous work on parametric Bayesian inventory
models is that for some conjugate families the dynamic programming problem
can be reduced to a one-dimensional state space, improving computational
feasibility. With recent increases in computing power, however, optimal
policies can be calculated for inventory problems with higher dimensional

state spaces.

2. Blackwell and MacQueen [1973] show that the Dirichlet process can be

represented by a generalized Pélya urn scheme.

3. While similar, Boylan’'s [1969] stability result for solutions to the

optimal inventory equation does not apply under Bayesian learning.

4. Scarf's [1960] proof of the optimality of (s,S) inventory policies

applies to the parametric Bayesian case as well (e.g., Porteus [1990]).

5. These continuity assumptions simplify the proof but are not essential

to the resulrt.

6. The boundedness of the cost function follows from the fact that all

distribution functions are assumed to have finite variance.



