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Abstract

A single long-run player plays a fixed stage game (simultaneous or
sequential move) against an infinite sequence of short-run opponents
that play only once but can observe all the past realized actions. As-
suming that the probability distributions over types of long-run and
short-run players have full support. we compute a lower bound on the
Nash equilibrium payoffs to the long-run plaver.
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1 Introduction

Kreps and Wilson (1982) and Milgrom and Roberts (1932) have provided an
explanation of the chain store paradox. assuming that there is a “chance”
that the incumbent is a commitment type: this fact can be exploited by a
~sane” incumbent that can therefore build up a reputation for toughness.

Fudenberg and Levine (1939) (in the following FL) build up on these re-
sults to provide a lower bound on the NE payoffs of the long run playver (LR).
However their main result { Theorem 1) applies only to games in which the
commitment strategy of the LR player is revealed regardless of the strategies
the short run players (SR) choose: this is true in simultaneous move games.
in sequential move games in which the LR plaver moves first. and in some
sequential move games in which the SR player moves first: an example of
this last class is the chain store game. in which the strategy the SR players
choose before the reputation is established is exactly the one that reveals the
strategy by which the LR player builds up his reputation.

FL also provide a generalization of Theorem 1 (Theorem 2) in which the
Stackelberg payoff is redefined to keep into account the fact that the outcome
of the stage game may not reveal the LR player’s strategy: the new bound
is computed making use of the fact that the observed outcome of the stage
game in general restricts a subset of the strategy space to which the strategy
chosen by the LR player must belong.

Unfortunately. in some games this result does not provide a higher lower
bound than the minimum pavoff for the LR plaver. For example, consider
the quality game with extensive form as in Fig. 1. The SR player moves first
and decides whether to buy a product or not: if he decides not to buy, the
game ends and both players get 0: if he decides to buy. the LR plaver decides
whether to produce a low quality product. thus making a larger profit and
causing the SR player a loss. or a high quality product. in which case the
profit is smaller but the SR player’s pavotfis positive. When this stage game
is repeated an infinite number of times. the lower bound provided in Theorem
2 in FL is just 0: if the prior probability that the LR plaver is committed to

-

high quality is less than .5. the SR plaver decides not to buy. Given that no



information is revealed, the game at the following stage is the same. the SR
plavers never buy. and the LR playver payoft is 0 (cfr. FL. pp. 772-773).

The purpose of this paper is to provide a different generalization of The-
orem 1 in FL, one that uses perturbations of the original game with the
property that every information set is reached with positive probability in
the stage game.

The idea is simply to assume that not only the type of the LR player
is uncertain, but also the tvpes of the SR players are. and that for each
strategy there exists at least one type of SR player. that is selected with
strictly positive probability. that has that strategy as a strictly dominant
strdtegy.

As is shown in Example 1, this might require a substantial increase in
the number of periods necessary to build up a reputation with respect to the
sequential move game, but may nevertheless provide a significantly higher
lower bound on the NE pavoffs of the LR player.

As in FL we provide a lower bound on the Nash equilibrium payoffs to
the LR player by computing a lower bound on the payoff to the so called
Stackelberg strategy to be defined. This strategy need not be the optimal one
for the LR player, but since it is always feasible. the optimal strategy has to
vield at least as high a payoft.

Our result holds for any stage game (simultaneous move' or sequential
move) in which the realized actions of the LR player are observed. and the
probability distributions over types of LR and SR players have full support.

Fudenberg and Levine (1991) show that there is a lower bound on the
Nash equilibrium payoffs to the LR plaver also when the public outcome of
the stage game is a random variable that provides only stochastic information
about the strategy the LR player chose.

Our model is a special case of theirs in that in sequential move stage
games in which the SR player moves first the public outcome only reveals
the action of the LR player and not his strategy. Restricting to this special

! For simultaneous move stage games our result coincides with that of FL.



class of games however lets us explicitly compute the lower bound. and thus

narrow down the set of equilibrium payoffs to the LR player.

The range of applications of our result seems very wide. In the following
we just want to mention a few applications of the quality game.

International loan contracts are many times not enforceable or very costly
to enforce. Thev are therefore well described by the quality game: an in-
ternational lender decides whether to give credit to a foreign agent and the
latter then decides whether to repay the loan or renege on his debt. Even
though repaying is suboptimal in the stage game. it is a way of establish-
ing a reputation for repayment that in turn guarantees prolonged access to
international loan markets.

[llegal contracts are also not enforceable: nevertheless cocaine dealers or
illegal lottery organizers can decide to sell high quality cocaine or to pay the
prizes in order to establish a reputation for “honesty”.

Importers usually get short term credit from their suppliers. In some less
developed countries. however. trading houses do not enforce these contracts.
so that the importer has an incentive to renege on it and, by backward
induction, foreign traders refuse him credit. Also in this case, however, the
importer can guarantee himself a higher discounted payoff in the repeated

game by establishing a reputation for repayment.

In Section 2 we describe the game and introduce the notation. The result
is derived in Section 3. Section 4 provides two examples of the quality game
that give substance to the results of the previous section.

2 The Model

A long run player (plaver 1 or LR) plays a fixed stage game against an
infinite sequence of short run players (plaver 2 or SR). The LR player chooses
a strategy s; from a finite nonempty set S, and the SR player chooses an
action s, from a finite nonempty set =, The corresponding mixed strategy

spaces are denoted by ¥, and ¥,.



The public outcome of the stage game is given by a mapping y : Sy X 52 —
. and is to be interpreted as the revealed actions of the LR and the SR
player. When the stage game is simultaneous move or sequential move with
the LR player moving first. the action reveals the LR player’s strategy. But
when the stage game is sequential move and the SR player moves first the
LR player’s revealed action doesn’t reveal what he would have done had the
SR player chosen a different strategy.

The unperturbed stage game is described by the payoffs to the LR and
the SR plavers. a mapping ¢ : ¥ — R?: with an abuse of notation we
let g(y(o)) = (g1(y(o1,02)). 92(y(o1.02))) denote the expected payoff corre-
sponding to the mixed strategy profile o. In the unperturbed repeated game
the LR player maximizes the normalized discounted value of expected payoffs

(1-6)3 69, (1)
t=0

Each period’s SR player maximizes that period’s payoff. g3.

Both LR and SR players can condition their play on the past history of
the game. Let H, = Y denote the set of possible histories of the game; then
mixed strategies are mappings ot Hi-y — Iy, and o} : H,-y — o

Let B: T, — %, be the correspondence that maps mixed strategies by
the LR player in the stage game to the best responses of the SR player. Then

we define the Stackelberg payoff g7 as:

*= max min gi{s.02) (2)
$1€3) 7,€8(s)

the Stackelberg leader strategy as the s; that solves

max min ¢($1.02) : (3)
$1€5) 72€B(s1)

and the Stackelberg follower strategy as the 33 that solves

min  gi(s].o 1)
ageBts;)Jl( 1 2) (

(intuitively s3 is the strategy of the SR plaver that the LR player wants to

induce).
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In the perturbed game the payoffs of the LR plaver. as well as those of
the SR plaver. are made dependent on their types which are assumed to
be private knowledge. For simplicity we assume that there are a countable

number of types both of long and short run players:

0 = {wlowliwh 1 Q= {wdwfwl ) (3)

The pavoffs are therefore a mapping ¢; : &y x £ x Q; — R, and the
mixed strategies are mappings of : H;-y x @, — Z,. We let &{ and wy be the
rational players: in other words we assume that their payoffs are as in the
unperturbed game: g;(01.02.x2) = ¢,(d1.07). 7 = 1. 2.

The priors on the types are probability distributions g, : @4 — {0.1] and
uz : Q; — [0.1] that are assumed to be common knowledge.

In the following we will make the following assumptions about the types

of LR and SR players:

Assumption 1: For each s; € S,. there is a LR player that has that
strategy as a dominant strategy in the repeated game and p; has full support.
l.e. 3/11 € R+ val € Ql.ul(wl) > .

Assumption 2: For each s; € 5, there is a type of SR player that has
s, as a strictly dominant strategy. and u, has full support. i.e. 342 € Ry -
Vwg € Qo pa(wr) > fia.

[n the following we will call a Stackelberg leader type a LR plaver that
has s7 as a dominant strategy in the repeated game. and we denote by 7
the event that the LR player is such type. and by & the event that the LR
player is not such type. We will denote by .3 the event that the SR player

is the type that has s) as a dominant strategy.?.
yp 2 g}

Let H* be the set of histories such that the play of the LR player is
consistent with the description of the Stackelberg type for all ¢. and let h*
denote the event A € H=. Finallv. let =7 be the random variable (s} =

2Less strong assumptions about the types of SR players can be made: see Section 4



33 he-1) and let n(r; < 7) be the random variable denoting the number
(possibly infinite) of the random variables ¢ for which =7 < 7.

3 The Result

First we show that =(w]|h,) is nondecreasing in t when A is the truncation
of a history h € H™.

Lemma 1 For any infinite history h € H* such that the truncated histories
h, have positive probability. w(wi|h,) 1s nondecreasing in t.

Proof: We want to show that

w(wilh) = m(wily(sy,s2) het) (6)

(e ) ly(si ) i) .
(@i A )T (y(s7.52)jwi) + (1= m(wilhe))m(y(si, s2)k
2 W(Wflht—l)

Inequality (8) is equivalent to

which is in turn equivalent to
r(y(s1. 520571 < mlylsiosa)led). (101
which is trivially satisfied since (y{s.s2)|«7) = 1. O

The following Lemma computes an upper bound on the probability that
the probability that the LR player plays 7 is less than a fixed probability
7 when the stage game is repeated a number of times. and is to be used
to compute the lower bound on the NE pavoffs to the LR player. In the
following we will assume that the cardinality of S, is .V + 1 and will denote
by [] the operator integral part ({r] is the greatest integer less than or equal

to z).



Lemma 2 Let 0 < 7 < 1. Suppose that (oi.5) are such that r(h*|e]) =
l. Let Ny = [log/log(l — (1L = #)/.V)] + 1. and Ye > 0 let K,(e) =
llog(l — (1 — €)My /log(l — fip)] + 1. Then. Ve > 0.

min(x; <#)> K, - Ky(e)fh™) L e (11)

Remark 1. The purpose of Lemma 2 is to provide an upper bound on
the probability that the probability that the LR player plays s7 is less than
a given 7 € [0.1) after the stage games has been played a given number of
times. and to make this upper bound dependent on g, g, (the lower bounds
on g1 and u;) and 7 only. and otherwise independent of (. y1) and (Qq, u2).
To do this we argue that whenever =7 = m(s! = s7]he~y) is low. if 5] is played.
there is a strictly positive probability that =(<|h,) increases by a nontrivial
amount. Since m(w}|h,) has to be less than or equal to 1. this cannot happen

too often. so that the probability that =] is low in many periods has to be

low.
Proof: By Bayes's law we have

rwilh) = m(wily(siosa) hea) (12)
7(wi k1) (y (51 52)lwp) )
(@i ) (Y (st o)) + (1 = 7lwilhemy))m(y (st 52)[27)

Substituting m(y(s],sz)lw;) = | in the numerator of the fraction in (13)

and recognizing that the denominator is equal to m(y(s]. s2){h¢-1.53) we have

T(with, -
T(wilhe) = = (ifhe-t)

(14)
Tly(s7.52) het)

where T(wilh1) = pi(w]) 2 1.

m(y(s7,52)|he=1) is the probability that y(s].s;) is observed. which s equal
to the probability that s} is being played plus the probability that other
strategies observationally equivalent to s} for s, are being played. Define
S:(sy) as the set of strategies of the LR player different from s that are
observationally equivalent to s7 when the SR plaver plays so. i.e. S7(s2) =



{sy # 87 y(sy.82) = y(s5.s2)}- With this notation (13) can be rewritten as

- r(wrlhi-1) .
r(wilhe) = (15)
1he) w(st = sjlhe1) + LsieSi(0) 7(s} = silhe-1)
Saying that 7(s} = si|hi-1) > T 18 equivalent to saying that

S w(si= silhe-1) < 1 —T. (16)

31€S5;7(32)

Given that the cardinality of 51 is \ + 1. a sufficient condition for (16) to
be satisfied is 7(s} = s1|hi—1) < 7 for all s, # s, where 7 = (1 - 7)/.N.
Now suppose 3s1 # sj such that 7(s} = silhe—1) > T Since s, # s;. there
exists an s, such that s is not observationally equivalent to sy, s1 ¢ Si(s2)
(in other words, y(s1,52) # y(s7,52))- If the SR player plays such an s; (an
event that, by Assumption 2. happens with probability at least fiz), then by

(14) we have that
7 (wilhe-1)

1-r7

m(wilhe) 2 (17)

since the denominator of (14) is less than or equal to 1 — #. In the following
we will call such an s; an information revealing strategy.
If the stage game is repeated I times and every time an information

revealing 33 18 selected, then

r(ilh) > TR (18)
However, since
r(wilh) <1 (19)
if i
B 5 (20)
(1—m)k

inequality (19) 1s violated and a contradiction to the hypothesis that r(si =
s1]ht-1) > T, any 51 # s7, is obtained. Taking the log of (20) and substituting
#=1-(1—7)/N the condition becomes

log f#1 (21)

K> g =7/~

9



Defining A, = [log pj/log(l — (1 — #)/.N)] + | provides the first part of the
result.

Finally we want to find an upper bound on the number of times the stage
game is played and the probability that =7 < 7 is less than a given ¢ > 0.
when the LR player plays s, i.e. we want to find the smallest integer A(¢)
such that

m(n(r; < 7) > Kp- Ko(e)|h™) < e (22)

The probability on the LHS of inequality (21) is less than or equal to the
probability that information revealing s, are played less than A’} times when
the stage game is repeated A’y - \;(¢€) times.

Suppose that the stage game is played ;(¢) times: then the probability

that no information revealing s, is played is
n= (1= f)" (23)

and 1 — 7 is the probability that at least one information revealing s; is
played.

If the stage game is played K; - A(¢) times, i.e. if the experiment of
playing the stage game Kj(¢) times is repeated K times. the probability
that at least A information revealing s, are playved is greater than (1 —
n)R1. Therefore a sufficient condition for the probability that less than A
information revealing s; are played when the stage game is repeated Iy K2 (¢€)

times to be less than € is
(l-mft>1-¢ (24)

whence
n<1—(l-eh (25)

Substituting (20) in (22) and rearranging provides

log(l = (1 — ¢)/f1)

¢ >
Rale) 2 =i =)

Defining A3(e) = [log(1 — (1 — €)'/~A1)/log(1l — u3)] + 1 concludes the proof.
[

10



Remark 2: The lower bound on p, fiz. is to be interpreted as a lower
bound on the probability that information revealing s; are played. In simul-
taneous move stage games and in simultaneous move stage games in which
the LR player moves first all s, are information revealing because the strat-
egy of the LR player is observed. For this class of game our result coincides
with the one of FL.

We are now ready to state the main result. Let V,(6, i1, fiz,wy) be the
least NE payoff to a LR player of type «{., with payoffs as in the unperturbed
game, when the discount factor is 0. Then

Theorem 1 Let Assumptions | and 2 be satisfied, and let 1 — o be the
probability that the SR player is the rational type. Then for all e > 0. there
erists a K (fi1, iz, €) = K™ otherwise independent of (1, p1) and (Q2, p2)
such that

Vy(6. fiy. g w®) > (L= e)(L = 2)8% g7 + (1= (L —€)(1 = 12)6" ) min gy (27)

Proof: Suppose the LR player always plays the Stackelberg strategy. Since
the best response correspondence® B(o!) is upper hemi-continuous, each el-
ement of B(c!) is near to an element of B(s}) when 7} is sufficiently near to
one. Since s, is finite, if o is near to an element of B(s]), then it must place
probability close to one on sj. Since the rational SR player has to be indif-
ferent between all strategies that he is willing to assign positive probability.
there is a probability # < 1 such that B(s{) C B(sj) whenever 77 > 7.

Set K= = K*(¢) = K*(¢, fi1. fiz. 7) = Ny - Wy(€). 1f the LR player always
plays s;. then from Lemma 2 it follows that the probability that there are
more than K*(e) occasions where the rational SR player plays outside of
B(s}) (corresponding to the events =7 2> ) is less than e. In the worst
case these events occur at the beginning of the game where the payoffs are
discounted the least. Recalling that only a fraction | — g, of SR players is

3Recall that B(.) is the best response correspondence of the rational SR player.

Il



cational provides the RHS of (27). Since the Stackelberg strategy is always
feasible for the LR plaver. the RHS is a lower bound on anv NE payoff. O

Remark 3: As said in Remark 2. in the case in which the stage game
‘s simultaneous move or sequential move with the LR player moving first.
fi; = | and the lower bound in Theorem 1 coincides with the lower bound
in Theorem 1 in FL. The same is true for simultaneous move stage games in
which the SR player moves first in which the SR players choose an information
revealing s, when 77 < 7. such as the chain store game.

4 The Quality Game

In the following we want to discuss an important application of our results.
the quality game. The analysis will turn out to be simpler than in the
previous section given the simple structure of the game. In particular S; has
only 2 elements, therefore V = 1 and 1 — (1 = 7)/.V = 7.

EXAMPLE 1. Consider the version of the quality game whose extensive
form is described in Fig. 2. When a = 0. b=1.and ¢ = —1, as argued in
the introduction, provided that pi(w7) is not too high. the lower bound for
the LR player NE payoffs given by Theorem 2 in FL is just min gy = 0.

Now suppose that there are two types of SR player. the rational player.
»9. with payoffs as given above. and a second one, w3, with payoffs such that
he always buys. Suppose that these payoffs are a = 1. b= 1/2, and ¢ = 0.
The rational player w on the other hand buys only if 77 2 7 = 1/2.

In this example we only have one LR player commitment type (wy) and
one SR player commitment type {w3). In the following we will therefore
replace fi; and fi2 with p] = pi(w]) and py = pz(w;). Finally, notice that
since type wj always buys. we can disregard the term (1 — fa2) in (27), since
buying is a best response to producing high quality.

Let u; = .1. Then Ky = (log i1/ log 7] + 1 = 4.

Suppose fiz = .3, and let § = .99. Then we have:

V(6. pifiz,wy) 2 max(l —¢) G9FrEad = 60 > 0 (28)

{2



which is obtained maximizing with respect to ¢ the RHS of inequality (27) in
Theorem 1. The € that maximizes that expression turns out to be .11. which
implies that K,(e) = 10.

As claimed above. the introduction of uncertainty on the side of the SR
players improves substantially the lower bound on the LR player NE payvoffs.

The purpose of the next example is to assess the sharpness of the lower
bound on NE payoffs V, that is computed using only xj and p;. We will
show that. while the use of additional information relative to the distribution
of the SR player type does provide a better bound. the induced improvement

is far from dramatic.

EXAMPLE 2. Suppose we introduce another SR player. w}, with payoffs
a =1 b= —1/3, and ¢ = 0, and whose prior is u(w;) = p3 = .2: SR
players of type w} buy if 77 = 1/4. thus increasing the probability that the
LR player’s action be revealed. In this case. as suggested above, V, turns
out to be larger.

In such a case K* = K’ + K" where K' = K*(e, u3, p3, 7') = Ki(p]. 7')
Ky(e.p3) and K" = K*(e, w(wilhnr). p3+p3. 7) = Ki(r(wilhr), 7)-Kale pi+
u3). To see this assume that at least one type w; SR player is selected
when the stage game is repeated A"’ times. Then we have that m(wilhx/) 2
pr/m = 4, since 77 < v’ = 1/4. In this case K" < K*(e,u}/7' u5 + p3, 7).
Since in computing K” we have assumed that an event had happened whose
probability is 1 — (1 — p3)"", the probability that =} > & = 5 is equal to
(1 =€) (1 =(1—u3)"') and therefore

V(8. 3, uhow?) > max(l =€) - (1= (1= p3)R). 998+~ = 69 (29)

In the previous examples we have made the assumption that a type of SR
player exists with strictly positive probability that had s;, an information
revealing strategy as a strictly dominant strategy. which implies that that
type of SR player will play s; regardless of the LR player he believes to face.

Another assumption that is perfectly consistent with the structure of the

model is the following:



Assumption 3: A type of SR player exists with strictly positive prob-
ability that plays s3 provided that the probability that the LR player is the
Stackelberg leader type is greater than or equal to uj, the prior probability
that he is of that tvpe.

In the quality game studied above Assumption 3 means that
pra+ (1 —p)b>c (30)
whereas Assumption 2 was equivalent to
a>c. b>c (31)

As 1s clear Assumption 2 is stronger than Assumption 3 in that (31) implies
(30) but not viceversa: (30) might hold also when a > ¢ but b6 < ¢. In
the context of the quality game this means that the SR player commitment
types don't prefer purchase to no purchase independently of the quality; it
just means that given their preferences they are more willing to take the risk
of buying than the rational SR player.

Consider again the game of Fig. 2, and suppose that type w; has payoffs
a=1,b=-1/9, ¢ =0. If we assume, as in Example 1, that u; = .1, we
then have pja + (1 —ui)b=.1-1+.9 - (=1/9) = ¢ = 0. Assumption 3 is
satisfied and our results follow.

A major difference between Assumptions 2 and 3 however exists. Suppose
that in the game of Fig. 2 the payoff to the LR player when he produces low
quality is 4 rather than 3/2. If we make Assumption 2, and g5 = .3 it turns
out that the Stackelberg leader strategy is to produce low quality, since in
this case his expected payoff is .3 -4 = 1.2. In other words if enough SR
players exist that always buy and the difference between the payoff to the
LR player when he produces low and high quality is large enough, it might
be better for him to exploit the SR commitment types rather than building a
reputation for honesty. If we make Assumption 3. on the other hand, and we
assume that b < c, the same result does not hold: after the first time the LR
plaver produces low quality he is revealed to be the rational type (m(w;) = 0)
and no other SR player is guaranteed to ever buy in the future, not even the

commitment types.



While we think that the two assumptions we have been discussing can
be appropriate for different games. we also believe that Assumption 2 is
interesting in that it highlights that reputation doesn’t always work.

Another important point to make is that the impact of /i; and f; on the
lower bound on NE payoffs is rather different. From the proof of Lemma 2 it
is clear that the smaller fi, is, the larger will be the increase in m(w]) when
the LR plaver plays according to the description of wj, so that K; does not
increase by much and V, does not decrease significantly. The same argument
is not true for d,: if fi, is very low, the time required for m(wy) to get greater
than or equal to # can be long and the decrease in V, is nonnegligible. In
Example 1 if uj = .2, V, > 48, and if 3 = .1. V, 2 .27

In the examples we have presented so far we have chosen a discount factor
that is not too large: if the reference period is one month, § = .99 translates
to a yearly interest rate of 12.8%. We have chosen to do so to stress the fact
that the result doesn’t hold only for very patient LR players. However in
many economic examples the relevant reference period can be shorter: if the
relevant period is for example one week, a weekly discount factor 6 = .999
would translate to a yearly interest rate of 5.3%. and in this case V, in
Example 1 would be larger than .93.
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(1,1) (3/2.1)

Fig. 1: Quality game

(1,a) (3/2.b)

Fig. 1: Quality game with unspecified payoffs for the SR player






